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Indirubin is a Chinese medicine extracted from indigo and known to be effective for treating chronic myelogenous leukemia, neo-
plasia, and inflammatory disease. This study evaluated the in vivo anti-inflammatory activity of indirubin in a lipopolysaccharide-
(LPS-) induced mouse mastitis model.The indirubin mechanism and targets were evaluated in vitro in mouse mammary epithelial
cells. In themousemodel, indirubin significantly attenuated the severity of inflammatory lesions, edema, inflammatory hyperemia,
milk stasis and local tissue necrosis, and neutrophil infiltration. Indirubin significantly decreased myeloperoxidase activity and
downregulated the production of tumor necrosis factor-𝛼, interleukin-1𝛽 (IL-1𝛽), and IL-6 caused by LPS. In vitro, indirubin
inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner. It also downregulated LPS-
induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B
(NF-𝜅B) P65 protein and inhibitor of kappa B. In addition to its effect on the NF-𝜅B signaling pathway, indirubin suppressed
the mitogen-activated protein kinase (MAPK) signaling by inhibiting phosphorylation of extracellular signal-regulated kinase
(ERK), P38, and c-jun NH2-terminal kinase (JNK). Indirubin improved LPS-induced mouse mastitis by suppressing TLR4
and downstream NF-𝜅B and MAPK pathway inflammatory signals and might be a potential treatment of mastitis and other
inflammatory diseases.

1. Introduction

The occurrence of frequent epidemics of bovine mastitis in
dairy herds worldwide causes a heavy cost burden [1, 2].
Mastitis is an inflammatory disease of mammary tissues
characterized by a range of physical and chemical changes
in milk and pathological changes in udder tissue [3, 4].
There are both noninfectious and infectious forms ofmastitis.
Infectious mastitis can be caused by microorganisms as
diverse as bacteria, yeasts, mycoplasma, and algae, with
more than 137 known responsible species [5]. Approximately
80% of bovine mastitis infections are caused by Escherichia
coli (E. coli), Staphylococcus aureus, Streptococcus uberis,
Streptococcus dysgalactiae, and Streptococcus agalactiae [6, 7].

Acute bovine mastitis with severe clinical symptoms is
caused by E. coli, most often during early lactation [8].

Lipopolysaccharides (LPS) are a major cell wall component
in Gram-negative bacteria. Even transient exposure to LPS
is thought to trigger the onset of mastitis in cattle and in
mouse models by inducing the production of proinflam-
matory cytokines [9, 10]. According to the current model,
the response to LPS is initialized by specific recognition
and binding of agonistic LPS/lipid A on the bacterial cell
membrane by LPS binding protein (LBP). LBP is a soluble
protein that presents LPS to CD14 and the toll-like receptor
4 (TLR4) ∗ MD-2 complex [11–13]. In activated monocytes
and macrophages, MAPK and NF-𝜅B—via transcriptionally
active receptor dimers—regulate inflammation by promoting
downstream expression of IL-1𝛽, IL-6, TNF-𝛼, and other
cytokines [14].

As there are no effective vaccines against mastitis, disease
control primarily depends on antibiotics [15]. However,
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microbial resistance and the presence of residual antibiotics
in milk have hampered mastitis prevention and treatment
and threaten food safety [16]. Traditional Chinese medicine
is a valuable resource that includes many biologically active
components that are both safe and effective. Indirubin,
which is extracted from indigo and an active ingredient
of Danggui Longhui Wan, is the first traditional Chinese
medicine extract shown to be effective for treatment of
chronic myelogenous leukemia [17]. Indirubin is derived
from several plants, including Indigofera tinctoria L., Isatis
tinctoria L., Cnidii fructus, Isatis indigotica, Strobilanthes
cusia, and Polygonum tinctorium [18]. It acts via suppression
of cyclin-dependent kinases (CDKs) and glycogen synthase
kinase-3 (GSK-3) activity. Inhibition of the MAPK, NF-𝜅B,
p53, B-cell lymphoma 2 (Bcl-2), and wnt/𝛽-catenin signal-
ing pathways by indirubin confers antileukemic, antiprolif-
erative, and hepatoprotective properties, antivirus activity,
and effectiveness in treating obesity [19–26]. It is also a
strong anti-inflammatory agent [27], but the effectiveness of
indirubin in treating mastitis is unknown. We evaluated the
effectiveness of indirubin against mastitis and investigated
the mechanism in LPS-induced MMECs.

