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In parallel computing based on finite element analysis, domain decomposition is a key technique for its preprocessing. Generally,
a domain decomposition of a mesh can be realized through partitioning of a graph which is converted from a finite element
mesh. This paper discusses the method for graph partitioning and the way to actualize mesh partitioning. Relevant softwares are
introduced, and the data structure and key functions of Metis and ParMetis are introduced. The writing, compiling, and testing
of the mesh partitioning interface program based on these key functions are performed. The results indicate some objective law
and characteristics to guide the users who use the graph partitioning algorithm and software to write PFEM program, and ideal
partitioning effects can be achieved by actualizing mesh partitioning through the program. The interface program can also be used
directly by the engineering researchers as a module of the PFEM software. So that it can reduce the application of the threshold
of graph partitioning algorithm, improve the calculation efficiency, and promote the application of graph theory and parallel

computing.

1. Introduction

Currently, numerical simulation has become an important
means to solve complex scientific and engineering problems.
The scientific and technical workers in many fields have
developed specialized CAE calculation program, offering
solution to a variety of practical problems. However, as the
problems arising from simulation become more complex,
many professional softwares fail to meet the current demand
in computation speed, data accuracy, and computation scale.
With increasing the speed and scale of calculation as the
primary objective, high-performance computing has become
a fundamental solution to this problem. A great number of
commercial CAE softwares have developed the parallel com-
puting function, mostly by performing parallel computing
based on domain decomposition. Domain decomposition
refers to the coarse-grained decomposition of the entire
computational domain. Therefore, the effectiveness and effi-
ciency of domain decomposition have a great influence on
calculation softwares.

2. Graph Partitioning Method

The optimal partitioning of irregular and nonstructural
graphs is the key to efficient and scientific simulation on high-
performance parallel machine. For finite element computing,
especially that on distributed storage system, the physical
meshes need to be mapped onto each processor to ensure
the consistency of the number of mesh cells and the minimal
exchange of information between the processors. Therefore, a
proper way is to define the mesh as a graph and then perform
graph partitioning [1]. The purpose of graph partitioning
is to ensure the same size and minimal edgecut for each
subdomain. It can be defined by giving a weighted undirected
graph G = (V, E), with a weight for each vertex and edge.
In K-path partitioning of a graph, vertex set V is divided
into k nonintersecting subdomains or subsets, making the
sum of the weights of all the vertices of these subdomains
roughly equal. For those edges whose vertices are distributed
in different domains, their sum of weight needs to be
minimized.
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FIGURE 1: Multilevel partitioning process.

The methods for graph partitioning include geometric
method [2, 3], spectral method, combination method [4],
multilevel method [5-7], dynamic repartitioning method,
parallel graph partitioning, and multiconstraint and mul-
tiobjective partitioning. Multilevel methods (e.g., multi-
level recursive bisection and multilevel K-path partitioning
method) are the newly developed techniques. On the basis
of multilevel ideas, this method consists of three stages:
coarsening, initial partitioning, and multilevel optimization,
as shown in Figurel [8]. In the coarsening stage, some
vertices are merged to form the coarsening graph of the next
level. This process is repeated until the coarsening graph is
small enough; then initial partitioning is performed on the
smallest graph, because the small size of the coarsening graph
implies short time of execution. In the stage of refining and
optimizing from the most coarse to the most refined graph,
optimization is performed in the coarsening graph at each
level. G, is the initial graph input, while G; + 1 is the next
level of coarsening graph of G;.

