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We come up with a punishment in the form of exponential decay for the number of vertices that a path passes through, which
is able to reconcile the contradictory effects of geodesic length and edge weights. This core thought is the key to handling three
typical applications; that is, given an information demander, he may be faced with the following problems: choosing optimal route
to contact the single supplier, picking out the best supplier between multiple candidates, and calculating his point centrality, which
involves indirect connections. Accordingly, three concrete solutions in one logic thread are proposed. Firstly, by adding a constraint
to Dijkstra algorithm, we limit our candidates for optimal route to the sample space of geodesics. Secondly, we come up with a
unified standard for the comparison between adjacent and nonadjacent vertices. Through punishment in the form of exponential
decay, the attenuation effect caused by the number of vertices that a path passes through has been offset. Then the adjacent vertices
and punished nonadjacent vertices can be compared directly. At last, an unprecedented centrality index, quasi-closeness, is ready
to come out, with direct and indirect connections being summed up.

1. Introduction

Among many social network analysis (SNA) methods,
point centrality has received particular focus from network
researchers. Point centrality undertakes the task of identi-
fying important and insignificant actors, which is the key
application in graph theory. As early as 1934, Moreno tried
to distinguish “stars” (people who drive more attention in a
network) and “outsiders” (people who are neglected by others
in a network) quantitatively [1]. Over the years, network
researchers have developed many kinds of centrality variants
[2, 3]. Measuring centrality in various aspects, these indices
have been proved to be of great value in understanding the
roles of vertices in networks [4]. Numerous efforts have been
made to classify centrality indices. In an influential research,
Freeman [5] gavemore importance to degree [5–7], closeness
[8–10], and betweenness [11, 12]. Along with eigenvector
centrality [13], the four indices have become themost famous
ones in measuring the centrality of a point.

In SNA terminology, geodesic refers to the shortest
path between a given pair of vertices, and there may exist

more than one geodesic. To some extent, geodesic is the
most effective way for a vertex to communicate with other
vertices. A number of centrality indices based on shortest
path are widely used, such as closeness, betweenness, and
Harmonic centrality [14] to deal with unconnected graphs
(graphs with vertex having no path to any others). As a
rapid expanding interdisciplinary field, SNA has encountered
a variety of unprecedented application contexts, whichmakes
the existing centrality indices powerless. Theoretically, there
is no centrality index taking direct and indirect connection
(if the geodesic distance between a given pair of vertices
equals 1, they are directly connected; otherwise they are indi-
rectly connected) into account in undirected valued graphs.
Specifically, strength centrality is able to deal with valued
graphs but loses indirect connection information. Closeness
and betweenness involve direct and indirect connections;
however they are not feasible in valued graphs.

We propose a quasi-closeness centrality index which is
capable of being applied for valued graphs. Bavelas [15] and
Leavitt [16] showed that distance is positively correlated
with communication efficiency, which means that transition
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fades with distance. Following this thread, many centrality
indexes based on shortest path are proposed by researchers.
In line with other shortest-path centrality indices, our index
is based on geodesic as well. We assume that, given a pair
of unordered vertices in an undirected valued graph, the
optimal path for information spreading or communication
must be a geodesic. This premise is born from the idea that
information attenuation caused by longer distance is serious
enough to neutralize the information augment arising from
more weight.

The centrality algorithm we propose can be divided into
three parts and corresponds to three applications. Firstly,
inspired by the spirit raised by Beauchamp [17] that geodesic
distance can seriously affect the communication efficiency;
we propose an algorithmwhich is different from theDijkstra’s
[18] and allows for the effect of geodesic distance. The algo-
rithm is applicable in finding the optimal route between given
vertices, which is a common situation in network analysis.

Secondly, as is frequently the case, an information
searcher needs to choose the optimal supplier among many
adjacent or nonadjacent candidates. In line with Hubbell [19]
and Friedkin [20] who noted that evaluating the importance
of a node in a network needs both direct connections and
indirect connections, we advocate that indirect connections
should also be considered. To achieve this, we come up with
a unified standard to compare the relative importance of
adjacent vertices and that of nonadjacent vertices and then
get the priority order of all candidate information suppliers.
Specifically, we set penalty in form of exponential decay for
geodesics distance, and the decay indices are flexible values
depending on concrete applications. This unified standard
can also be applied to find the optimal partner in a network.