2. Materials and Methods

2.1. Chemicals and Reagents. Indirubin (purity ≥ 98%) was
purchased fromShanghai YuanYeBiological TechnologyCo.,
Ltd. (Shanghai, China). Dexamethasone Sodium Phosphate
Injection (number H37021967) was purchased from Cisen
Pharmaceutical Co., Ltd. (Jining, Shandong, China). LPS (E.
coli 055:B5), human epidermal growth factor, insulin, and
transferrin were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Fetal bovine serum (FBS) and 0.25% Trypsin-
EDTA were purchased from GIBCO (Grand Island, NY,
USA). Dulbecco’s modified eagle medium (DMEM/F12/1:1)
was purchased from Thermo Fisher Biochemical Products
Co., Ltd. (Beijing, China). 70 𝜇mnylonmesh filter and 40 𝜇m
Falcon cell strainer were purchased from Falcon (Corning,
NY, USA). Mouse interleukin-1𝛽 (IL-1𝛽) platinum enzyme-
linked immunosorbent assays (ELISA) kits with precoated
plates were purchased from eBioscience (San Diego, CA,
USA). Mouse IL-6 and TNF-𝛼 platinum ELISA kits with
precoated plates were purchased fromBioLegend (SanDiego,
CA, USA). Mouse myeloperoxidase (MPO) ELISA kits were
purchased from MultiSciences (Lianke) Biotech Co., Ltd.
(Zhejiang, China). Protein extraction reagent, MTT cell
counting kit, HiScript� II RT SuperMix for PCR (R212-01),
and AceQ qPCR SYBR Green Master Mix (Q111-02) were
purchased from Vazyme Biotech Co., Ltd. (Nanjing, China).
TRI Reagent was purchased from Molecular Research Cen-
ter, Inc. (Cincinnati, Ohio, USA). 𝛽-Actin (BA2305) was
purchased from Wuhan Boster Biological Engineering Co.,
Ltd. (Wuhan, Hubei, China). Cyclooxygenase-2 (COX-2)
(also known as prostaglandin synthase 2) and anti-TLR4
antibody were purchased from Gene Tex, Inc. (San Antonio,
TX, USA). BCA Protein Assay Kit, NF-𝜅B pathway sampler
kits, and MAPK-family antibody were purchased from Cell
SignalingTechnology Inc. (Beverly,MA,USA). Bovine serum
albumin was purchased from Bio-Sharp (Shanghai, China).

Chemiluminescence (ECL) detection kit was come from
Advansta (California, USA).

2.2. In Vivo Study

2.2.1. Animals. All animal procedures were approved by
the Animal Welfare and Research Ethics Committee of
Huazhong Agricultural University. Kunming mice (21 males
and 42 females) were purchased at 6–8 weeks of age from
the Center for Animal Experiment andABSL-3 Laboratory of
WHU (Hubei, China). The mice were maintained for a week
to adapt to their new environment, and then one male and
two female mice were caged together for a week with free
access to water and food. After pregnancy, the female mice
were housed separately from themales.The study procedures
were carried out 5–7 days postpartum.

2.2.2. Experimental Design. Mice were separated from their
offspring 1 h before being anesthetized by intraperitoneal
injection (i.p.) of pentobarbital sodium salt (0.25 g pentobar-
bital sodium salt in 50mL phosphate-buffered saline (PBS),
10mg/20 g). The mice were placed in a supine position and
the skin around the fourth abdominal mammary glands was
sterilized with 75% ethanol. An incision was made about
2mm proximal of both the L4 and R4 mammary gland teats
to expose the udder canal. Anesthetized mice were divided
into six groups of eight mice each as follows.

(1) Control Group (Con). 50𝜇L PBS was injected into the
udder canal and 0.2mL/20 g PBS was given by i.p. injection
at 1 h and 12 h.

(2) DMSO Group (DMSO). 50 𝜇L PBS was injected into the
udder canal and 0.2mL/20 g 0.1% DMSO was given by i.p.
injection at 1 h and 12 h.

(3) LPS Group (LPS). 50𝜇L 0.2mg/mL LPS was injected
into the udder canal and 0.2mL/20 g PBS was given by i.p.
injection at 1 h and 12 h.

(4) Indirubin Administration Groups. 50 𝜇L 0.2mg/mL LPS
was injected into the udder canal and indirubin was given
by i.p. injection of 0.2mL/20 g of 10 : 1 dilution of 25, 50, or
100 𝜇M at 1 h and 12 h.

(5) In the Dexamethasone Group (LPS + Dex). 50 𝜇L
0.2mg/mL LPS was injected into the udder canal and
0.5mg/kg dexamethasone (Dex) was given by i.p. injection
at 1 h and 12 h as a positive control.

The mice were euthanized 24 h after LPS challenge, and
mammary gland tissue was harvested.The excisedmammary
gland tissue was photographed and then stored at –80∘C for
future use.

