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The preliminary study presented within this paper shows a comparative study of various texture features extracted from liver
ultrasonic images by employing Multilayer Perceptron (MLP), a type of artificial neural network, to study the presence of disease
conditions. An ultrasound (US) image shows echo-texture patterns, which defines the organ characteristics. Ultrasound images of
liver disease conditions such as “fatty liver,” “cirrhosis,” and “hepatomegaly” produce distinctive echo patterns. However, various
ultrasound imaging artifacts and speckle noise make these echo-texture patterns difficult to identify and often hard to distinguish
visually. Here, based on the extracted features from the ultrasonic images, we employed an artificial neural network for the diagnosis
of disease conditions in liver and finding of the best classifier that distinguishes between abnormal and normal conditions of the
liver. Comparison of the overall performance of all the feature classifiers concluded that “mixed feature set” is the best feature set.
It showed an excellent rate of accuracy for the training data set. The gray level run length matrix (GLRLM) feature shows better
results when the network was tested against unknown data.

1. Introduction

Ultrasound imaging modality is quite popular and most
widely used modality for visualizing and studying the liver
for any disease conditions without causing any pain or
discomfort to the patient. Ultrasound liver imaging is widely
used due to its noninvasive nature and low cost as compared
to other imagingmodalities.Thediagnosis of various diseases
is performed on the basis of various image features such
as the echogenicity, legion shape, and echo texture. Liver
imaging is one of the best techniques of early detection of
liver diseases and early detection is very important because it
saves patients from further ailments such as enlarged stomach
filled with ascites fluid, bleeding varices, and encephalopathy
or sometimes jaundice. Liver disease conditions such as fatty
liver, cirrhosis, and hepatomegaly are known for producing
distinctive echo patterns during US imaging as shown in
Figure 1; however these images are also known to be visually

challenging for interpreting them because of their imaging
artifacts and speckle noise. As a result of it, the sonographers
have to rely upon additional pathological tests [1–3].

A visual measure for diagnosing a liver is done by eval-
uating the liver echogenicity and the granular structure and
surface echo-texture of liver. Texture analysis presents various
image features, which characterize different liver conditions
including normal and abnormal conditions. Texture analysis
also provides some important information that cannot be
obtained fromvisual examination of ultrasonic images. A tex-
ture analysis of each liver disease condition differs from other
disease conditions as well as from the normal liver image.
Normal liver ultrasound image is described as pyramidal with
smooth surface and no lumps. The normal liver parenchyma
is of homogeneous echogenicity [2]. Fatty liver ultrasound
image shows liver parenchyma of hyperechogenicity. Fatty
liver is reversible in its early stages; therefore an early
detection is very essential [4, 5].The ultrasound image of liver
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Figure 1: Ultrasound image of (a) normal liver, (b) fatty liver, (c) cirrhosis, and (d) hepatomegaly.

cirrhosis shows inhomogeneous echo texture and irregular-
nodular liver surface [5]. Most gray levels of cirrhotic tissue
appear darker than the normal tissue [6].

The granular structure of the tissue area can be examined
to characterize it. This specific granular pattern of normal
liver, cirrhotic liver, and fatty liver can be described as texture
and thus “texture analysis” for tissue characterization may
be used to study and correlate the physiological changes
in the liver. Moreover this approach provides some impor-
tant information that may not be obtained through visual
interpretation of ultrasound images. These echo-patterns
extracted from the images can be studied and processed for
characterization of liver diseases [2].

Picture Archive and Communication Systems (PACS)
are most widely used systems for medical image storage
and retrieval. PACS are comprehensive networks of digital
devices designed for digital image data management, image
acquisition, data transmission, storage, image display, and
management of diagnostic imaging studies, interfaces to
printers and portable media, and communication routes
to other electronic systems. PACS are usually based on
DICOM(Digital Imaging andCommunications inMedicine)
standards and are comprehensive management systems for
diagnostic imaging studies that are increasingly used in
hospitals and other health care systems [7, 8].

An artificial neural network (ANN) is a nonlinear, com-
putational, and mathematical model, comprised of densely

interconnected simple processing elements called neurons.
Artificial neural networks are inspired by information pro-
cessing simulation in human brain by biological neurons.
The main characteristics of neural networks are their ability
to learn complex nonlinear input-output relationships, use
sequential training procedures, and adapt themselves to the
data. A key benefit of neural networks is that a model of the
system can be built from the available data [9, 10].

The aim of this study was to investigate the image feature
classifiers and to find the best feature classifier for the
diagnosis of liver disease conditions using artificial neural
network. The objectives included quantification of various
features extracted from the ultrasound image and utilize
themas an input to artificial neural networks towards the liver
disease classification.

Previous studies conducted by Kadah et al. and Jeon et al.
compared the analysis of statistical classifiers and neural
network based classifiers generated using tissue character-
ization parameters from liver images [11, 12] by various
feature extraction algorithms [11]. Another study conducted
by Lee et al. established the classification of liver lesions such
as cyst, hemangioma, and malignancies using the multiple
regions of interests (ROIs) based feature selection methods.
Here the liver lesion classification from the US images is
heavily dependent upon certain characteristics (traits) such as
internal echo, morphology, edge, echogenicity, and posterior
echo enhancement. The proposed method seems to have
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achieved the enhanced and stable classification regardless of
features used alongside outperforming the existing classifica-
tion methods that are designed for focal liver lesions [13]. A
study by Plesea-Condratovici et al. established the evaluating
ability of a neural network based tool in the prediction of
steatosis of liver, where the data has been collected from
100 patients and a data matrix is generated from that data
and 10 variables are dedicated for the purpose. Out of the
10 variables 7 are input and 3 are output parameters. The
results are validated against another study where the level
of steatosis is known in the patients [14]. Study published
by Gletsos et al. proposes the use of CAD system to classify
the hepatic lesions such as hepatic cysts, hemangiomas, and
hepatocellular carcinoma from CT images [15].

