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This paper presents an effective local image feature region descriptor, called CLDTP descriptor (Compact Local Directional Texture
Pattern), and its application in imagematching and object recognition.The CLDTP descriptor encodes the directional and contrast
information in a local region, so it contains the gradient orientation information and the gradient magnitude information. As
the dimension of the CLDTP histogram is much lower than the dimension of the LDTP histogram, the CLDTP descriptor has
higher computational efficiency and it is suitable for image matching. Extensive experiments have validated the effectiveness of the
designed CLDTP descriptor.

1. Introduction

Local image descriptor construction is one of the funda-
mental problems in the fields of image analysis and pattern
recognition. It has been widely used in image stitching,
image matching, object recognition, visual tracking, robot
localization, 3D reconstruction, and other applications. For
an ideal local image feature, it should have high discrimi-
native power and robustness to resist many kinds of image
transformations, such as illumination, rotation, scale, and
blur. Furthermore, it also should have low computational
complexity [1]. In this paper, we will focus on robust and
efficient local image feature descriptor construction and its
application in image matching and object recognition.

Many local feature descriptor constructionmethods have
been proposed in the literature, such as the Gaussian deriva-
tive based descriptor, the moment invariants based descrip-
tor, the spatial frequency descriptor, the distribution of pixel
gray values based descriptor, and the distribution of pixel
gradient values based descriptor. Among these methods, the
most widely used descriptor is SIFT (Scale Invariant Feature
Transform) [2]. The SIFT descriptor is a 128-dimensional
vector, which is built by a histogram of gradient locations
and orientations where the contribution to bins is weighted

by the gradient magnitude and a Gaussian window overlaid
over the region. It is invariant to image scale and rotation
and robust to affine distortion, changes in 3D viewpoint,
addition of noise, and changes in illumination. Inspired by
the well performance of SIFT descriptor, many extensions
of SIFT descriptor have been proposed. Ke and Sukthankar
apply PCA on gradient maps to construct PCA-SIFT [3].
The dimension of the PCA-SIFT descriptor is 36 and it
can be fast for matching. Bay proposes SURF (Speeded Up
Robust Features) descriptor, which speeds up the gradient
computations using integral images [4]. Some researchers
improve the support region division method, such as GLOH
(Gradient Location-Orientation Histogram) descriptor and
RIFT (Rotation-Invariant Feature Transform) descriptor [5,
6].The experimental results of several comparative studies on
local image feature descriptor have shown that the SIFT-like
descriptors perform best [5].

LBP (Local Binary Pattern) is one of the most popular
texture features and has been widely used in face recognition,
background extraction, image retrieval, and so on. It has been
proved as a powerful means of texture analysis in 2D images,
which uses local texture pattern as the texture primitive [7].
It has many advantages which are suitable for local feature
region description, such as computational simplicity and
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invariance to linear illumination. As the dimension of its
histogram is high and it is not robust to flat image areas, it
is not suitable to construct the local image feature descriptor
directly. To address these problems, theCS-LBP (Center Sym-
metric Local Binary Pattern) descriptor has been proposed,
which combines the strength of the SIFT descriptor and LBP
operator [8]. The experimental results have shown that the
CS-LBP descriptor performs better than the SIFT descriptor
in the field of image matching. Though it shows robustness
to monotonic illumination, it is sensitive to nonmonotonic
illumination variation. LTP (Local Ternary Pattern), which
is an improvement of LBP, describes the micropatterns by
two thresholds and has better discriminative power and
robustness than LBP [9]. But the dimension of the LTP
histogram is extremely high and LTP is also not suitable to
construct the local image feature descriptor directly. So CS-
LTP (Center Symmetric Local Ternary Pattern) operator is
proposed to alleviate the dimension problem [10]. However,
the dimension of SIFT-like grid based CS-LTP descriptor is
still very high. For example, the CS-LTP descriptor with 8
neighboring pixels and 4 × 4 squared subregions is a 1296-
dimensional ((16 × 34)-dimensional) vector. Recently, Huang
et al. proposed WOS-LTP (Weighted Orthogonal Symmetric
Local Ternary Pattern) descriptor [11], which is an improve-
ment of CS-LTP descriptor and achieves robustness against
noise interference and discriminative ability for describing
texture structure.