2.2.3. Tissue Homogenates. Mammary gland tissue was
weighed and then homogenized in phosphate buffer (w/v:
1/9) on crushed ice using a tissue grinder. After centrifugation
at 2000 g for 40min at 4∘C, the lipid layer was discarded,
and the remaining supernatant was centrifuged at 2000 g
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Table 1: Histopathologic scoring criteria.

Feature Description Score

Hyperemia/edema

Normal 0
Mild 1

Moderate 2
Severe 3

Milk stasis/acinar necrosis

Normal 0
Mild 1

Moderate 2
Severe 3

Infiltration with neutrophil

0-1: acinar or mammary gland neutrophil 0
2–5: acinar or mammary gland neutrophil 1
6–10: acinar or mammary gland neutrophil 2
11–15: acinar or mammary gland neutrophil 3
16–20: acinar or mammary gland neutrophil 4
>20: acinar or mammary gland neutrophil 5

for 20min at 4∘C to completely remove the lipids. The
supernatant was stored at –80∘C for future use.

2.2.4. Histopathologic Evaluation and Scoring of Mammary
Gland Tissue. Mammary glands were harvested 24 h after
LPS challenge for histopathological examination, fixed in
4% paraformaldehyde for 48–72 h, dehydrated in a graded
alcohol series, and embedded in paraffin. Histopathological
sections were cut into 5mm thickness and then stained with
hematoxylin and eosin (H&E). The scoring of histopatho-
logic changes was done as previously described in studies
conducted in mouse mastitis models [28, 29], with minor
modifications. The maximum score was 11, and the scoring
system is shown in Table 1.

2.2.5. Determination of IL-1𝛽, IL-6, TNF-𝛼, and MPO Levels.
IL-1𝛽, IL-6, TNF-𝛼, andMPO inmammary gland tissue were
assayed in tissue homogenates prepared as described above
using ELISA following the kit manufacturer’s instructions.

2.3. In Vitro Study

2.3.1. Cell Culture and Treatment. MMECs were isolated
as previously described with slight modifications [30]. In
brief, tissue from the fourth and fifth mouse mammary
glands was aseptically harvested from the mice after 18 to
20 days of pregnancy. Tissue fragments were minced into
pastes and digested with 0.2% (w/v) each of collagenases
I and II in 45mL DMEM/F12, 5mL FBS, sterilized by
filtering through a 0.45𝜇m filter, and 0.25% (w/v) Trypsin-
EDTA mixture for 3 h at 37∘C and 110 rpm in an oscillating
incubator. Each digest was centrifuged three times at 250 g
for 5min each and filtered through a 70 𝜇m nylon mesh
filter. The filtrates were digested with 0.25% (w/v) Trypsin-
EDTA and filtered through a 40 𝜇m Falcon cell strainer to
remove epithelial fragments. Primary MMECs were cultured
in basic serum-free DMEM/F12 (1 : 1) containing 5 ng/mL

EGF, 5 𝜇g/mL insulin, 5 𝜇g/mL transferrin, 10% (v/v) FBS,
and 1% (w/v) penicillin-streptomycin, at 37∘C in a 5% (v/v)
CO
2
humidified atmosphere.

2.3.2. MTT Assay of Cell Viability. The effect of indirubin
on primary MMEC viability was assayed by a standard
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H–tetrazolium
bromide (MTT) assay which was conducted as previously
described [31] with slight changes. In short, 1 × 104 MMECs
were seeded into 96-well plates, and, 24 h later, with or
without LPS (1 𝜇g/mL) addition. 1 h later, indirubin, DMSO
< 0.1% v/v, was added and incubation was continued for
an additional 24 h. DMSO 0.1% v/v was the control. MTT
was added (to 5% w/v) to each well and the culture was
continued for 4 h. The medium was removed, and the cells
were washed three times with PBS. The formazan crystals
were dissolved in 150 𝜇L DMSO/well, and the absorbance
was read at 570 nm using a microplate reader.

2.3.3. Enzyme-Linked Immunosorbent Assay. MMECs (1 ×
106) were seeded into six-well plates and grown until being
80% to 85% confluent; with or without LPS addition, indiru-
bin, DMSO < 0.1% v/v, was added after 1 h of LPS stimulation
and incubation continued for an additional 24 h. Cell-free
supernatants were collected for assay of proinflammatory
cytokines assays by a mouse ELISA kit, following the man-
ufacturer’s instructions.