The k-way graph partitioning problem is defined as
follows. Given a graph G = (V, E) with |V| = n, partition
V into k subsets, V},V,, ..., V, such that V; n Vj =@ fori# j,
|Vi| = n/k,and U;V; = V, and the number of edges of E whose
incident vertices belong to different subsets is minimized. A
k-way partition of V' is commonly represented by a partition
vector P of length n, such that for every vertex v € V, P[v]
is an integer between 1 and k, indicating the partition at
which vertex v belongs. Given a partition P, the number
of edges whose incident vertices belong to different subsets
is called the edge-cut of the partition. Multilevel method
has high robustness. In terms of partitioning speed and
quality, multilevel approach is superior to spectral method
[9]. Multilevel recursive bisection has already been actualized
in many software packages, such as Chaco, METIS, and
Scotch. Multilevel k-path partitioning of the graph has also
been actualized in METIS and Jostle [10]; recently, some
improvement of the multilevel graph partitioning algorithms
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are presented, for example, multilevel spectral clustering
algorithms [11], which improve the partitioning quality and
minimize partitioning time. Some other new algorithms like
isoperimetric algorithm and spectral rounding are also have
their own advantages [12, 13].

For large-scale graph partitioning (above the level of
tens of millions), the internal memory of a single processor
is insufficient. For the parallel computing for self-adaptive
problem, repartitioning needs to be done for the graph. In
the serial part, the graphs need to be gathered to a single
processor. This would become a serious bottleneck affecting
the computing efficiency of the entire process. Thus, parallel
graph partitioning is especially important. At present, par-
allel graph partitioning mainly targets the parallelization of
geometric method, spectral method, and multilevel method.
Geometric method is easy to be parallelized, but usually a
parallel sorting algorithm is needed. By contrast, spectral
method and multilevel method are more difficult to be
parallelized. The execution time for these methods is equal to
the time needed for the parallel vector multiplication for the
randomly distributed matrix. For the initial graph after initial
partitioning, the times needed for the parallel multilevel
method and spectral method are reduced to the time needed
for the vector multiplication for an already partitioned
matrix. Generally, static graph partitioning does not yield
initial partitioning, while high-quality initial partitioning is
obtained in repartitioning. Therefore, the time for the parallel
execution of self-adaptive problem is shorter than the time for
static graph partitioning. Thus, initial partitioning needs to be
done with geometric partitioning method, followed by multi-
level repartitioning to improve parallel efficiency. At present,
both ParMetis and Jostle have actualized parallel multilevel
partitioning [14]. Now, an OpenMP based implementation of
the Metis algorithms has been developed [15].

3. Mesh Partitioning and Graph

Parallel finite element computing needs to partition the mesh
are based on two principles: ensuring the same node number
in each subdomain and minimizing the node number on the
interface between subdomains. The purpose of the two prin-
ciples s to ensure the load balancing of each processor and the
minimal communication volume between processors. Mesh
partitioning by means of graph partitioning first requires
using the graph to simulate the computation structure of the
mesh, that is, converting the mesh to the graph. Each node of
the mesh can be programmed as the vertex in the graph, with
the connecting line between nodes as the edge of the graph.
The graph obtained in this way is called nodal graph. Another
practice is that each mesh cell can be processed to correspond
to a vertex of the graph so that when two cells share a
face or an edge, the side exists between the corresponding
vertices. This graph is called dual graph. These two graphs
correspond to the partitioning based on mesh node and mesh
cell, respectively. Figure 2 shows the two graphs.

In the past two decades, graph partitioning methods have
witnessed rapid development, giving rise to many graph par-
titioning software packages, such as Metis, ParMETIS, Chaco,
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FIGURE 2: Graph for the mesh.