LDP (Local Directional Pattern) is another kind of local
texture pattern, which is calculated by comparing the relative
edge response value of a pixel in different directions [12].
It is insensitive to noise and nonmonotonic illumination
variations, but it is sensitive to rotations and cannot describe
the variety of intensity information. LDTP (Local Directional
Texture Pattern) combines the advantages of CS-LTP and
LDP, which includes both directional and intensity informa-
tion [13].The LDTP histogram is consistent against noise and
illumination changes, and its dimension is 72. The SIFT-like
grid based LDTP descriptor with 4 × 4 squared subregions
is a 1152-dimensional ((16 × 72)-dimensional) vector. So the
LDTP operator is not suitable to construct the local image
feature descriptor for image matching.

In this paper, we propose a novel descriptor named as
CLDTP (Compact Local Directional Texture Pattern), which
not only reduces the dimension of LDTP descriptor but also
retains the advantages of LDTP descriptor. Similar to the
LDTP operator, CLDTP operator encodes the directional
and contrast information in a local region by analyzing its
principal directions and edge’s responses. Compared with
the LDTP histogram, the dimension of CLDTP histogram is
reduced effectively. The dimension of SIFT-like grid based
CLDTP descriptor with 4 × 4 squared subregions is 320
(16 × 20). The performance of the CLDTP descriptor is
evaluated for image matching and object recognition and
the experimental results demonstrate its robustness and
distinctiveness.

The rest of the paper is organized as follows. In Section 2,
the LDTP operator and the CLDTP operator are introduced.
Section 3 gives the construction method of the CLDTP
descriptor. The image matching and object recognition

experiments are conducted and their experimental results are
presented in Section 4. Some concluding remarks are listed in
Section 5.

2. LDTP Operator and CLDTP Operator

2.1. Local Directional Texture Pattern (LDTP). The LDTP
operator is a powerful texture operator which extracts
the texture information from the principal axis in each
neighborhood. Compared with other operators that try to
accommodate all available information, which sometimes
may introduce errors into the code, the LDTP operator only
includes the principal information. It has been used for facial
expression recognition and scene recognition and exhibits
good performance.

To obtain the LDTP code, the eight absolute edge
response values 𝐹

𝑖
of each pixel are firstly calculated using

Kirsch masks by
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𝑖
=
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where 𝐼 is the image to be described, 𝑀
𝑖
is the 𝑖th Kirsch

mask, and ∗ denotes the convolution operation.
Then two principal directions are computed by sorting

the response value 𝐹
𝑖
of each pixel. The first principal

directional number of each pixel is determined by
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| 0 ≤ 𝑖 ≤ 7} . (2)

The second principal directional number𝑃2dir of each pixel
can be determined in the sameway, and it is the order number
of the second maximum response.

As shown in Figure 1, 𝑚
𝑐
is the gray value of the center
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, . . . , 𝑚
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are the gray value of its 8 neighborhood

pixels. In each of the two principal directions, the difference
of the gray value in the neighborhood is computed by
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Then each difference can be encoded as
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where 𝑑
𝑛
is the difference of the gray value computed

according (3), 𝜀 is the user-specified threshold, and 𝐷
𝑓
(𝑑
𝑛
)

is the encoded value of the difference 𝑑
𝑛
.