2.3.4. Total RNA Extraction and Quantitative Real-Time Poly-
merase Chain Reaction (qRT-PCR). MMECs (1 × 106 cells)
were seeded into six-well plates and grown until being 80%
to 85% confluent. With or without LPS addition, indirubin,
DMSO < 0.1% v/v, was added after 1 h of LPS stimulation and
incubation continued for an additional 24 h. The cells were
washed twice with ice-cold PBS; 1mL of TRIzol reagent was
added to each well, following the kit manufacturer’s instruc-
tions, and the cell lysates were collected. Genomic DNA was
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Table 2: Sequence of primers used in current investigation in qRT-PCR.

Gene Primers sequence (5󸀠 → 3󸀠)
𝛽-Actin F: TGCTGTCCCTGTATGCCTCT R: GGTCTTTACGGATGTCAACG
TNF-𝛼 F: CGATGAGGTCAATCTGCCCA R: CCAGGTCACTGTCCCAGC
IL-1𝛽 F: TGAAATGCCACCTTTTGACAG R: CCACAGCCACAATGAGTGATAC
IL-6 F: TGCCTTCTTGGGACTGAT R: CTGGCTTTGTCTTTCTTGTT
TLR4 F: TAGCCATTGCTGCCAACATCAT R: AAGATACACCAACGGCTCTGAA
F: forward. R: reverse.

isolated from the samples by treatment with 4x gDNA wiper
mix, and RNA was reverse-transcribed into cDNA using the
HiScript II QRT SuperMix for qPCR, with the gDNA wiper.
Relative mRNA concentrations were determined by qRT-
PCR using the ViiA (TM) 7 system (Applied Biosystems),
SYBR Green Master Mix, and the platinum SYBR Green
qPCR SuperMix with 6-carboxyl-X-rhodamine II, following
the manufacturer’s instructions. The primers used are shown
in Table 2 [32–35]. The PCR cycling conditions were 2min at
50∘C followed by 2min at 95∘C, 40 cycles of 15 s at 95∘C, 30 s
at 58∘C, and 30 s at 72∘C. Each reaction mixture contained
1 𝜇L cDNA, 5 𝜇L of SYBR Green SuperMix, and sense and
antisense primers. Each sample was run in triplicate and the
results were averaged. Melting curves were constructed to
assess PCR accuracy. 2−ΔΔ𝑡 method was used to measure the
expression levels of calibrator genes. 𝛽-Actin served as an
internal control. We calculated ΔCt values as follows: ΔCt
= Ct (target gene) − Ct (housekeeping gene); ΔΔCt = ΔCt
(treatment) −ΔCt (control). Amplitude variation served as a
surrogate measure of gene expression.

2.3.5. Western Blot Analysis. MMECs (1 × 106) were seeded
into six-well plates and grown until being 80% to 85%
confluent; with or without LPS addition, indirubin, DMSO
< 0.1% v/v, was added after 1 h of LPS stimulation and
incubation continued for an additional 24 h. The cells were
washed twice with ice-cold PBS, and total proteins were
extracted by rapid lysis. Protein extraction reagent was added
to lysates on ice, followed by centrifugation at 12,000 g for
10min to collect supernatants. The proteins were quanti-
tated by the BCA protein assay. Equal aliquots of protein
(20–30 𝜇g) were loaded onto a 10% (w/v) sodium dodecyl
sulfate-polyacrylamide gel, electrophoresed, and transferred
to polyvinylidene difluoride membranes. The membranes
were blocked with 5% (w/v) bovine serum albumin with Tris-
buffered saline containing 0.05% (v/v) Tween-20 (TBST) at
room temperature for 3 h and then washed three times with
TBST for 10min each time. Primary antibodies were diluted
in TBST and incubated with the membranes overnight at
4∘C with shaking. Membranes were then washed with TBST
followed by incubation with Horseradish Peroxidase- (HRP-
) conjugated secondary antibody at room temperature for 1 h
with shaking.Membranes were developed using an enhanced
chemiluminescence (ECL) detection kit and visualized using
a chemiluminescence detection system (Chemi Doc, Bio-
Rad, USA). Band densities were calculated using ImageJ
software (Bio-Techniques, New York, USA).

2.4. Statistical Analysis. Data were expressed as means ±
SEM and were compared by one-way analysis of variance
and Tukey’s multiple comparison test, with 𝑝 values < 0.05
considered as statistically significant.