Finally, by summing up the exponential decayed indirect
connections and direct connections, we can get an unprece-
dented point centrality index, namely, quasi-closeness cen-
trality. This centrality takes both indirect and direct connec-
tions into account and is applicable for weighted networks,
such as the citation network, biological network, or logistics
network.

The rest of the paper is organized as follows. Section 2
gives some preliminary notions closely related to our theme.
Section 3 describes the algorithm. Section 4 describes simu-
lation results. Section 5 concludes.

2. Preliminaries

Following Bollobás [21] and Diestel [22], we use standard
graph theory terminology as follows.

An undirected graph 𝐺 = (𝑉, 𝐸) consists of a vertex (also
called node) set𝑉 and a set 𝐸 of undirected edges (also called
links or connections). An edge represents the tie between a
pair of disorder vertices. If there is an edge between vertices
𝑖 and 𝑗, we say that 𝑖 and 𝑗 are adjacent. And the graph is
connected if every pair of vertices is linked by a path.

Given a pair of vertices (𝑖, 𝑗) in a connected graph, if
they are adjacent, the distance between them equals one.
Otherwise theymust be linked by other vertices. In this paper
we focus on geodesic between vertices. A geodesic is defined
as follows.
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Figure 1: A geodesic.

In Figure 1, vertices 1 and 5 are not adjacent, but they
are linked through other vertices. Geodesic is defined as the
shortest path; here it refers to path (1, 2, 4, 5), rather than (1,
2, 3, 4, 5). Let 𝑑(1,5) denote the geodesic distance or simply
the distance between vertices 1 and 5, which is the number of
edges; then 𝑑(1,5) = 𝑑(5,1) = 3.

Perhaps the simplest centrality index is degree, which is
the sum of vertices adjacent to a given vertex. Degree is often
calculated in a scaled form:

𝐷𝑖 =
𝑔

∑
𝑗=1

𝑥𝑖𝑗
(𝑔 − 1) 𝑗 ̸= 𝑖, (1)

where 𝐷𝑖 is the degree centrality of vertex 𝑖 and 𝑔 is the
number of all vertices in the graph. 𝑥𝑖𝑗 equals one if vertices𝑖 and 𝑗 are adjacent and equals zero otherwise. This scaled
degree is ranged between 0 and 1.

Closeness centralitymeasures how close an actor is linked
to others in the network. The idea is that centrality of a
vertex decreases as geodesic distance increases. What makes
closeness different from degree centrality is that it depends
not only on direct ties but also on indirect ties; that is to say,
closeness picks up information on nonadjacent vertices lost
by degree centrality. Sabidussi [9] proposed that closeness is

𝐶𝑖 = [
[
𝑔

∑
𝑗=1

𝑑 (𝑖, 𝑗)]
]

−1

× (𝑔 − 1) 𝑗 ̸= 𝑖. (2)

As mentioned above, 𝑑(𝑖, 𝑗) is for the geodesic distance
between 𝑖 and 𝑗. The standardized closeness ranges from 0 to
1.

Though containing more information than degree, close-
ness is not feasible for valued graphs. In an undirected
valued graph 𝐺 = (𝑉, 𝐸; 𝑤), 𝑤 is the value of corresponding
edge, representing distance or strength between adjacent
vertices and always being positive. Strength centrality, which
measures the connection strength of a given vertex to other
vertices, is commonly used in valued graphs. It assumes that
𝑤 stands for connection strength between unordered vertices;
that is to say, higher value of 𝑤 represents stronger connec-
tion; in particular, the fact that 𝑤 equals zero means there is
not any connection between vertices. Strength centrality can
be calculated as follows:

𝑆𝑖 = ∑
𝑗

𝑤𝑖𝑗, (3)
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Figure 2: Optimal path between vertices.

where 𝑤𝑖𝑗 is the value for the connection between vertices
𝑖 and 𝑗. Strength centrality 𝑆𝑖 is a general form of degree
centrality𝐷𝑖.The only difference between 𝑆𝑖 and𝐷𝑖 is that the
former takes connection strength into account, but it loses the
information of indirect connection as well.