For each pixel, the code of LDTP can be calculated by
concatenating the binary form of its first principal directional
number 𝑃

1

dir, its first directional encoded difference 𝐷
𝑓
(𝑑
1
),

and its second directional encoded difference𝐷
𝑓
(𝑑
2
). As the

first principal directional number has 8 possible values and
the encoded difference has 3 possible values, the dimension
of the LDTP histogram is 72 (8 × 3 × 3). More detailed
description about the LDTP operator can be found in [12].
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Figure 1: The center pixel 𝑚
𝑐
and its 8 neighborhood pixels.

2.2. Compact Local Directional Texture Pattern (CLDTP).
Although the LDTP operator has high discriminative ability,
the dimension of its histogram is high; it is not suitable
to be directly used in image matching. To alleviate this
problem, we propose CLDTP (Compact Local Directional
Texture Pattern) operator, which can reduce the dimension
of the histogram effectively while including both directional
information and contrast information.

Unlike the LDTP operator, the CLDTP operator does not
use the absolute edge response values of Kirschmasks.This is
because of the fact that the sign of the responses values also
includes some distinctive directional information. So we use
the responses values to compute the CLDTP code directly. At
first, we calculate the eight edge response values 𝑅

𝑖
of each

pixel using Kirsch masks by

𝑅
𝑖
= 𝐼 ∗ 𝑀

𝑖
(𝑖 = 0, 1, . . . , 7) . (5)

As the LDTP operator uses the absolute edge response
values to compute the principal directions, the local neigh-
borhoods with different texture pattern often have the same
principal directions. For example, as shown in Figure 2,
the first principal directional numbers of the two sample
neighborhoods are the same. That is to say, the principal
directions of the LDTP operator cannot distinguish the sign
of the edge response values. To solve this problem, we use
the sign and the order number of the maximum absolute
response value to determine the first principal directional
number of each pixel. It can be computed as

𝑃
1

dir = argmax
𝑖

{
󵄨
󵄨
󵄨
󵄨
𝑅
𝑖

󵄨
󵄨
󵄨
󵄨
| 0 ≤ 𝑖 ≤ 7} + 8 ⋅ 𝑆,

𝑆 =

{

{

{

1, 𝑅
𝑖
≥ 0

0, 𝑅
𝑖
< 0.

(6)

From (6) we can see that the range of the first principal
directional number is from 0 to 15.

Inspired by theWOS-LTP descriptor, we use the intensity
differences of two orthogonal directions to construct the
CLDTPdescriptor.The two orthogonal directions are the first
principal direction and its orthogonal direction. In the first

principal direction, we compute the intensity difference of the
opposed pixels in the neighborhood. That is,
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where ⌊𝑥⌋ is the floor function, which maps a real number
to the nearest integer less than or equal to 𝑥. In the orthog-
onal direction of the first principal direction, the intensity
difference of the opposed pixels in the neighborhood can be
computed by
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Like the LBP binary encoding, the above two intensity
differences can be encoded as

𝐷
𝑛
=

{

{

{

0, 𝑑
𝑛
> 𝜀
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𝑛
≤ 𝜀,

(9)

where 𝐷
𝑛
is the encoded intensity difference, 𝑑

𝑛
is the

actual intensity difference, and 𝜀 is a threshold value defined
by experiments. It should be noted that although the LTP
ternary encoding has better discriminative power than the
LBP binary encoding, we still use binary encoding method.
This is because of the fact that the principal directional
number of the CLDTP operator has 16 possible values, and
it already contains positive and negative information of
intensity difference.

For example, consider the neighborhood shown in Fig-
ure 3. Assume the threshold 𝜀 = 15. Using (6) we can obtain
that𝑃1dir = 5+8 = 13.Then the two-intensity difference in the
first principal direction and the orthogonal direction of the
first principal direction can be computed using (7) and (8).
We can obtain that 𝑑

1
= |103−99| = 4 and 𝑑

2
= |110−118| =

8. From (9), we can obtain the coded differences 𝐷
1
= 0 and

𝐷
2
= 0.
To reduce the histogram of the CLDTP operator, we

encode the directional number and the difference separately.
The CLDTP operator can be defined as follows:

CLDTP(1) (𝑢, V) = 𝑃
1

dir,

CLDTP(2) (𝑢, V) = 2𝐷
1
+ 𝐷
2
.