The rest of this paper is organized as follows. Section 2
gives an outline of the overall methodology. Then, the
processes of image acquisition, image preprocessing, and
image processing (i.e., both feature extraction and feature
selection processes) are explained under Sections 3, 4, and
5, respectively. We talk about the concept of artificial neural
networks (in particular about validation, implementation,
and testing aspects) under Section 6. We then talk about
the results and discussion part under Section 7. Finally, the
conclusion is given under Section 8.

2. Outline of Methodology

In this study, we acquired normal and diseased (i.e., abnor-
mal) liver ultrasound images from “The Ultrasound Depart-
ment at Jaslok Hospital and Research Centre.” Using MAT-
LAB along with “image processing toolbox” these images
are then subjected to three different image preprocessing
techniques, namely, “cropping,” “edge detection,” and “back-
ground subtraction,” in order to accentuate the region of
interest from the acquired images (i.e., liver). After image
preprocessing, textural features such as “intensity histogram
(IH)” [16, 17], “gray-level co-occurrence matrix (GLCM)”
[18], “gray-level run length matrix (GLRLM)” [19], and
“invariant moments (IM)” [20] were extracted from the
preprocessed ultrasound images to calculate the adequate
texture features. The features extracted from feature extrac-
tion phase were further processed (i.e., narrowed) utiliz-
ing “feature selection” method to obtain most significant
and optimal features that represent the liver characteristics.
WEKA software [21] was utilized within the feature selection
phase to provide the selected significant features. These
optimal features were then provided as an input to the
neural network for classification. Artificial neural network
employing a back-propagation algorithm [22] was utilized to
classify the normal and abnormal liver disease conditions and
to determine which feature classifier is best for classification.
The performance of the neural network based classifier was
determined using “confusionmatrix” and “receiver operating
characteristics (ROC)” curve analysis. These techniques as
shown in Figure 2 are further elaborated in following subsec-
tions.

3. Image Acquisition

All B-mode ultrasound images were acquired from Jaslok
Hospital and Research Centre, Mumbai. The patients’ data
report and their ultrasound images were initially analyzed
and the images were shortlisted on the basis of the most
prevalent disease condition amongst the acquired data, age
of the patient, and severity of the disease. Here, the images
of the patients containing ascites along with the liver disease
conditions were eliminated from shortlisting as the selection
parameters only focused on liver disease conditions. Overall,
a total of 60 liver ultrasonic images were selected for this
study. These included 30 cases of normal and 30 cases of
abnormal liver sonograms.The 30 cases of abnormal liver are
comprised of 10 cases of cirrhosis, 10 cases of fatty liver, and 10
cases of hepatomegaly. The images were acquired from both
male and female subjects with a mean age group of 53 (±15)
years. During image acquisition, the operator examined the
whole liver area from different orientations and saved a single
frame.

4. Image Preprocessing

Image preprocessing techniques are used to select and
enhance the region of interest and to eliminate erroneous
data, which is of no interest from the acquired images. The
images are subjected to three types of image preprocessing
techniques such as cropping, edge detection, and background
subtraction as shown in Figure 3.

4.1. Cropping. It is an operation, which is performed on
acquired images to accentuate the region of interest (i.e., the
liver) and to remove all the unwanted artifacts such as written
labels and background noise from them.The cropping opera-
tion was done on all images by cutting out the rest of the area,
which did not contain the liver, leaving a rectangular region
consisting of only the region of interest. Cropping operation
was performed on all images in MATLAB.

4.2. Edge Detection. It is one of the vital steps of image
preprocessing. Although cropping operation extracts liver
from the original image, it does not crop along the boundary
of liver. Cropping is limited to a rectangular frame only
whereas the shape as well as structure of liver is pyramidal;
hence edge detection operation is necessary to define the
edges of liver. Edge detection technique outlines the liver
boundary in the image. In this work the segmentation is
achieved by “Active Snake Contour” model, providing a
contour over liver boundary.The active snake contour model
is a semiautomatic model, where initializing a curve or a
contour close to the boundary of the region of interest is
carried out manually by the user and the model functions
by deforming the contour through number of iterations to fit
to the boundary of region of interest [23]. In this study, the
edge detection was performed in “ImageJ” software using an
“Absnake” plugin.