A famous method that gives consideration to both
weights and indirect ties is Dijkstra algorithm conceived by
computer scientist Dijkstra [18], which is a typical algorithm
to find the shortest path between vertices in undirected
valued graphs, such as city distance networks. The algorithm
exists in many variants, and the most common variant is
finding the shortest path from one “source” vertex to all other
vertices in a graph, thus forming a shortest-path tree. There
are two main differences between strength centrality and
Dijkstra algorithm. Firstly, strength is a kind of point central-
ity used to evaluate its position or reputation, while Dijkstra
algorithm is used to find out the optimal path between given
vertices (finding out the optimal path between vertices is
indispensable in calculating the point calculating indirect for
a node; thus it is reasonable to compare Dijkstra algorithm
with strength centrality). Secondly, in Dijkstra algorithm, the
weight,𝑤, means barrier of communication between vertices,
such as distance between cities, while in most centrality
indices 𝑤 refers to communication convenience between
vertices (of course, one can effortlessly convert communica-
tion barriers to communication convenience, just using the
reciprocal form). Furthermore, Dijkstra algorithm accounts
for not only direct connection but also indirect connection,
which makes it more comprehensive than strength centrality.
While Dijkstra algorithm is commonly used in many fields
where it is necessary to find the shortest path, it has a
nonnegligible disadvantage, that is, failing to account for
the cost of constructing a node, such as constructing a
logistics center in a logistics network. The quasi-closeness

centrality we propose in this paper is similar to Dijkstra
algorithm but overcomes the defect. Similar to but more
effective than Dijkstra algorithm, Floyd algorithm finds the
shortest path between a given pair of vertexwith an important
improvement for its appropriateness for directed andnegative
weight graphs.

3. Algorithm

In this section, we first give a more specific description of
the quasi-closeness centrality and its calculating process, and
then the main features of quasi-closeness are presented.

3.1. Optimal Route between Nonadjacent Vertices. Consider
the optimal route for an information demander 𝑉𝑑 to get
information from supplier 𝑉𝑠 in a social network like that
in Figure 2, which represents an undirected valued graph.
Edge values in the network stand for connection strength,
that is, convenience to get information transmitted. Higher
value of an edge means smoother communication between
the vertices.

Our main premise is that information is attenuated with
the increasing of number of involved vertices, which is
reasonable in many applications, such as citation networks,
biological networks, and communication networks. As noted
by Beauchamp [17], actors with short distance to others
can be very productive in information exchange process.
Hakimi [23] and Sabidussi [9] quantitatively researched the
“minimum steps” contacting to other vertices. In this vein,
many researchers related geodesics to centrality based on the
idea that centrality is negatively correlated with distance. As
to finding out geodesics (i.e., shortest path), Flament et al.
[24] andHarary et al. [25] proposed several clever algorithms,
which are standard in network computing programs such as
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UCINET and Pajek, and more flexible ways to realize it are
some programing languages like R and Python.

As is frequently the case, there is more than one geodesic
between a given pair of vertices. In this situation, a clever
solution is to give each geodesic equal weight such that the
weights add to unity [12, 26–28]. Newman [4] put forward
another method assuming that the route of information
spreading through is some kind of random walk. Though
both methods have advantages, they are not applicable for
valued graphs.

Another branch beyond the geodesic-based method is
Dijkstra algorithm proposed by Dijkstra in 1959 [18]. In
this paper he came up with a computer program to find
all shortest paths from one given vertex to other nodes in
the network, thus forming a shortest-path tree. A typical
application of Dijkstra algorithm is to find the shortest path
from one source node to another in a city network. The only
difference is that edge value stands for geographical distance
(communication barriers) in city network, while in Figure 2
edge value stands for convenience in communication. Cer-
tainly, we can effortlessly convert communication barriers
into communication convenience through reciprocal form.
Essentially, Dijkstra algorithm is a practical solution to the
following optimization problem:

min 𝐷(𝑥1, 𝑥2) ,
s.t. 𝑥1 = 𝑉𝑑
𝑥2 = 𝑉𝑠,

(4)