(10)

As the directional number has 16 possible values and the
encoded difference has 4 possible values, here the directional
number represents the image gradient direction information
and the encoded difference represents the image gradient
magnitude information, so the CLDTP operator can describe
the micropattern effectively.

3. Local Feature Descriptor Construction

3.1. The CLDTP Histogram. For the local image region, after
the corresponding CLDTP code of each pixel has been
computed, the corresponding histogram can be obtained
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Figure 2: The edge response values of two sample neighborhoods.
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Figure 3: A sample neighborhood and its edge response values.

by computing the number of the occurrences of each
pattern. The CLDTP histogram includes the histogram of
CLDTP(1)(𝑢, V) and the histogram of CLDTP(2)(𝑢, V), and
they can be computed as follows:
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where the size of local image region is 𝑊 × 𝐻, 𝐾
1
is the

maximal value of CLDTP(1)(𝑢, V), and 𝐾
2
is the maximal

value of CLDTP(2)(𝑢, V). The final CLDTP histogram can be
obtained by connecting the histogram 𝐻

1
(𝑘
1
) and the his-

togram 𝐻
2
(𝑘
2
), and the dimension of the CLDTP histogram

is 20 (16 + 4).

3.2. The Construction of CLDTP Descriptor. In this section,
the construction of CLDTP descriptor is presented. At
first, the local feature regions are detected for calculating
descriptors. In this paper, we use the Hessian-Affine detector
to obtain the affine invariant region [14]. Then the detected
regions are normalized. As shown in Figure 4, the elliptic
region is rotated in order that the long axis of the ellipse is

the 𝑢-axis of the image coordinate, and it is mapped to the
circular region. All the detected regions are normalized to
the circular region with the same size to obtain scale and
affine invariant [5]. In order to integrate the spatial structural
information of the local image into the descriptor, we divide
the normalized region into 16 (4×4) subregions using the grid
division method of the SIFT descriptor. For each subregion,
compute the CLDTP code of each pixel, respectively, and
construct the corresponding histogram. Then connect the
histograms together, and we can get a 320-dimensional ((16×
20)-dimensional) feature vector.

4. Experimental Results

4.1. ImageMatching. In the imagematching experiments, the
Mikolajczyk dataset [15] is used to evaluate the performance
of the SIFT, LDTP, WOS-LTP, and CLDTP descriptor. This
dataset includes eight types of scene images with different
illumination and geometric distortion transformations. This
dataset has the ground-truth matches through estimated
homography. As shown in Figure 5, we randomly select one
image pair in each category from the dataset. Figures 5(a) and
5(b) show the image pairs with blur transformation, Figures
5(c) and 5(d) show the image pairs with viewpoint change,
Figures 5(e) and 5(f) show the image pairs with scale and
rotation transform, Figure 5(g) shows the image pair with
lighting change, and Figure 5(h) shows the image pair with
JPEG compression transformation.

In the experiments, the affine invariant regions are firstly
detected using the Hessian-Affine detector.Then the detected
regions are normalized to the circular regions and the gray
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Figure 4: The construction of the CLDTP descriptor. (a) The detected affine invariant region. (b) The normalized region with grids. (c) The
histogram of the CLDTP descriptor.

values of the regions are transformed to lie between 0 and
1. The descriptors are constructed based on the normalized
regions. Finally, the nearest neighbor distance ratio (NNDR)
matching algorithm is performed using the Euclidean dis-
tance as similarity measure [2, 5]. In our experiments, the
size of the normalized image region is 41 × 41 and set the
parameter 𝜀 = 0.06. The parameter setting of the SIFT
descriptor, the LDTP descriptor, and WOS-LTP descriptor is
the same as the original proposed paper [2, 11, 13].