Jostle, Party, and Scotch. Besides, ParMETIS and Jostle have
also actualized graph partitioning. Among these software
packages, the most representative ones are METIS and its
parallel version ParMETIS. METIS is a procedure set that
can actualize serial graph partitioning, finite element mesh
partitioning, and calculate the fill-reducing ordering of sparse
matrix. The actualized algorithms include multilevel recur-
sive bisection, multilevel K-path partitioning algorithm, and
multiconstraint algorithm. METIS has offered the function to
achieve corresponding purposes. Moreover, according to the
number of partitions, different functions can be selected to
speed up the partitioning. It has also provided the function
for the conversion of mesh to the function of nodal graph
and dual graph together with the corresponding function and
procedure for graph partitioning. As a parallel library based
on MPI, ParMetis can actualize nonstructural graph and
mesh partitioning and implement various algorithms for the
fill-reducing ordering of sparse matrix. Besides extending the
functions provided by Metis, ParMetis also contains the pro-
grams suitable for AMR (adaptive mesh refinement) comput-
ing and large-scale numerical simulation, so it can actualize
graph partitioning, mesh partitioning, graph repartitioning,
partition encryption, and matrix reordering. The algorithm
actualized in ParMetis is based on parallel multilevel K-path
partitioning method, self-adaptive repartitioning algorithm,
and parallel multiconstraint algorithm.

4. Mesh Partitioning Based on
Metis and ParMetis

4.1. Data Structure for Metis and ParMetis. Metis has pro-
vided some programs, including partnmesh and partdmesh,
the programs of partitioning the mesh by converting the
mesh to nodal graph and dual graph. By calling the two
programs in accordance with the corresponding data entry
format, mesh partitioning based on nodes and cells can be
carried out. The data file format is shown in Figure 3(a).
The first line represents the total number and type of the
cells. Each line following it represents the node number
making up each cell. Metis supports four cell types, namely,
triangular, tetrahedral, hexahedral, and quadrangular cells,
which are respectively denoted by 1, 2, 3, and 4. Meanwhile,
programming can be carried out on the function provided by
Metis to store the data in the CSR format (compressed storage
format).

ParMetis is mainly a function library. In order to actualize
graph partitioning, the user needs to program and call
ParMetis function. The required data structure for the graph

is DCSR (distributed compressed storage format). As for
the graph shown in Figure 5, the data format on the three
processors is as follows in Figure 4.

Later, ParMETIS_V3_PartKway function can be called
to perform graph partitioning. If the information about the
vertex coordinates of the graph is available, the parallel
graph partitioning can be carried out with ParMETIS_V3_
PartGeomKway and ParMETIS_V3_PartGeom function. As
they both use the coordinate-based multiconstraint K-path
partitioning algorithm and space-filling curve, their compu-
ting speed is faster than that of ParMETIS_V3_PartKway,
but the partitioning quality of ParMETIS_V3_PartGeom is
much poorer. ParMetis provides the function ParMETIS_
V3_PartMeshKway for direct parallel partitioning of the
mesh. This function quickly converts the mesh to dual graph.
Then, it calls ParMETIS_V3_PartKway function and Par-
METIS_V3_PartGeomKway function to perform parallel
partitioning. Since the data structure for ParMETIS_V3_
PartMeshKway is distributed, the distributed storage of the
mesh cell information is necessary, but without any need for
information of node coordinates. Besides, ParMetis has also
provided the function for parallel subdivision as well as the
parallel function for matrix ordering. The latter is of great
practical significance in directly solving the sparse linear
equations.

4.2. Actualization and Test of Partitioning. Targeting the
function provided by ParMetis, the author wrote the interface
program for ParMETIS_V3_PartMeshKway and converted
the mesh to graph after parallel reading of the data file. Then
parallel partitioning is finally actualized. Take a finite element
mesh as an example. For a mesh with a cell number of 810,000
and a node number of 836,381, Metis function and ParMetis
function are respectively called to partition the mesh. Data
show that the partitioning results of Metis and ParMetis
are consistent, as displayed in Table 1 (ParMetis results are
calculated with 2CPU).