where 𝐷(𝑥1, 𝑥2) is for weighted distance between nodes 𝑥1
and 𝑥2. In Figure 2, edge values represent communication
convenience, while, in the typical Dijkstra algorithm settings,
edge values represent communication barriers. We take their
reciprocal form to reconcile this inconsistency. In Figure 2,
distance through 𝑉2 and 𝑉3 is 1/3 + 1/2 + 1 = 11/6, and
distance through 𝑉6 and 𝑉5 is 1 + 1/3 + 1/3 = 5/3. Then
the route passing through nodes 𝑉𝑑, 𝑉2, 𝑉4, 𝑉5, and 𝑉𝑠 is
the optimal one to be selected. The optimal route distance is
1/3 + 1/3 + 1/3 + 1/3 = 4/3.

Inmany situationswhere the cost of forming a node (such
as the construction of a logistics center) or the attenuation of
information transmitting through nodes (such as the com-
munication network or citation network) is unneglectable,
it is not reasonable to prescind the number of nodes to
pass through. In accordance with the thought of Beauchamp
[17], we limit our candidates for optimal route in the sample
space of geodesics. Simply put, we add another constraint on
Dijkstra algorithm; the optimization problem becomes

min 𝐷(𝑥1, 𝑥2) ,
s.t. 𝑥1 = 𝑉𝑑
𝑥2 = 𝑉𝑠
𝐷(𝑥1, 𝑥2) ∈ 𝐺𝑥1 ,𝑥2 ,

(5)

where 𝐺𝑥1 ,𝑥2 is a route set consisting of all geodesics between
nodes 𝑥1 and 𝑥2. We choose optimal route, the shortest path,

from 𝐺𝑥1 ,𝑥2 . For example, there are two geodesics between
𝑉𝑑 and 𝑉𝑠 in Figure 1, that is, 𝑉𝑑 → 𝑉2 → 𝑉3 → 𝑉𝑠 and𝑉𝑑 → 𝑉6 → 𝑉5 → 𝑉𝑠. Note that edge values represent
communication convenience, and then the second route is
selected.

3.2. Exponential Decay for Indirect Connections. A common
situation is that 𝑉𝑠 is not the only information source and
that there are several completed candidates for information
demander 𝑉𝑑 to choose from. With optimal route found
between a given pair of vertices, the next step is to find
out the optimal information source node among candidates.
So, one approach is to get the priority order, in terms of
communication efficiency, of all the candidate information
source nodes. It is rather intuitive to sort the adjacent nodes
by the value of edges, while it is more sophisticated to handle
nonadjacent nodes. The reason is that the different number
of nodes that optimal routes passed by varies and that there
is no existing unified standard for comparison, including
comparison between adjacent and nonadjacent nodes and
comparison among nonadjacent nodes.

Our main contribution is providing a unified standard
for comparison among nodes, no matter whether they are
adjacent or not. We achieve this by the punishment, in the
form of exponential decay, for the number of nodes that a
route passes by. Specifically, the route between nonadjacent
vertices is like a plucked rope. We first homogenize it by
calculating its arithmetic average; see Figure 3. Then we set
exponential decay as penalty for the information attenuation
caused by more nodes. Formally, let 𝑑𝑖𝑗 denote the geodesic
distance between vertices 𝑖 and 𝑗. In Figure 3, 𝑑𝑖𝑗 equals
two, and 𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑛 denote edges on the route. Then the
connection strength is

𝑒∗ = ∑
𝑑𝑖𝑗
𝑖 𝑒𝑖
𝑑𝑖𝑗 × 𝛼

−(𝑑𝑖𝑗−1), (6)

where 𝛼 is the decay index and is equal to or greater than
one. The value of 𝛼 depends on concrete applications and is
positively corresponding to the construction cost or signal
attenuation caused by nodes.

In particular, when the vertices are adjacent, that is, 𝑑𝑖𝑗
equals one, 𝑒∗ is just the edge value of the vertices.

As 𝑒∗ is exponentially decayed and has eliminated the
attenuation effect or construction cost, it is reasonable to
compare it with other edges. Thus the priority order is
obtained, and then the aforementioned problem about how
to choose the best information source node is solved.