3. Results

3.1. Macroscopic Pathology and Histological Analysis of Mam-
mary Gland Tissue. Macroscopic pathology and histological
analysis are the most direct methods to evaluate tissue injury
and the effect of indirubin treatment. Pathological changes
and inflammatory cells were rarely seen in the control
(Figures 1(a) and 1(g)) or DMSO groups (data not shown).
However, in the LPS group, mammary gland tissue had
evident edema, inflammatory hyperemia, milk stasis, and
local tissue necrosis (Figure 1(b)). In tissue from the LPS
group, mammary alveoli were hyperemic and thicker than
in other controls, and neutrophil infiltration was seen in
the alveolar lumen (Figure 1(h)). Treatment with indirubin
and Dex significantly ameliorated LPS-induced macroscopic
changes in a dose-dependent manner (Figures 1(c)–1(e)).
Fewer neutrophils andmacrophages were seen in the alveolar
lumen, the mammary alveoli were thinner, and mammary
hyperemia and edema were attenuated of histological, also in
a dose-dependent manner (Figures 1(i)–1(k)). Tissue in the
LPS group had the highest histological score compared to the
control group (𝑝 < 0.001), and other groups’ score was lower
than LPS group, especially at a dose of 100 𝜇M (Figure 1(m)).

3.2. MPO Activity of Mammary Glands. MPO activity was
determined to assess neutrophil accumulation within the
mammary gland tissue, and is directly proportional to the
number of polymorphonuclears within the tissue. As shown
in Figure 2(a), MPO was significantly increased (𝑝 < 0.001)
by LPS treatment compared with the control group. Treat-
ment with 25𝜇M indirubin significantly reducedMPO activ-
ity (𝑝 < 0.01) compared with the LPS group. Interestingly,
as the indirubin dose increased, the decrease inMPO activity
accelerated. MPO activity was significantly lower in the Dex-
treated group than that in the LPS and other treated groups.

3.3. Assay of Inflammatory Cytokines in Homogenate Mam-
mary Gland Homogenates. The expression of inflammation
cytokines IL-1𝛽, IL-6, and TNF-𝛼 in mammary gland tissue
homogenates was measured by ELISA. Compared with the
control group, LPS challenge caused a significant increase of
all three proinflammatory mediators (𝑝 < 0.001). Indiru-
bin inhibited the expression of IL-1𝛽, IL-6, and TNF-𝛼 in
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Figure 1: Effect of indirubin on the macroscopic pathology and histological changes in LPS-induced mouse mastitis. Representative
macroscopic (a–f) and histological (g–l) changes in mammary glands from the (a, g) control, (b, h) LPS, (c, i) LPS + indirubin (25 𝜇M),
(d, j) LPS + indirubin (50 𝜇M), (e, k) LPS + indirubin (100 𝜇M), and (f, l) Dex groups (histological changes observed at 100x magnification;
the insets are 400x magnification). (m) Major mammary score (###𝑝 < 0.001 versus control group; ∗∗∗𝑝 < 0.001 versus LPS group).

LPS-induced mouse mastitis in a dose-dependent manner.
Expression of all three cytokines was significantly lower than
that in the LPS group (𝑝 < 0.001) but higher than that
in Dex-treated mice, in which cytokine expression was also
significantly lower than that in LPS group (𝑝 < 0.001)
(Figures 2(b) and 2(c)).

3.4. Effect of Indirubin on Cell Viability. The cytotoxicity of
indirubin was determined by MTT assay in the presence or
absence of LPS, which also determined the effective con-
centration used in the experimental procedures. As shown
in Figure 3, viability with 0.01% DMSO and with 1 𝜇g/mL
LPS, with 25, 50, or 100 nM indirubin, was not significantly
different from controls. We also confirmed that MMEC

viability with indirubin alone or indirubin plus LPS did not
differ. Thus, at concentrations of 0–100 nM indirubin had
no observed MMEC cytotoxicity. Consequently, those doses
were used in the experimental procedures.

3.5. Assay of Inflammatory Cytokines in MMEC. ELISA and
qRT-PCR were used to determine the effect of indirubin on
IL-1𝛽, IL-6, and TNF-𝛼 expression in LPS-induced MMECs.
The expression of all three proinflammatory cytokines in
LPS-induced MMECs was significantly higher than expres-
sion in the control group (𝑝 < 0.001). Expression in
the DMSO and control groups did not differ. Indirubin
significantly inhibited IL-1𝛽, IL-6, and TNF-𝛼 expression in
MMEC compared with the positive group, and the difference
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Figure 2: Effect of indirubin on MPO (a), IL-1𝛽 (b), IL-6 (c), and TNF-𝛼 (d) in the mammary gland in LPS-stimulated mastitis. Tissue
homogenates were used to evaluated MPO (a), IL-1𝛽 (b), IL-6 (c), and TNF-𝛼 (d) with ELISA. The values are presented as the means ± SEM
of three independent experiments. ###𝑝 < 0.001 versus control group; ∗∗𝑝 < 0.01 and ∗∗∗𝑝 < 0.001 versus LPS group.
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Figure 3: Effects of indirubin on the cell viability in MMECs. The
values are presented as the means ± SEM of three independent
experiments.

increased significantly with the indirubin dose (Figures 4(a)–
4(f)).