4.3. Background Subtraction. It is a method to eliminate
unwanted intensity values which are outside the contour
(edge) in the images (rectangular images with dimension of



4 Advances in Bioinformatics

Image acquisition

Image 
preprocessing

Image processing 
techniques

Edge detection

Cropping

Background 
subtraction

image processing 
toolbox

Image J

image processing 
toolbox

Active 
snake 

contour
module

Involves

Feature selection Feature 
extraction

Intensity 
histogram

GLCM

GLRLM

Invariant 
moments

redundancy within the above 5 features

WEKA

Optimized
input

Artificial neural 
network (ANN) Confusion

matrix

ROC
graph

Output

1

2

5 “.arff ”
files for 5 
features

3

I

II

Various stages of image classification workflow described 
here
1- Represents flow from “image acquisition” to “image
preprocessing”; 2- represents flow from “image preprocessing” to 
“image processing techniques”; 3- represents flow from “image 
processing techniques” to “artificial neural network”

Nonoptimized feature sets are being fed as an input for feature selection in order to eliminate the 

Mixed

The ANNs take optimized feature 
sets from WEKA software as their 
inputs for the task of classification.

Inputs

Here
I- Represents the flow from “cropping” to “edge detection” 
II- Represents the flow from “edge detection” to “background
subtraction”

Here “solid” lines represent the connectivity between the “4 main 
steps of the image classification (shown in grey colour)”; “long 
dashed lines” represent the “substage: 1 (shown in light blue 
colour)” within the main stages; “short dashed lines” represent 
“substage: 2 (shown in light red colour)” (i.e., software tools used 
within or features extracted from the substage-1 or “.arff ” files);
dotted lines represent “substage: 3 (shown in light green 
colour)” (i.e., module within a software or an output of a substage: 
2 being fed as an input to substage: 1 or .arff file given as an 
input to WEKA); dashed-dot lines represent substage: 4
(optimized WEKA output acting as inputs for ANNs 

Inputs

Processes

Involves

MATLAB with

MATLAB with

Figure 2: Image classification workflow utilising ANNs.
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Figure 3: Workflow of image preprocessing step, (a) original ultrasound image, (b) image after cropping operation, (c) image after edge
detection, and (d) image after background subtraction.

𝑚 × 𝑛 that includes pyramidal liver) to avoid the calculation
of these unwanted intensities that will be incorporated during
extraction of feature parameters. Background subtraction is
performed to avoid calculation of pixel intensities, which are
outside the region of interest. Background subtraction was
performed in MATLAB.

5. Image Processing

Texture is an image feature that provides important charac-
teristics for surface and object identification from an image.
Texture is characterized by the spatial distribution of gray
levels in a neighborhood in an image. In texture analysis,
the most difficult as well as important aspect is to define a
set of meaningful features that explores the characteristics
of the texture [24, 25]. Image processing techniques involve
identifying these sets of essential features and extracting these
features from the ultrasound image for further processing.
“Feature extraction” and “feature selection” are two most
vital steps of image processing and are explained under
Sections 5.1 and 5.2 in detail.

5.1. Feature Extraction. Feature extraction is a critical step
for ultrasonic liver classification. Feature extraction method-
ologies analyze the preprocessed images to extract the most
prominent features that represent various sets of features
based on their pixel intensity relationship and statistics.
A set of four features (i.e., statistical texture features),
namely, intensity histogram, gray-level co-occurrence matrix
(GLCM), gray-level run-lengthmatrix (GLRLM), and invari-
ant moments, were extracted from each of the total 60 images
in MATLAB using respective modules, which calculated
parameters belonging to each set.

Each feature set comprises individual image parameters.
Features derived from intensity histogram features include
moments such as mean, standard deviation, average energy,
entropy, skewness, and kurtosis [16, 17]. GLCM features
include autocorrelation, contrast, correlation, cluster promi-
nence, cluster shade, dissimilarity energy, entropy, homo-
geneity (1), homogeneity (2), maximum probability, sum
of squares, sum average, sum variance, sum entropy, dif-
ference variance, difference entropy, information measure
of correlation (1), information measure of correlation (2),
and inverse difference normalized [18]. The GLRLM features

Table 1: Features corresponding to intensity histogram.

S/number Name Equation

1 Mean (𝜇) (𝜇) =

𝑁−1

∑

𝑖=0

𝑖𝑝 (𝑖)

2 Energy (𝐸) (𝐸) =

𝑁−1

∑

𝑖=0

𝑝(𝑖)
2

3 Variance (𝜎2) (𝜎
2
) =

𝑁−1

∑

𝑖=0

(𝑖 − 𝜇)
2

𝑝 (𝑖)

4 Entropy (𝐻) 𝐻 =

𝑁−1

∑

𝑖=0

𝑝 (𝑖) log
2
𝑝 (𝑖)

5 Skewness (𝜇
3
) 𝜇

3
= 𝜎
−3

𝑁−1

∑

𝑖=0

(𝑖 − 𝜇)
3
𝑝(𝑖)

6 Kurtosis (𝜇
4
) 𝜇

4
= 𝜎
−4

𝑁−1

∑

𝑖=0

(𝑖 − 𝜇)
4

𝑝 (𝑖) − 3

include short run emphasis (SRE), long run emphasis (LRE),
run length nonuniformity (RLN), gray level nonuniformity
(GLN), run percentage (RP), low gray-level run emphasis
(LGRE), high gray-level run emphasis (HGRE), short run
low gray-level emphasis (SRLGE), short run high gray-
level emphasis (SRHGE), long run low gray-level emphasis
(LRLGE), and long run high gray-level emphasis (LRHGE)
[19]. The Invariant moments are 𝐼

1
, 𝐼
2
, 𝐼
3
, 𝐼
4
, 𝐼
5
, 𝐼
6
, and 𝐼

7

and these moments are invariant under translation, changes
in scale, and also rotation. So it describes the image despite
its location, size, and rotation [20].