3.3. Quasi-Closeness Centrality. An important application of
social network analysis is to identify the “most important”
vertex in networks. As early as 1934, Moreno tried to distin-
guish “stars” (people who drive more attention in a network)
and “outsiders” (people who are neglected by others in a
network) quantitatively. Hubbell [19] and Friedkin [20] noted
that evaluating the importance of a node in a network needs
both direct connections and indirect connections. This point
of view is accepted and carried out by researchers.
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We propose an unprecedented centrality index that takes
into account both direct and indirect connections. What
is more, the centrality index is applicable for weighted
networks, which is rather common in modern applications.
Preparations in previous subsections make it straightforward
to calculate the quasi-closeness centrality. Given a vertex,
what needs to be done is to sum up all direct and indirect
edges connected to the vertex. The flowchart is shown in
Figure 4.

4. Simulation

4.1. Formatting the Undirected Weighted Networks. For the
sake of simplicity, we set the number of vertices to be 10 in
the network. Without loss of generality, the weights of edges
in the network are randomnumbers between 0 and 3, where 0
means no connection between the pair of undirected vertices,
1 means weak connection, 3 means strong connection, and
2 means medium connection. That is to say, the strength of
connection is positively correlated with weights, which is in
contrast to Dijkstra algorithm.The simulated adjacentmatrix
is shown in Table 1.

Decorated visualization of the network is shown in Fig-
ure 5.The vertices coordinate layouts are generated according
to circular Reingold-Tilford algorithm [29]. Vertex area is
proportional to the strength centrality of the vertex.Width of
edge is positively correlated to the corresponding weight. In
the network, vertex G has the highest degree centrality score
and vertex E has the highest strength centrality score.

4.2. Finding All Geodesics. As our quasi-closeness centrality
belongs to the branch of geodesic-based centrality indices, a
prerequisite to get quasi-closeness is to find out all geodesics
between every pair of vertices. In this stage, we reset all
the existing edges having the same weight; thus the original
network becomes unweighted. For adjacent vertices, there
is only one geodesic, while nonadjacent vertices may have
more than one geodesic. For example, vertex E is adjacent
to vertices A, B, C, D, G, H, I, and J, which means they are
directly connected. While vertex E and 6 are not adjacent,
they are indirectly connected. As Figure 6 says, there are six
geodesics between vertex E and vertex F, that is, (E, A, F), (E,
B, F), (E, C, F), (E, G, F), (E, H, F), and (E, J, F).

In Table 2, the numbers of geodesics and geodesic
distances are shown in panel A and panel B, respectively. In
the simulated network, the number of geodesics ranges from
1 to 7, indicating that choosing optimal path between vertices

Table 1: Simulated adjacent matrix.

A B C D E F G H I J
A — 0 3 1 3 1 3 1 1 0
B 0 — 0 2 2 3 1 3 2 0
C 3 0 — 1 3 1 1 1 1 2
D 1 2 1 — 2 0 1 1 1 3
E 3 2 3 2 — 0 2 1 3 3
F 1 3 1 0 0 — 1 3 0 3
G 3 1 1 1 2 1 — 3 2 1
H 1 3 1 1 1 3 3 — 0 1
I 1 2 1 1 3 0 2 0 — 3
J 0 0 2 3 3 3 1 1 3 —

is frequently the case. Geodesics distance between vertices
ranges between 1 and 2, which may lead to different attenua-
tion effects and makes the exponential decay indispensable.

4.3. Exponential Decay for Indirect Connections. A main
feature of quasi-closeness is that it involves indirect con-
nections, and what makes this reasonable is the penalty for
indirectness.We set exponential decay as the penalty, which is
quite feasible in many applications. Among the six geodesics
between vertices E and F, geodesic (E, J, F) has the highest
weight (2.25) after exponential decay, which will be used to
calculate the quasi-closeness centrality. Table 3 is the network
updated by involving indirect connections.

