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We present a delay differential model with optimal control that describes the interactions of the tumour cells and immune response
cells with external therapy.The intracellular delay is incorporated into themodel to justify the time required to stimulate the effector
cells. The optimal control variables are incorporated to identify the best treatment strategy with minimum side effects by blocking
the production of new tumour cells and keeping the number of normal cells above 75% of its carrying capacity. Existence of the
optimal control pair and optimality system are established. Pontryagin’smaximumprinciple is applicable to characterize the optimal
controls.Themodel displays a tumour-free steady state and up to three coexisting steady states.The numerical results show that the
optimal treatment strategies reduce the tumour cells load and increase the effector cells after a few days of therapy.The performance
of combination therapy protocol of immunochemotherapy is better than the standard protocol of chemotherapy alone.

1. Introduction

Cancer is considered one of the most complicated diseases
to be treated clinically and one of the main causes of death.
Accordingly, a great research effort is being devoted to
understand the interaction between the tumour cells and the
immune system. The treatment of cancer is then one of the
most challenging problems of modern medicine. The cancer
treatment should kill cancer cells in the entire body and in the
meantime keep the healthy cells above the minimum level.
Chemotherapy is one of themost prominent cancer treatment
modalities. However, it is not always a comprehensive solu-
tion for tumor regression. Other treatment options, including
surgery, immunotherapy, and radiation, are often able to force
the cancer into remission, but better and suitable treatments
are needed to fulfil the requirements [1–3].

Recently, chemotherapy is used in combination with
immunotherapy to protect the patient from opportunistic
infection, as well as fighting the cancer itself [4, 5]. This

is due to the fact that the chemotherapy treatment kills
both cancerous and healthy cells and therefore it depletes
the patients immune system, making the patient prone
to dangerous infections. For this and other reasons, it is
desirable to strengthen the immune system after an immune-
depleting course of chemotherapy. Additionally, however, the
ability to recruit the body’s own defenses to fight the cancer
can be a powerful treatment strategy. Therefore, maintaining
a strong immune system, by combining immunotherapy
during chemotherapy, may be essential to successfully fight
the cancer. However, the query now is how tomost effectively
combine cancer immunotherapy and chemotherapy?

Mathematical models, using ordinary, partial, and delay
differential equations, play an important role in under-
standing the dynamics and tracking tumour and immune
populations over time (see, e.g., [6–14]). Kuznetsov et al.
[3] model the interactions of cytotoxic T lymphocyte (CTL)
response and the growth of an immunogenic tumour. In
the contributions of [15–17], the authors take into account
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the penetration of the tumour cells by the effector cells,
which simultaneously causes the inactivation of effector
cells. Recently, in [18], the authors adopted a predator-
prey formulation of the tumour immunity problem as a
battle between immune cells and tumour cells (predators
and prey, resp.). Many research papers have also been done
on formulations of the mathematical models describing the
interaction between tumour cells and immune cells alone,
between tumour cells and normal cells alone, and between
tumour cells and chemotherapy treatment alone [19, 20].
We should mention here that the application of the optimal
control theory requires the boundedness of the solutions of
the model populations; see also [21, 22].

The objective of this paper is to adopt a delay differ-
ential model and analyze and provide computationally an
optimal way to combine chemotherapy and immunotherapy
treatment strategies that identify the best treatment strategy
that can minimize the tumor load while maximizing the
strength of the immune system. We formulate and analyze
a delay differential model describing immune response and
tumour cells under the influence of chemotherapy alone and
the combinations of chemotherapy and immunotherapy.The
outline of the paper is as follows. In Section 2, we describe
the model. In Section 3, we study the qualitative behaviour
of the model without external therapy. In Section 4, we
describe the optimal control problem governed by DDEs
with only chemotherapy control variable. Existence of the
solution and optimality conditions are discussed in Sections 5
and 6. In Section 7, we extend the control problem to
include a combination of chemotherapy and immunotherapy
treatments with two-contrail variable. Numerical simulations
and conclusion are given in Sections 8 and 9.

2. Description of the Model

Let us recall Kuznetsov et al.’s model [3] that describes
the dynamics of tumour immune system interactions by
incorporating a system of five ordinary differential equations
(ODEs) model; then we reduce it into two equations but
with time delays. The model describes the response of the
effector cells (ECs) to the growth of tumour cells (TCs). The
penetration of TCs by ECs has been taken into account,
which simultaneously causes the inactivation of ECs. It is
assumed that interactions between the ECs and TCs are
in vitro such that 𝐸(𝑡), 𝑇(𝑡), 𝐶(𝑡), 𝐸∗(𝑡), and 𝑇

∗

(𝑡) denote
the local concentrations of ECs, TCs, EC-TC conjugates,
inactivated ECs, and “lethally hit” TCs, respectively.The total
population of unattacked TCs is 𝑇tot(𝑡) = 𝑇(𝑡) + 𝐶(𝑡). The
rate of binding of ECs to TCs and the rate of separation of
ECs from TCs without damaging them are denoted by 𝑘

1

and 𝑘
−1
, respectively. The rate at which EC-TC integrations

program for lysis is denoted by 𝑘
2
while the rate at which EC-

TC interaction inactivate ECs is denoted by 𝑘
3
. The model

takes the form

𝑑𝐸 (𝑡)