5.1.1. Intensity Histogram Features. The intensity-level his-
togram is a function showing (for each intensity level)
the number of pixels in the whole image, which have this
intensity. Here 𝑝 represents the “pixel intensity” and “𝑝(𝑖)”
represents the pixel intensity of 𝐼 value. The function 𝑓(𝑥, 𝑦)

can take discrete values 𝑖 = 0, 1, . . . , 𝑁−1, where𝑁 is the total
number of intensity levels in the image. We can calculate the
individual features under this feature extraction technique
utilizing the formulas as shown in Table 1.

5.1.2. GLCM Features. Also termed as “spatial gray level
dependency matrices,” it is one of the most widely used sta-
tistical tools for extracting texture information from images.
The GLCM of a 2D (i.e., 𝑁

𝑥
× 𝑁
𝑦
) image containing pixels
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Table 2: Features of GLCM.

S/number Name Equation

1 Mean (𝜇
𝑥
, 𝜇
𝑦
)

𝜇
𝑥
= ∑

𝑖

∑

𝑗

𝑖 ⋅ 𝑝(𝑖, 𝑗);

𝜇
𝑦
= ∑

𝑖

∑

𝑗

𝑗 ⋅ 𝑝(𝑖, 𝑗)

2 Standard deviations (𝜎
𝑥
, 𝜎
𝑦
)

𝜎
𝑥
= ∑

𝑖

∑

𝑗

(𝑖 − 𝜇
𝑥
)
2

⋅ 𝑝 (𝑖, 𝑗);

𝜎
𝑦
= ∑

𝑖

∑

𝑗

(𝑖 − 𝜇
𝑦
)

2

⋅ 𝑝 (𝑖, 𝑗)

2.1 Autocorrelation (𝑓
1
) 𝑓

1
= ∑

𝑖

∑

𝑗

(𝑖𝑗) ⋅ 𝑝 (𝑖, 𝑗)

2.2 Contrast (𝑓
2
) 𝑓

2
=

𝑁9−1

∑

𝑛=0

𝑛
2
{

{

{

𝑁𝑔

∑

𝑖=1

𝑁𝐺

∑

𝑗=1

𝑝 (𝑖, 𝑗) |

𝑖 − 𝑗


= 𝑛

}

}

}

2.3 Correlation (𝑓
3
) 𝑓

3
=

[∑
𝑖
∑
𝑗
(𝑖𝑗) 𝑝 (𝑖, 𝑗) − 𝜇

𝑥
𝜇
𝑦
]

[𝜎
𝑥
𝜎
𝑦
]

2.4 Cluster prominence (𝑓
4
) 𝑓

4
= ∑

𝑖

∑

𝑗

(𝑖 + 𝑗 − 𝜇
𝑥
− 𝜇
𝑦
)

4

𝑝 (𝑖, 𝑗)

2.5 Cluster shade (𝑓
5
) 𝑓

5
= ∑

𝑖

∑

𝑗

(𝑖 + 𝑗 − 𝜇
𝑥
− 𝜇
𝑦
)

3

𝑝(𝑖, 𝑗)

2.6 Dissimilarity (𝑓
6
) 𝑓

6
= ∑

𝑖

∑

𝑗


𝑖 − 𝑗


⋅ 𝑝(𝑖, 𝑗)

2.7 Energy (𝑓
7
) 𝑓

7
= ∑

𝑖

∑

𝑗

𝑝(𝑖, 𝑗)
2

2.8 Entropy (𝑓
8
) 𝑓

8
= −∑

𝑖

∑

𝑗

𝑝(𝑖, 𝑗) log (𝑝 (𝑖, 𝑗))

2.9 Homogenecity (𝑓
9
) 𝑓

9
= ∑

𝑖

∑

𝑗

1

1 + (𝑖 + 𝑗)
2
𝑝(𝑖, 𝑗)

2.10 Maximum probability (𝑓
10
) 𝑓

10
= max
𝑖,𝑗

𝑝(𝑖, 𝑗)

2.11 Sum of squares (𝑓
11
) 𝑓

11
= ∑

𝑖

∑

𝑗

(𝑖 − 𝜇)
2

𝑝(𝑖, 𝑗)

2.12 Sum average (𝑓
12
) 𝑓

12
=

2𝑁𝑔

∑

𝑖=2

𝑖𝑝
𝑥+𝑦

(𝑖)

2.13 Sum variances (𝑓
13
) 𝑓

13
=

2𝑁𝑔

∑

𝑖=2

(𝑖 − 𝑓
14
)
2

𝑖𝑝
𝑥+𝑦

(𝑖)

2.14 Sum entropy (𝑓
14
) 𝑓

14
=

2𝑁𝑔

∑

𝑖=2

𝑝
𝑥+𝑦

(𝑖) log {𝑝
𝑥+𝑦

(𝑖)}

2.15 Difference variance (𝑓
15
) 𝑓

15
= Variance of𝑝

𝑥−𝑦

2.16 Difference entropy (𝑓
16
) 𝑓

16
= −

𝑁9−1

∑

𝑛=0

𝑝
𝑥−𝑦

(𝑖) log {𝑝
𝑥−𝑦

(𝑖)}

2.17
2.18

Information measures of correlation-1 (𝑓
17
)