4.4. Calculating Quasi-Closeness Centrality. Similar to the
algorithm of strength centrality, quasi-closeness of a vertex
is the sum of weights from the vertex to the others. Table 4
shows the quasi-closeness centrality and other common
centrality indices; higher score means the vertex plays more
important roles in the network. The values in parentheses
rank every index in increasing order. Intuitively, quasi-
closeness should have larger values than strength centrality
because of different ways to deal with indirect connections,
which is reflected in Table 4. Nevertheless, quasi-closeness
and strength have similar ranks in this simulation network.

4.5. Analyzing the Freeman EIES Data. In this section, we
focus on a dataset that arose from an early experiment
organized by Freeman (1979) (the dataset is available at
https://toreopsahl.com/datasets/). Among the several net-
works within the dataset, we are interested in the network
with edge values representing the total number of messages
that person 𝑖 sent to 𝑗over the entire period of the experiment.
The original network of interest is directed; however we
undirected it by copying the lower tangle over the upper
one in adjacent matrix, considering that the centrality of one
researcher can be evaluated by the number of messages that
he received. To protect privacy, the names of all researchers
are replaced by numbers from 1 to 32. The data are also used
by Wasserman and Faust in their network analysis book (the
experiment is on computer mediated communication of fifty
researchers interested in interdisciplinary communicated via

https://toreopsahl.com/datasets/


6 Mathematical Problems in Engineering

Adjacent 
nodes

Accomplish task 3

Accomplish task 2

Compare

Accomplish task 1

Nonadjacent nodes

Loading the 
data Begin

Given a node 

Finding all 
geodesics

Choosing 
optimal route

Homogenize 
the route

Exponential 
decay

Getting 
priority order

Summing up 

Choosing optimal route 
between nonadjacent 
nodes

Choosing optimal 
signal source node

Getting the 
centrality index

End

Figure 4: Flowchart of the algorithm.
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Figure 5: Decorated visualization of the network.

an Electronic Information Exchange System (EIES).We focus
on 32 of them who completed the experiment. Related
information metadata about the researchers and messages
among them between the experiment periods were collected.
We choose this commonly used and online available data to
make our simulation reproducible).

Due to the huge differences among vertex strength
centrality and edge value, it is not appropriate to display all
information in the visualization of Freeman’s EIES network.
So all the vertices have the same area, and the edges width is
also equal. However the relative importance on degree can be
identified by their coordinates. In Figure 7, we can see that
researchers 29 and 31 occupy the central position, reflecting
their important position in the network.

Using quasi-closeness as an anchor, all researchers are
sorted in descending order. For the sake of simplicity, only
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Table 2: Number and distance of geodesics.

A B C D E F G H I J
Panel A: number of geodesics

A — 6 1 1 1 1 1 1 1 7
B 6 — 6 1 1 1 1 1 1 6
C 1 6 — 1 1 1 1 1 1 1
D 1 1 1 — 1 6 1 1 1 1
E 1 1 1 1 — 6 1 1 1 1
F 1 1 1 6 6 — 1 1 5 1
G 1 1 1 1 1 1 — 1 1 1
H 1 1 1 1 1 1 1 — 7 1
I 1 1 1 1 1 5 1 7 — 1
J 7 6 1 1 1 1 1 1 1 —

Panel B: geodesics distance
A — 2 1 1 1 1 1 1 1 2
B 2 — 2 1 1 1 1 1 1 2
C 1 2 — 1 1 1 1 1 1 1
D 1 1 1 — 1 2 1 1 1 1
E 1 1 1 1 — 2 1 1 1 1
F 1 1 1 2 2 — 1 1 2 1
G 1 1 1 1 1 1 — 1 1 1
H 1 1 1 1 1 1 1 — 2 1
I 1 1 1 1 1 2 1 2 — 1
J 2 2 1 1 1 1 1 1 1 —

A B C D

E

F

G H I J

Figure 6: Geodesics between nodes E and F.

the top 10 are listed in Table 5. It is obvious that quasi-
closeness is generally bigger than strength centrality, which is
reasonable as the quasi-closeness centrality involves indirect
connections.

Figure 8 displays scaled index scores of quasi-closeness
and other popular centrality indices of the 32 researchers.
The original scores are scaled to facilitate the comparison.
As expected, all the five indices have similar trend in cross-
section comparison. The quasi-closeness index always has
moderate value relative to other indices. As a result, its
robustness is manifested.