3.6. Effect of Indirubin on TLR4 Expression. LPS activates
the TLR4-mediated NF-𝜅B signaling pathway to trigger the
downstream events that regulate cytokine production and
the expression of many inflammatory genes. We used qRT-
PCR and western blotting to determine whether indirubin
inhibited TLR4 expression. Indirubin inhibited TLR4 at 25,

50, and 100 nM, and as the dose increased, TLR4 expression
was sharply reduced. The expression of TLR4 mRNA and
protein was significantly higher in the LPS group (𝑝 < 0.001)
than in the control group (Figures 5(a)–5(c)).

3.7. Indirubin Suppressed the LPS-Induced NF-𝜅B Signal-
ing Pathway. Because of its involvement in promoting
inflammation, the NF-𝜅B–associated signaling pathway was
assessed by western blotting. LPS stimulation significantly
increased inhibitor of kappa B (I𝜅B𝛼) and P65 phospho-
rylation compared with the control groups (𝑝 < 0.001).
Indirubin challenge significantly suppressed NF-𝜅B activity
in LPS-stimulated MMEC by inhibiting I𝜅B𝛼 and P65 phos-
phorylation in a dose-dependentmanner (Figures 6(a)–6(c)).

3.8. Indirubin Suppressed LPS-Induced Activation of MAPK
Pathways. The MAPK pathway also mediates proinflamma-
tory gene expression. We assessed indirubin inhibition of
inflammation responses via the MAPK pathway in western
blots of JNK, ERK, and P38 expression. We found that
expression of phosphorylated JNK, ERK, and P38 was signif-
icantly increased in LPS-stimulated MMEC compared with
the control group (𝑝 < 0.001). As the indirubin concentration
increased, MMEC expression of phosphorylated JNK, ERK,
and P38 decreased in a dose-dependent manner, with signif-
icant differences from expression in the LPS group (Figures
7(a)–7(d)).



Mediators of Inflammation 7

0

20

40

60

80

Con DMSO LPS 25 50 100
LPS + indirubin (nM)

###

IL
-1
𝛽

 (p
g/

m
L)

1h before

∗∗∗
∗∗∗

∗∗

(a)

0

200

400

600

800

1000

Con DMSO LPS 25 50 100
LPS + indirubin (nM)

###

IL
-6

 (p
g/

m
L)

∗∗
∗∗∗

1h before
(b)

0

100

200

300

Con DMSO LPS 25 50 100
LPS + indirubin (nM)

###

TN
F-
𝛼

 (p
g/

m
L)

1h before

∗∗∗
∗∗∗

∗∗∗

(c)

0

20

40

60

Con DMSO LPS 25 50 100
LPS + indirubin (nM)

###

1h before

∗∗∗
∗∗∗

∗∗∗

Re
la

tiv
e I

L-
1𝛽

m
RN

A
 ex

pr
es

sio
n

(d)

0

1

2

3

4

Con DMSO LPS 25 50 100
LPS + indirubin (nM)

###

Re
lat

iv
e I

L-
6 

m
RN

A
 

1h before

∗∗
∗∗∗

ex
pr

es
sio

n

(e)

0
1
2
3
4
5
6

Con DMSO LPS 25 50 100
LPS + indirubin (nM)

###

1h before

∗∗∗
∗

Re
la

tiv
e T

N
F-
𝛼

m
RN

A
 ex

pr
es

sio
n

(f)

Figure 4: Effects of indirubin on secretion of IL-1𝛽, IL-6, and TNF-𝛼 by LPS-stimulated MMECs. The expressions for IL-1𝛽 (a, d), IL-6 (b,
e), and TNF-𝛼 (c, f) were measured by ELISA (a–c) and qRT-PCR (d–f). Data are presented as means ± SEM (𝑛 = 3). ###𝑝 < 0.001 versus
control group; ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001 versus LPS group.

4. Discussion

Acute bovine mastitis is characterized by damage to mam-
mary alveoli, edema, inflammatory cell infiltration, and inter-
stitial hemorrhage [36, 37]. LPS induced mouse mammary
gland hyperemia, edema, milk stasis, and local tissue necro-
sis. We observed thickening of the mammary alveolus walls
compared with controls and large numbers of inflammatory
cells, such as neutrophils and macrophages, within the thick-
ened mammary alveolus. Treatment with indirubin effec-
tively attenuated inflammatory symptoms (Figure 1). MPO
activity is a biomarker of tissue infiltration by neutrophils
and is directly correlated with the number of infiltrating
cells early in the inflammatory process [38]. As shown in
Figure 2(a), indirubin treatment significantly reduced MPO
activity, which was associated with reduction of neutrophil
and macrophage infiltration of the mammary tissue. This
confirmed that indirubin had a beneficial effect on the

development of themastitis in themousemodel.Our hypoth-
esis that indirubin inhibited proinflammatory cytokines
during LPS-induced acute inflammation in mice mammary
tissue led to assay of IL-6, IL-1𝛽, and TNF-𝛼 expression.