Information measures of correlation-2 (𝑓
18
)

𝑓
17

=
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

max {𝐻𝑋,𝐻𝑌}

𝑓
18

= (1 − exp[−2.0 (𝐻𝑋𝑌2 − 𝐻𝑋𝑌)])
1/2

where HX and HY are entropies of 𝑃
𝑋
and 𝑃

𝑌

𝐻𝑋𝑌 = ∑

𝐼

∑

𝐽

𝑝 (𝑖, 𝑗) log (𝑝 (𝑖, 𝑗))

𝐻𝑋𝑌1 = ∑

𝐼

∑

𝐽

𝑝 (𝑖, 𝑗) log {𝑝
𝑥
(𝑖) 𝑝
𝑦
(𝑗)}

𝐻𝑋𝑌2 = ∑

𝐼

∑

𝐽

𝑝
𝑥
(𝑖) 𝑝
𝑦
(𝑗) log {𝑝

𝑥
(𝑖) 𝑝
𝑦
(𝑗)}

2.19 Inverse difference (𝑓
19
) Same as homogenecity
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Table 2: Continued.

S/number Name Equation

2.20 Inverse difference normalized [INN] (𝑓
20
)

𝐶
𝑖𝑗
= the co-occurrence probability between grey levels i

and j is defined as

𝐶
𝑖𝑗
=

𝑃
𝑖𝑗

∑
𝐺

𝑖,𝑗=1
𝑝
𝑖𝑗

𝑓
20

=

𝐺

∑

𝑖,𝑗=1

𝑃
𝐼𝐽

𝐶
𝑖𝑗

1 +

𝑖 − 𝑗



2

/𝐺
2

2.21 Inverse difference moment normalized (𝑓
21
) 𝑓

21
=

𝐺

∑

𝑖,𝑗=1

𝑃
𝐼𝐽

𝐶
𝑖𝑗

1 + (𝑖 − 𝑗)
2

/𝐺
2

with gray levels (0, 1, . . . , 𝐺 − 1) is also a 2D matrix “𝑃(𝑖, 𝑗)”,
where each and every matrix element depicts the probability
of joint occurrence of intensity levels “𝑘” and “1” at a certain
distance “𝑑” and an angle “𝜃”.Here “𝑝(𝑖, 𝑗)” is the (𝑖, 𝑗)th entry
in a normalized GLCM. The mean (𝜇

𝑥
, 𝜇
𝑦
) and standard

deviation (𝜎
𝑥
, 𝜎
𝑦
) for the rows and columns of the 2D matrix

can be calculated using the formulas that are shown in
Table 2. We can also calculate the various individual features
under this feature extraction technique utilizing the formulas
provided in Table 2.

5.1.3. GLRLM Features. Grey-level run-length matrix
(GLRLM) is a matrix from which the texture features can
be extracted for texture analysis. For a given 2D image,
GLRLM is a 2D matrix in which element “𝑝(𝑖, 𝑗)” gives the
total number of consecutive runs of length “𝑗” at grey level
“𝑖”. Here “𝑀” represents the number of gray levels and “𝑁”
represents the maximum run length (here a run length is
considered to be a number of neighboring pixels that possess
the same grey intensity in a particular direction). From this
matrix almost 11 scalar parameters can be computed which
analyze the image texture [26] and these parameters are
provided in Table 3.

5.1.4. Invariant Moments Features. The idea of utilizing
moments within shape recognition became popular in 1962
when Hu utilised algebraic invariants to derive a set of
invariants. Hu’s 7 moment invariants are invariant under
translation, changes in scale, and also rotation. So it describes
the image despite its location, size, and rotation.Themoment
invariants are generally specified in terms of normalized
central moments. Here, the central moments are depicted
by 𝜇
𝑝𝑞
, the raw moments are defined by 𝜇

𝑖𝑖
[27], and these

invariants are shown in Table 4.

5.1.5. Mixed Features. Mixed features are a combined set
of all features, that is, intensity histogram features, GLCM
features, GLRLM features, and invariant moment features.
Mixed features are a combination of these features including
a total of 47 features including all 46 features of intensity
histogram features, GLCM features, GLRLM features, and
invariant moment features and length of the liver. Mixed
features set is created to check significance of all attributes
within all features and to serve as an input to neural network.

5.2. Feature Selection. While feature extraction techniques
are applied to extract as many image parameters as possible
that identify liver characteristics, a feature selection algo-
rithm is necessary to select few of those extracted features
which are most significant and which describe the liver
characteristics the best.

A total of 46 features were extracted in feature extraction
process from each image but all of these features cannot
be supplied to the neural network because the number
of features is high. Although each feature is important in
classification only few of these features are very significant
in classifying and identification of the disease conditions.
Therefore instead of using all of these features as input, only
those features, which have high significance, were selected.

There are many feature selection algorithms used in this
process and each performed search in their unique way.
Most of the feature selection algorithms involve a search
method throughout the whole space. Many search methods
calculate individual feature’s significance and rank them
accordingly. These methods also provide best features from
a given set. Waikato Environment for Knowledge Analysis
(WEKA) software gives a variety of feature selection options
that include “heuristic,” “genetic,” and “Bayesian” algorithms.
Here, feature selection was performed usingWEKA software
version 3.6.9 [21].