Table 3: Adjacent matrix involving indirect connections.

A B C D E F G H I J
A — 1.25 3 1 3 1 3 1 1 1.5
B 1.25 — 1.25 2 2 3 1 3 2 1.5
C 3 1.25 — 1 3 1 1 1 1 2
D 1 2 1 — 2 1.5 1 1 1 3
E 3 2 3 2 — 1.5 2 1 3 3
F 1 3 1 1.5 1.5 — 1 3 1.5 3
G 3 1 1 1 2 1 — 3 2 1
H 1 3 1 1 1 3 3 — 1.25 1
I 1 2 1 1 3 1.5 2 1.25 — 3
J 1.5 1.5 2 3 3 3 1 1 3 —

5. Conclusion

We have pointed out some unprecedented applications that
existing centrality indices are not wise enough to handle.
Given an information demander, there are three common
problems, that is, how to choose optimal route to contact
the single supplier, how to pick out the best supplier among
multiple candidates, and how to calculate the point centrality
of the given demander.

We proposed three reasonable solutions in one logic
thread for the problems. Different from Dijkstra algorithm
that uses edge weights as the only standard to choose optimal
route, our solutions allow for the cost of constructing a
node (like logistics network) or signal attenuation through
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Table 4: Different centrality indices.

Node Qc Dc Sc Cc Bc

A 15.75
(5)

7
(6)

13
(5)

0.067
(5)

2.325
(5)

B 17
(3)

6
(9)

13
(5)

0.053
(9)

0
(10)

C 14.25
(9)

8
(2)

13
(5)

0.077
(1)

3.408
(3)

D 13.5
(10)

8
(2)

12
(9)

0.077
(1)

3.233
(4)

E 20.5
(1)

8
(2)

19
(1)

0.053
(9)

0.167
(9)

F 16.5
(4)

6
(9)

12
(9)

0.062
(6)

1
(6)

G 15
(8)

9
(1)

15
(3)

0.077
(1)

7.375
(1)

H 15.25
(7)

8
(2)

14
(4)

0.071
(4)

7.225
(2)

I 15.75
(5)

7
(6)

13
(5)

0.059
(7)

0.500
(7)

J 19
(2)

7
(6)

16
(2)

0.059
(7)

0.500
(7)

Table 4 shows the quasi-closeness centrality and other common centrality
indices; higher score means the vertex playing more important roles in
the network. Columns Qc, Dc, Sc, Cc, and Bc represent quasi-closeness,
degree centrality, strength centrality, closeness centrality, and betweenness
centrality, respectively. The values in parentheses stand for rankings of the
nodes according to the centrality index.

Table 5: Top 10 ranked researchers in quasi-closeness.

Researcher Qc Dc Sc Cc Bc
1 2801 29 2495 0.0031 19.0000
29 2564 28 2131 0.0028 0.2500
8 2022 21 1367 0.0034 18.0000
32 1994 17 1061 0.0036 9.8333
2 1714 24 1088 0.0035 49.4333
11 1456 18 795 0.0027 2.1667
15 1360 7 241 0.0034 5.8333
22 1176 6 215 0.0017 0
31 1084 31 1084 0.0027 6.3333
12 916.5 9 139 0.0041 29.8167

nodes (wireless network). With respect to the problem of
choosing the best supplier among several candidates, we
come up with a unified standard for comparison among
the candidates, making the problem straightforward. To
conclude, punishments in form of exponential decay for
the number of nodes that a route passes through are set,
and the decay index depending on concrete applications is
flexible enough to offset nodes effects. At last, a new kind
of point centrality index involving both direct and indirect
connections is ready to come out. Based on previous steps,
it is rather straightforward to get the centrality index, with
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Figure 7: Visualization of the Freeman network.
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10 20 300
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2.5
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lu

e

Figure 8: Scaled scores of centrality indices.

direct and indirect connections summed up. Since the quasi-
closeness centrality takes into account both direct and indi-
rect connections, it can be viewed as a more comprehensive
index.
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