Complex, multiple host-pathogen interactions result in
accumulation of activated macrophages and large polymor-
phonuclear neutrophils within themammary gland to defend
against infection.Macrophage activation leads to elimination
of the infection and triggers the release of proinflammatory
cytokines [39, 40]. The synthesis and release of interferon,
TNF, and ILs initiates inflammatory responses and directs
neutrophil migration to the site of infection. IL-1𝛽, IL-
6, and TNF-𝛼 are proinflammatory cytokines released by
activated macrophages, are involved in the upregulation of
inflammatory reactions, and are important contributors to
the inflammatory response to infection [41–43]. IL-1𝛽 is
released primarily by macrophages, endothelial cells, and
monocytes during the inflammatory response at both the
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Figure 5: Effects of indirubin on TLR4 expression in LPS-induced MMECs. (a) Cells proteins were analyzed by western blotting. (b)
Densitometric analysis of the effects of different concentrations of indirubin on TLR4 expression. (c) mRNA were analyzed by qRT-PCR.
Data are presented as means ± SEM (𝑛 = 3). ###𝑝 < 0.001 versus control group; ∗∗𝑝 < 0.01 and ∗∗∗𝑝 < 0.001 versus LPS group.
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Figure 6: Effects of indirubin on phosphorylation of I𝜅B𝛼 and NF-𝜅B P65 in LPS-induced MMECs. (a) Cells proteins I𝜅B𝛼 and NF-𝜅B P65
were analyzed by western blotting. (b) Densitometric analysis of NF-𝜅B P-P65/P65. (c) Densitometric analysis of p-I𝜅B𝛼/I𝜅B𝛼. The values
are presented as means ± SEM (𝑛 = 3). ###𝑝 < 0.001 versus control group; ∗∗∗𝑝 < 0.001 versus LPS group.
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Figure 7: Effects of indirubin on MAPKs expression in LPS-induced MMECs. (a) Cells proteins MAPKs were analyzed by western blotting.
(b) Densitometry analysis results of P-P38/P38 expression. (c) Densitometry analysis results of P-ERK/ERK expression. (d) Densitometry
analysis results of P-JNK/JNK expression. The cellular proteins were analyzed by western blot and 𝛽-actin served as internal control. The
values are presented as means ± SEM (𝑛 = 3). ###𝑝 < 0.001 versus control group; ∗𝑝 < 0.05 and ∗∗∗𝑝 < 0.001 versus LPS group.

local and systemic levels [44, 45]. In the acute-phase of
inflammatory reactions, IL-6 has the most important role of
the three proinflammatory cytokines. TNF-𝛼 is an endoge-
nous mediator, with production related to both neuropathic
hyperalgesia and inflammation [39, 46]. In our LPS-induced
mastitis model, activated macrophages migrated from the
mammary interstitium to the alveolar space and generated
IL-1𝛽, IL-6, and TNF-𝛼 in the acute stage of inflammation
(Figures 2(b)–2(c)).

TheMTT assay confirmed that indirubin was not toxic to
MMECs up to a concentration of 100 nM (Figure 3). DMSO,
at the concentration used in the MTT assay (<0.1% v/v), and
LPS at 1 𝜇g/mL were also minimally cytotoxic to MMECs.
Those concentrationswere thus used in the experimental pro-
cedures. ELISA and qRT-PCR confirmed that indirubin sup-
pressed the production of three proinflammatory cytokines.
IL-1𝛽, IL-6, and TNF-𝛼 expression significantly increased
after LPS stimulation both in MMEC and in the mouse mas-
titis model. Indirubin treatment significantly inhibited the
effect of LPS on bothmRNAandprotein expression in a dose-
dependent manner. LPS activation of macrophages in the

mammary alveolar space was also suppressed by indirubin.
Collectively, the results showed that indirubin had an anti-
inflammatory effect on both LPS-inducedMMEC andmouse
mastitis. The LPS-induced MMEC inflammation model was
used to elucidate the anti-inflammatory mechanism.