WEKA is compatible with and recognizes only Attribute-
Relation file format (i.e., “.arff file format”); therefore “.arff
file” was generated containing feature information of all
images (normal as well as abnormal). Along with “.arff
file” consisting of four features, one more “.arff file” called
mixed features was created containing all the 46 features
and the length of liver parameter. Feature selection process
incorporated methods like genetic search method, random
search, rank search, and so forth to select the best attributes
amongst a large set of features. These methods select fea-
tures on the basis of their ability to correctly identify the
pattern in training. WEKA provides option of varied search
methods for selection of attributes, out of which we used
only two search methods, namely, “RandomSearch” which
performs a random search in the space of attribute subsets
and “GeneticSearch” which performs a search using the
simple genetic algorithm. The feature selection algorithms
such as “RandomSearch” and “GeneticSearch” of WEKA
softwarewere used to generate the results as shown in Table 5.
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Table 3: Features of GLRLM.

S/number Name Equation
1 Gray level run-length pixel number matrix 𝑃

𝑃
(𝑖, 𝑗) = 𝑝 (𝑖, 𝑗) ⋅ 𝑗

2 Gray-level run-number vector 𝑃
𝑔
(𝑖) =

𝑁

∑

𝑗=1

𝑝(𝑖, 𝑗)

3 Run-length run-number vector 𝑃
𝑔
(𝑖) =

𝑁

∑

𝑗=1

𝑝 (𝑖, 𝑗)

3.1 Short run emphasis [SRE] (𝑓
1
) 𝑓

1
=

1

𝑛
𝑟

𝑀

∑

𝑖=1

𝑁

∑

𝑗=1

𝑝(𝑖, 𝑗)

𝑗
2

=
1

𝑛
𝑟

𝑁

∑

𝑗=1

𝑝
𝑟
(𝑗)

𝑗
2

3.2 Long run emphasis [LRE] (𝑓
2
) 𝑓

2
=

1

𝑛
𝑟

𝑀

∑

𝑖=1

𝑁

∑

𝑗=1

(𝑝(𝑖, 𝑗) ⋅ 𝑗
2
) =

1

𝑛
𝑟

𝑁

∑

𝑗=1

𝑝
𝑟
(𝑗) ⋅ 𝑗

2

3.3 Gray-level nonuniformity [GLN] (𝑓
3
) 𝑓

3
=

1

𝑛
𝑟

𝑀

∑

𝑖=1

(

𝑁

∑

𝑗=1

(𝑝(𝑖, 𝑗)))

2

=
1

𝑛
𝑟

𝑁

∑

𝑖=1

𝑝
𝑔
(𝑖)
2

3.4 Run length nonuniformity [RLN] (𝑓
4
) 𝑓

4
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1

𝑛
𝑟

𝑀
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𝑖=1

(

𝑁

∑
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(𝑝(𝑖, 𝑗)))

2

=
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𝑛
𝑟

𝑁
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𝑖=1

𝑝
𝑟
(𝑖)
2

3.5 Run percentage [RP] (𝑓
5
) 𝑓

5
=

𝑛
𝑟

𝑛
𝑝

3.6 Low gray-level run emphasis [LGRE] (𝑓
6
) 𝑓

6
=

1

𝑛
𝑟

𝑀

∑

𝑖=1

𝑁

∑

𝑗=1

𝑝(𝑖, 𝑗)

𝑖
2

=
1

𝑛
𝑟

𝑁

∑
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𝑝
𝑔
(𝑖)

𝑖
2

3.7 High gray-level run emphasis [HGRE] (𝑓
7
) 𝑓

7
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1

𝑛
𝑟

𝑀
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𝑁
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2
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𝑛
𝑟

𝑁
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𝑝
𝑟
(𝑗) ⋅ 𝑖

2

3.8 Short run low gray-level emphasis [SRLGE] (𝑓
8
) 𝑓

8
=

1

𝑛
𝑟

𝑀

∑

𝑖=1

𝑁

∑

𝑗=1

𝑝(𝑖, 𝑗)
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2
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2

3.9 Short run high gray-level emphasis [SRHGE] (𝑓
9
) 𝑓

9
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𝑛
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𝑀

∑
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𝑁
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𝑗
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3.10 Long run low gray-level emphasis [LRLGE] (𝑓
10
) 𝑓

10
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𝑛
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𝑀
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𝑖=1

𝑁
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3.11 Long run high gray-level emphasis [LRHGE] (𝑓
11
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Table 4: Features corresponding to invariant moments.

S/number Name Equation

1
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𝑥
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𝑖
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2
Central
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)

𝑓(𝑥, 𝑦) is a digital image;
𝑝, 𝑞 are raw moments;
𝑋 = 𝑀

10
/𝑀
00
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01
/𝑀
00
are the components of the centroid:
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Table 5: Features selected by WEKA software.