We use the Recall-Precision criterion to evaluate the
matching results, which is similar to the criterion used in
[5]. It is based on the number of the correct matches and the
number of the false matches between a pair of images. The
number of correctmatches is determined by the overlap error
[15]. Two regions are matched if the distance between their
descriptors is below a threshold 𝑡. The Recall-Precision curve
can be obtained by changing the distance threshold 𝑡. That is
to say, different points on the curve correspond to the Recall-
Precision results of an image pair under different values of
𝑡. A perfect descriptor would give a recall equal to 1 for any
precision. More detailed description of the Recall-Precision
criterion can be found in [3, 5].

The image matching results of the testing images are
shown in Figure 6, and the corresponding images are dis-
played in Figure 5. Figures 6(a) and 6(b) show the results for

blur changes. Figure 6(a) is the results for the structured scene
and Figure 6(b) for the textured scene. The results show that
blur changes have largest influences on the performance of
SIFT descriptor. For the structured scene, the performance of
the LDTP, WOS-LTP, and CLDTP descriptors is similar. For
the structured scene, the WOS-LTP and CLDTP descriptors
perform better than other descriptors. Figures 6(c) and
6(d) show the performance of descriptors for viewpoint
changes. Figure 6(c) is the results for the structured scene
and Figure 6(d) for the textured scene. We can observe
that the results for the structured scene are less influenced
by viewpoint changes. The SIFT descriptor obtained the
lowest score and the CLTDP descriptor performs better than
other descriptors. Figures 6(e) and 6(f) show the results to
evaluate the descriptors for combined image rotation and
scale changes. We can see that the CLTDP descriptor gives
the best results when 1 − precision is larger. The ranking for
LDTP descriptor andWOS-LTP descriptor is similar, and the
SIFT descriptor obtains the worstmatching score. Figure 6(g)
shows the results for illumination changes. We can observe
that the CLDTP descriptor obtains the best matching score,
and the SIFT descriptor obtains worse results than the other
three descriptors. Figure 6(h) shows the results to evaluate
the influence of JPEG compression. From Figure 6(h) we
can see that the four kinds of descriptors perform similarly,
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(a) Bikes (blur changes) (b) Trees (blur changes)

(c) Wall (viewpoint changes) (d) Graffiti (viewpoint changes)

(e) Bark (scale + rotation changes) (f) Boat (scale + rotation changes)

(g) Leuven (illumination changes) (h) Ubc (JPEG compression)

Figure 5: Testing image pairs.

and their performance is better than other cases. Based
on the above analysis, we can conclude that the CLDTP
descriptor performs much better than the well-known state-
of-the-art SIFT descriptor especially under blur, viewpoint,
and illumination changes, and it performs better than the
LDTP descriptor and WOS-LTP descriptor especially for the
textured scene. It is worth noting that the dimension of the
CLDTP descriptor is much lower than the dimension of the
LDTP descriptor.

4.2. Object Recognition. In this paper, the SIMPLIcity dataset
[16] and the Caltech-256 dataset [17] are used to conduct
object recognition experiments for further evaluating the
performance of our proposed descriptor. The SIMPLIcity
dataset is a subset of COREL image database, and it con-
tains 10 different categories: African people, beach, building,
bus, elephant, flower, food, horse, dinosaur, and mountain.
Each category has 100 images. In the object recognition
experiments, 50 images are randomly selected for training
and the other 50 images for test. Some example images

are shown in Figure 7. The Caltech-256 dataset contains
29780 images falling into 256 categories with much higher
intraclass variability and higher object location variability.
Each category has a minimum of 80 images. We conduct
the recognition algorithm on 30 and 45 training images per
category, respectively, and the rest images of each category are
used for test. Some example images are shown in Figure 8.