Metis (including ParMetis) uses two types of objective
function. One has the minimal edgecut, while the other has
the minimal ncommunications volume, which is represented
by the sum of the numbers of domains to which the
boundary points belong or the total number of times of data
transmission. For the partitioning of finite element mesh, the
two objective functions produce generally consistent results.
The above test was controlled by the objective of minimizing
the cut edge. Table 1 shows the minimal cut edge number.
In the dual graph, the edgecut, when reflected in the finite
element mesh, is equivalent to the common edge or common
face between cells. Table 2 shows the comparison of the
partitioning time of Metis and ParMetis. It can be seen from
Table 2 that the partitioning time for over 800,000 cells is
within seconds, which is insignificant compared with one-
step elastic finite element computing time which is about
350 seconds. In addition, the increase in the number of
subdomains does not have a great impact on partitioning
time. Meanwhile, a great amount of “I/O” time in the domain
partitioning is consumed. The time for ParMetis to convert
the mesh to the dual graph (Mesh 2 Dual) accounts for over
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FIGURE 3: Data file and node numbering format.
TaBLE 1: The results for multilevel recursive bisection algorithm.
Subdomain 1 Subdomain 2 Subdomain 3 Subdomain 4 Cut edge number
Nodal graph 209095 209095 209095 209096 22002
Dual graph 202500 202500 202500 202500 21242

Processor 0 :
xadj025811 13

adincy 1502613724839
vixdist 0 5 10 15
Processor 1 :
xadj 037 11 15 18
adjincy 061015711268 12379134814
vixdist 0 5 10 15
Processor 2 :
xadj 0258 11 13
adjncy 511 6 10 12 7 11 13 8 12 14 9 13
vixdist 0 5 10 15

FIGURE 4: Data format on three processors.
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FIGURE 5: A simple graph.

one half of the total time for the partitioning process, while
the time for the same conversion accomplished by Metis is
already included as part of the “partitioning” time.

It can be seen from Table 2 that the total computing
time that ParMetis spends on the 256 partitions with 2
CPUs displays obvious advantages over Metis, the efficiency
reaching 76.5%. As a matter of fact, the parallel partitioning
does show obvious time advantages for small-and medium-
sized graphs, especially the static graphs. This is because
the time for graph partitioning itself is very insignificant in
the entire computing process, especially when the internal
memory of a signal processor can meet the partitioning
needs. For small-and medium-sized problems, parallel graph
partitioning is not so necessary considering the time con-
sumption, but for multiphysical, multistage, and multimesh
simulations, where the data size is huge, parallel partitioning
will display superiority. Parallel graph partitioning is quite
effective in solving the problems of inadequate internal
memory of a single processor or the I/O bottlenecks caused
by repartitioning.

Figure 6 shows the comparison of the total comput-
ing time that ParMetis spends on partitioning the above-
mentioned 8100 million mesh cells to 256 domains with
different number of CPUs. According to the figure, parallel
computing still has obvious advantages, but the efficiency is
not so high, mainly because the mesh size is small, the total
computing time is not long, and the communication time
of parallel computing accounts for a large share. Figure 7
is a diagram for parallel partitioning of a arch dam and
foundation system.

5. Conclusion

In this paper, the authors discuss the way to actualize
partitioning methods and mesh partitioning and introduce
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TABLE 2: The comparison of the partitioning time of Metis and ParMetis (second).
Partition number 4 16 64 256
1/0 2.350 2.350 2.400 2.370
Metis Partition 3.730 3.750 4.130 4.700
Total time 6.080 6.100 6.530 7.070
Mesh2Dual 2.559 2.568 2.567 2.571
ParMetis (2CPU) Partition 1.533 1.663 1.81 2.047
Total time 4.092 4.231 4.385 4.618
5 -
4 L
= Ay,
Garara”
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0 1 1 1 1
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FIGURE 6: Time of 256 partitionings on different CPUs.

relevant softwares for parallel partitioning algorithm. The
data structure and key functions of Metis and ParMetis
are analyzed. The partitioning program is compiled based
on these key functions. Moreover, detailed test on typical
mesh partitioning is conducted. The results show that ideal
partitioning results will be yielded by actualizing domain
decomposition by the programming based on Metis and
ParMetis. Parallel partitioning is mainly for the simulation
of large-computing scale, large-data size, and multiphysical,
multistage, and multimesh simulations, while for static finite
element method of general size, serial partitioning is enough.
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