S/number Feature
category

Number of features
before feature
selection

Number of features
after feature
selection

Selected features

1 Intensity
histogram 6 4/6 Variance, Skewness, Kurtosis, and Entropy

2 GLCM 22 11/22

Contrast, correlation-1, correlation-2, cluster shade,
homogeneity, maximum probability, sum of squares:
variance, sum variance, difference entropy, information
measure of correlation-1, and information measure of
correlation-2

3 GLRLM 11 6/11

Short run emphasis, gray-level nonuniformity, low
gray-level run emphasis, high gray-level run emphasis,
short run high gray-level emphasis, and long run high
gray-level emphasis

4 Invariant
moments 7 4/7 𝐼

2
, 𝐼
3
, 𝐼
4
, and 𝐼

6

5 Mixed
features 47 9/47

Homogeneity, sum of average, difference variance,
information measure of correlation-1, information
measure of correlation-2, inverse difference
normalized, short run emphasis, short run high
gray-level emphasis, and length

Inputs
Training

validation
test data

Number of 
hidden 
neurons

Training
of 

network

Confusion 
matrix and 

ROC 
graph

analysis

Testing of 
network

∙ Histogram
∙ GLCM
∙ GLRLM
∙ Invariant 
∙ Mixed

Figure 4: Workflow of implementation of artificial neural network.

These optimal features were selected by WEKA software for
serving as an input in neural network.

6. Artificial Neural Network

An artificial neural network builds amodel of existing system
and learns from the previous or known samples and trains the
network to achieve target with minimum error [22].

6.1. Implementation, Validation, and Testing. The features
extracted from the images after the feature selection process
act as an input to the neural network as shown in Figure 4. To
perform the analysis for image classification, the back prop-
agation algorithm has been shortlisted and is implemented
using MATLAB’s Neural Network Pattern Recognition Tool
(nprtool). The back propagation algorithm was chosen due
to the networks ability to learn and store immense amounts
of mapping relations of input-output model without the need
for prior disclosure of mathematical equations pertaining to
these mapping relations. The algorithm also regulates the
network’s weight and threshold values in order to obtainmin-
imum error sum of square [28].The designed neural network
classifier used a two-layer feed-forward back propagation
network. Two-layer feed-forwardnetwork can be best defined
as a network with sigmoid hidden and output neurons.

The network was trained with scaled conjugate gradient back
propagation [22, 29].

To train the network, the input data and target data need
to be fed into the network.Thenetwork then divides the input
sample data into three different samples, which are training,
validation, and testing samples.The training samples are used
to train the network, and the network is adjusted according to
its error.The validation samples are used to measure network
generalization and to halt the training when generalization
stops improving. Testing samples are then used to provide
an independent measure of the network performance during
and after training. If the error of the network is still large, the
network can be retrained back as to get more accurate and
efficient result [22, 29]. From the training dataset, we utilized
80% of data for training, 10% of data for validation, and 10%
of data for testing purposes, while we utilized 20 samples of
normal condition and 20 samples of abnormal condition to
create the testing dataset to test the efficiency of the artificial
neural network.

Confusion matrix as well as ROC graph depicts the
overall classification rate and accuracy of the network. If the
overall classification rate and the accuracy are high, it signifies
that the network was successful in correctly classifying the
two classes. After training the network for sufficient number
of epochs till the network is perfectly trained having low
MSE and less misclassifications, confusion matrix and ROC
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Figure 5: Confusion matrix and ROC plot of GLRLM training data.

graph were plotted to measure the true positive rate, that is,
sensitivity, true negative rate, that is, specificity, false positive
rate, false negative rate, and accuracy of the network [29].

Analysis of ROC graph and confusion matrix of the
trained network are generally more than enough for evalu-
ating the designed neural network classifier’s accuracy. There
is an additional option to test network onmore data and then
decide the quality of the network’s performance. Additional
tests were performed on test input dataset, comprised of a
smaller sample set to evaluate the network’s performance
on test data. “MSE” and “percent error” provided the mean
squared error and difference between the output and target
test data, respectively.

7. Results and Discussion

The performance of the designed neural network classifier is
measured in terms of accuracy. This term refers to the ability
of the model to correctly predict the class of new unseen
data. Classification accuracy is calculated by determining the
percentage of cases in which the test sets are correctly classi-
fied. The performance of the neural network was calculated
by analysis of confusion matrix and the receiver operator
characteristic curve (ROC).

Confusion Matrix. The diagonal cells show the number of
classes that were correctly classified and the off diagonal cells
show the misclassified cases.The blue cell in the bottom right
shows the total percent of correctly classified cases (in green)
and the total percent of misclassified cases (in red) [29].

ROC Graph. The colored lines in this graph represent the
ROC curves for each of the two output categories. The ROC
curve is a plot of the true positive rate (sensitivity) versus
the false positive rate (1-specificity) as the threshold is varied.

Aperfect test would showpoints in the upper-left corner, with
100% sensitivity and 100% specificity [29].

Results of the training data show that selected GLRLM
features yield an accuracy of 90%, sensitivity of 86.7%,
specificity of 93.3%, false positive rate computed of 6.7%,
false negative rate computed of 13.3%, and misclassification
rate of 10%. Size of the input dataset loaded in the network
was of 60 samples. Of total 60 samples, 54 samples were
correctly classified and 6 samples were misclassified by this
network as shown in Figure 5. ROC graph shows the plotting
of true positive rate against false positive rate (1-specificity).
ROC graph of this network shows an excellent classification
between the two categories as the curves lie between the
diagonal and the upper-left corner but mainly towards the
upper-left corner as shown in Figure 5.