The steps of the object recognition are listed as follows.
At first, the Hessian-Affine invariant regions are detected and
normalized. Then, for each detected region, the descriptor
is built. Each image can be represented by a set of descrip-
tors. Finally the Sparse Coding Spatial Pyramid Match-
ing (ScSPM) approach and linear Support Vector Machine
(SVM) are used for object classification [18]. In this paper,
we use the SIFT, LDTP, WOS-LTP, and CLDTP descriptors,
respectively, to perform object recognition experiments. The
parameter settings of the descriptors are the same as the
image matching experiments. The codebook size of ScSPM
is 256 and the recognition accuracy is used for evaluation.
We repeat the experiments 10 times with different random
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Figure 6: Continued.
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Figure 6: The matching results of the testing image pairs.

(a) African people (b) Beach (c) Building

(d) Bus (e) Elephant (f) Flower

(g) Food (h) Horse (i) Dinosaur

(j) Mountain

Figure 7: Example images of the SIMPLIcity dataset.
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Figure 8: Example images of the Caltech-256 dataset.

Table 1: Object recognition results on the SIMPLIcity dataset.

Accuracy (%) SIFT LDTP WOS-LTP CLDTP
People 72.0 66.0 74.0 68.0
Beach 72.0 56.0 68.0 70.0
Building 68.0 80.0 66.0 84.0
Bus 96.0 100.0 98.0 100.0
Elephant 88.0 92.0 94.0 96.0
Flower 88.0 100.0 98.0 94.0
Food 68.0 78.0 66.0 86.0
Horse 92.0 98.0 94.0 100.0
Dinosaur 100.0 98.0 100.0 100.0
Mountain 80.0 74.0 80.0 74.0
Global 82.4 84.2 83.8 87.2

Table 2: Object recognition results on the Caltech-256 dataset.

Accuracy (%) SIFT LDTP WOS-LTP CLDTP
30 training images 34.1 35.8 35.2 37.2
45 training images 36.9 38.1 37.5 40.2

selected training and testing images. In this paper, the
recognition accuracy is the ratio of the number of cor-
rectly classified test images and the number of test images.
Tables 1 and 2 give the object recognition results on the
SIMPLIcity dataset and the Caltech-256 dataset, respectively.
From Table 1 we can see that, for the category of building,
elephant, food, and horse, the CLDTP descriptor gives the
best results. The global recognition accuracy of the proposed
CLDTP descriptor is 87.2%, which is higher than that of
other descriptors. From Table 2 we can observe that the
CLDTP descriptor outperforms the SIFT descriptor by more
than 3 percent and outperforms the LDTP and WOS-LTP
descriptors by about 2 percent.

From both the image matching experimental results
and the object recognition experimental results we can see
that the CLDTP descriptor performs better than the LDTP
descriptor. Although the dimension of the LDTP descriptor
is higher than that of the CLDTP descriptor, the LDTP

descriptor cannot encode more information. This is because
of the fact that both descriptors contain the gradient orien-
tation information and the gradient magnitude information,
and the difference between them is the encoding method.
So the CLDTP descriptor is more effective than the LDTP
descriptor.

5. Conclusions

This paper presents a novel CLDTP operator based image
local feature descriptor construction method. The CLDTP
descriptor combines the advantages of the SIFT descriptor
and the LDTP descriptor. On this basis, the histogram
of the first directional number and the histogram of the
encoded difference are connected to compute the descriptor.
The constructed CLDTP descriptor not only contains the
gradient orientation information and the gradientmagnitude
information, but also contains the spatial structural infor-
mation of the local image. Furthermore, the dimension of
the CLDTP descriptor is much lower than LDTP descriptor.
Our experimental results show that the CLDTP descriptor
performs better than the other three descriptors. So the
CLDTP descriptor is effective for local image description
and it is more robust to image geometric distortions. In the
future work, we will add the color invariant information into
the descriptor to construct more robust and discriminative
descriptors.
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