As an initial innate defense against infection, TLRs
recognize many pathogens and their pathogen-associated
molecular patterns and initiate the innate immune response
[47, 48]. TLR-pathogen interactions trigger the production
of proinflammatory cytokines as well as the functional
maturation of antigen-presenting cells of the innate immune
system [49, 50]. LPS-induced TLR4 signaling via Myd88-
dependent and Myd88-independent pathways activates both
the NF-𝜅B and MAPK pathways. This leads to transcription,
the induced expression of inducible nitric oxide synthases,
COX-2, key inflammatory cytokines such as TNF-𝛼 and IL-6,
and chemokine genes that mount immune and inflammatory
responses [51–53]. Western blots and qRT-PCR confirmed
that LPS treatment significantly increased expression of both
TLR4 protein and mRNA compared with the control group
(𝑝 < 0.001) and that indirubin inhibited LPS-induced TLR4
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Figure 8: Indirubin treatment of lipopolysaccharide induced mastitis in a mouse model and activity in mouse mammary epithelial cells via
bated TLR4 and its two main Myd88-dependent pathways, NF-𝜅B and MAPK.

expression in a dose-dependent manner, especially at 100 nM
(Figures 5(a)–5(c)). The results showed that indirubin signif-
icantly inhibited LPS-induced TLR4 expression, indicating
that the anti-inflammatory effect of indirubin was associated
with inhibition of TLR4 activation.

NF-𝜅B has a key role in inflammation and is activated by
the TLR4 signal pathway. When not activated, NF-𝜅B exists
as homo- or hetero-dimers with P50 and P65 proteins and is
bound to I𝜅B𝛼. However, when stimulated by stress, oxidized
low-density lipoprotein, free radicals, ultraviolet light, or
viral and bacterial antigens, I𝜅B𝛼 kinase phosphorylates NF-
𝜅B P65 and ubiquitin-mediated degradation of I𝜅B𝛼 via
the proteasome pathway [54], which promotes translocation
of activated NF-𝜅B to the nucleus. In the nucleus, NF-
𝜅B promotes the transcription of numerous genes involved
in innate and adaptive immune regulation, cell adhesion,
inflammatory responses, antiapoptotic mechanisms, and
release of proinflammatory cytokines [55, 56]. To clarify the
molecular mechanism of IL-𝛽, IL-6, and TNF-𝛼 expression,
we measured the impact of indirubin on NF-𝜅B activation
and I𝜅B𝛼 degradation. We found that LPS strongly stimu-
lated phosphorylation of I𝜅B𝛼 and P65, whereas indirubin
suppressed NF-𝜅B activation and degradation of its inhibitor,
I𝜅B𝛼, in a dose-dependent manner (Figures 6(a)–6(c)).

Previous studies demonstrated that magnolol, oxymatrine,
selenium, and indirubin-3-monoxime were all able to atten-
uate inflammatory responses by inhibiting NF-𝜅B activation
in LPS-induced mouse mastitis [57–60].The protective effect
of indirubin was similar to that of magnolol, oxymatrine,
and taraxasterol but was superior to that of indirubin-3-
monoxime.

The TLR4-dependent activation of monocytes/macro-
phages in response to LPS activates MAPK cascades in addi-
tion to NF-𝜅B [61]. The MAPK signaling pathway primarily
comprises three ERKs, JNK, and P38 kinase that are present
in all eukaryotic cells [62]. Activation of MAPK is followed
by activation of transcription factors in the cytoplasm or
nucleus, triggering expression of target genes associated with
the expression of proinflammatory mediators [61]. As the
Myd88-dependent pathway may also have contributed to
expression of the proinflammatory cytokines, we determined
the levels of ERK, JNK, and P38 expression by western
blotting. The results confirmed that indirubin inhibited
phosphorylation of ERK, JNK, and P38, in MMEC that had
been pretreated with LPS. It is interesting that indirubin
suppressed LPS-induced inflammation via its effect on NF-
𝜅B in a dose-dependentmanner (Figures 7(a)–7(d)). It is thus
clear that indirubin treatment of lipopolysaccharide induced
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mastitis in a mouse model and activity in mouse mammary
epithelial cells via bated TLR4 and its two main Myd88-
dependent pathways, NF-𝜅B and MAPK (Figure 8).

5. Conclusion

Indirubin had a therapeutic effect in LPS-induced mouse
mastitis model manifested by attenuation of mammary gland
clinical pathology and histopathological changes. It signifi-
cantly decreasedMPOactivity, downregulated the expression
of IL-1𝛽, IL-6, and TNF-𝛼, and suppressed TLR4 and down-
stream events in the NF-𝜅B andMAPKs inflammatory signal
pathways. Indirubin has potential as a treatment of mastitis
and other inflammatory diseases.
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