The results of the testing data show that GLRLM his-
togram features yield an accuracy of 95%, sensitivity of 95%,
specificity of 95%, false positive rate computed of 5%, false
negative rate computed of 5%, and misclassification rate of
5%. Size of the input dataset loaded in the network was of
40 samples. Out of the total 40 samples, 38 samples were
correctly classified and 2 samples were misclassified by this
network as shown in Figure 6. ROC graph shows the plotting
of true positive rate against false positive rate (1-specificity).
ROC graph of this network shows a perfect classification
between the two categories as the curves lie in the region of
upper-left corner and they are very far from the diagonal as
shown in Figure 6.

The results of the training data show that selected mixed
features yield an accuracy of 91.67%, sensitivity of 93.33%,
specificity of 90%, false positive rate computed of 10%, false
negative rate computed of 6.7%, and misclassification rate of
8.33%. Size of the input dataset loaded in the network was
of 60 samples. Out of the total 60 samples, 55 samples were
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Figure 6: Confusion matrix and ROC plot of GLRLM testing data.
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Figure 7: Confusion matrix and ROC plot of mixed features training data.

correctly classified and 5 samples were misclassified by this
network as shown in Figure 7. ROC graph shows the plotting
of true positive rate against false positive rate (1-specificity).
ROC graph of this network shows a perfect and effective
classification between the two categories as the curves lie
towards the upper-left corner as shown in Figure 7.

The results of the testing data show that mixed features
yield an accuracy of 92.5%, sensitivity of 95%, specificity of
90%, false positive rate computed of 10%, false negative rate
computed of 5%, andmisclassification rate of 7.5%. Size of the
input dataset loaded in the network was of 40 samples. Out
of the total 40 samples, 37 samples were correctly classified
and 3 samples were misclassified by this network as shown
in Figure 8. ROC graph shows the plotting of true positive

rate against false positive rate (1-specificity). ROC graph of
this network shows a perfect classification between the two
categories, as the curves lie in the region of upper-left as
shown in Figure 8.

The results showed that the selected mixed features
yielded an accuracy of around 91.67% on the training set as
compared to GLRLM features and GLCM features, which
yielded an accuracy of around 90% and 86.7%, respectively,
on the training set.The histogram feature gives around 77.5%
and the invariant moments give around 65% of accuracy on
training set as shown in Table 6.

These results indicate that the highest accuracy is
achieved by the “mixed features set” with the accuracy being
91.7% by the “training dataset” and 92.5% by the “testing
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Figure 8: Confusion matrix and ROC plot of mixed features testing data.
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Figure 9: (a) Overall performance analysis of training dataset and (b) overall performance analysis of testing dataset.

dataset” as shown in Figure 9. Hence the selected features of
the mixed feature set such as homogeneity (homom), sum
of averages (savgh), difference variance (dvarh), information
measure of correlation-1 (inf1h), information measure of
correlation-2 (inf2h), inverse difference normalized (indnc),
short run emphasis (SRE), short run high gray-level emphasis
(SRHGE), and length (l) show excellent accuracy.

Along with the mixed features, the gray-level run length
matrix features also showed an excellent accuracy. Training

set yielded an accuracy of 90%, but its testing dataset showed
a better accuracy of 95%, that is, greater than both training
and testing data accuracy of the mixed features. For testing
the network against test data, GLRLM features gave better
result. A low false negative rate decreases the possibility of
misclassification. Both mixed and GLRLM features yielded a
low false negative rate as shown in Table 6. The false positive
rate of both mixed and GLRLM features is 5% and it is lower
than the other networks.
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Table 6: Performance analysis of all features.

FEATURE Training (%) Testing (%)
Accuracy TPR TNR FNR Accuracy TPR TNR FNR

Intensity histogram 80 73.3 86.7 26.7 77.5 75 80 25
GLCM 86.7 80 93.3 20 90 80 100 20
GLRLM 90 86.7 93 13.3 95 95 95 5
Invariant moments 65 86.7 43.3 13.3 72.5 90 55 10
Mixed feature 91.7 93.3 90 6.7 92.5 95 90 5

8. Conclusion

In this study, five feature classifiers have been investigated
for diagnosing the liver disease conditions. The accuracy of
the classifier was based upon the feature set used, selected
training samples, and the classifier’s ability to learn from the
training samples. From the above results, we have achieved
our objective in finding the best classifier for liver disease
diagnosis. Five sets of features such as GLCM, intensity
histogram, GLRLM, invariant moments, and mixed features
were extracted.These features were then selected and trained
in neural network to determine the best set of features, which
can determine the presence of disease conditions in the liver.
A comparative approach revealed that both GLRLM and
mixed feature set showed excellent accuracy in training as
well as testing.
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Invariant Texture Classification Using Feature Distributions.

[28] J. Li, J. H. Cheng, J. Y. Shi, and F. Huang, “Brief introduction of
back propagation (BP) neural network algorithm and its
improvement,” in Advances in Computer Science and Informa-
tion Engineering—Volume 2, D. Jin and S. Lin, Eds., vol. 169 of
Advances in Intelligent and Soft Computing, pp. 553–558,
Springer, Berlin, Germany, 2012.

[29] M. Beale, M. Hagan, and H. Demuth, Neural Network Toolbox
User’s Guide, MATLAB, The MathWorks, 2013.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Anatomy 
Research International

Peptides
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Molecular Biology 
International 

Genomics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Signal Transduction
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Evolutionary Biology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Biochemistry 
Research International

Archaea
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Genetics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporation
http://www.hindawi.com

Nucleic Acids
Journal of

Volume 2014

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Enzyme 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Microbiology