𝑑𝑡
= 𝜎 + 𝐹 (𝐶 (𝑡) , 𝑇 (𝑡)) − 𝑑

1
𝐸 (𝑡) − 𝑘

1
𝐸 (𝑡) 𝑇 (𝑡)

+ (𝑘
−1
+ 𝑘
2
) 𝐶 (𝑡) ,

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝛼𝑇 (𝑡) (1 − 𝛽𝑇tot (𝑡)) − 𝑘1𝐸 (𝑡) 𝑇 (𝑡)

+ (𝑘
−1
+ 𝑘
3
) 𝐶 (𝑡) ,

𝑑𝐶 (𝑡)

𝑑𝑡
= 𝑘
1
𝐸 (𝑡) 𝑇 (𝑡) − (𝑘

−1
+ 𝑘
2
+ 𝑘
3
) 𝐶 (𝑡) ,

𝑑𝐸
∗

(𝑡)

𝑑𝑡
= 𝑘
3
𝐶 (𝑡) − 𝑑

2
𝐸
∗

(𝑡) ,

𝑑𝑇
∗

(𝑡)

𝑑𝑡
= 𝑘
2
𝐶 (𝑡) − 𝑑

3
𝑇
∗

(𝑡) .

(1)

Here, the parameter 𝜎 represents the normal rate (not
increased by the presence of the tumour) of the flow of
adult ECs into the tumour side (region), F(𝐶(𝑡), 𝑇(𝑡)) =

F(𝐸(𝑡), and 𝑇(𝑡)) > 0 (when 𝑇(𝑡) > 0) describes the
accumulation of ECs in the tumour side due to the presence
of the tumour. However, 𝑑

1
, 𝑑
2
, and 𝑑

3
are the coefficients of

the processes of destruction and migration of 𝐸, 𝐸∗, and 𝑇∗,
respectively.Themaximal growth of tumour is represented by
the coefficient 𝛼, and 𝛽−1 is the environment capacity. If we
assume that 𝑑𝐶(𝑡)/𝑑𝑡 ≈ 0, therefore 𝐶(𝑡) ≈ 𝐾𝐸(𝑡)𝑇(𝑡) where
𝐾 = 𝑘

1
/(𝑘
−1
+ 𝑘
2
+ 𝑘
3
), and the model can be reduced to

two equations which describe the behavior of ECs and TCs
only [2, 3]. That leads to the fact that the rate of stimulated
accumulation has some maximum value as 𝑇𝐶𝑠 get large.

Thus, the reduced model that describes the interactions
between the two populations, tumour cells 𝑇(𝑡) and activated
effector cells 𝐸(𝑡) (such as cytotoxic T-cells or natural killer
cells), is of the form

𝑑𝐸 (𝑡)

𝑑𝑡
= 𝜎 +F (𝐸 (𝑡) , 𝑇 (𝑡)) − 𝜇𝐸 (𝑡) 𝑇 (𝑡) − 𝛿𝐸 (𝑡) ,

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝛼𝑇 (𝑡) (1 − 𝛽𝑇 (𝑡)) − 𝑛𝐸 (𝑡) 𝑇 (𝑡) ,

(2)

with the initial conditions 𝐸(0) = 𝐸
0
and 𝑇(0) = 𝑇

0
. The

interaction between the effector cells and tumour cells can
reduce the size of both populations with different rates. This
is expressed as −𝜇𝐸(𝑡)𝑇(𝑡) and −𝑛𝐸(𝑡)𝑇(𝑡) to illustrate the
interaction between the tumour cells and effector cells. As a
result of this interaction, the immune effector cells decrease
the population of tumour cells at the rate 𝑛. Additionally,
tumour cells infect some of the effector cells and, therefore,
the population of uninfected effector cells decreases at the
rate 𝜇.

If one considers 𝑇(𝑡) as prey and 𝐸(𝑡) as predator, then
F(𝐸, 𝑇) may take the form F(𝐸, 𝑇) = 𝜌𝐸(𝑡)𝑇(𝑡)/(𝜂 +

𝑇(𝑡)) which is Michaelis-Menton form. In this term, 𝜌 is the
maximum immune response rate and 𝜂 is the steepness of
immune response. The presence of the tumour cells virtually
initiates the proliferation of tumour-specific effector cells to
reach a saturation level parallel to the increase in the tumour
populations. Hence, the recruitment function should be zero
in the absence of the tumour cells, whereas it should increase
monotonically towards a horizontal asymptote [23]. We also
incorporate a discrete time-delay 𝜏 into themodel, to describe
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the time needed by the immune system to develop a suitable
response after recognizing the tumour cells. Accordingly, the
model with discrete time delay takes the form

𝑑𝐸 (𝑡)

𝑑𝑡

= 𝜎 +
𝜌𝐸 (𝑡 − 𝜏) 𝑇 (𝑡 − 𝜏)

𝜂 + 𝑇 (𝑡 − 𝜏)
− 𝜇𝐸 (𝑡 − 𝜏) 𝑇 (𝑡 − 𝜏) − 𝛿𝐸 (𝑡) ,

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝑟
2
𝑇 (𝑡) (1 − 𝛽𝑇 (𝑡)) − 𝑛𝐸 (𝑡) 𝑇 (𝑡) ,

𝑡 ≥ 0,

(3)

with the initial functions 𝐸(𝑡) = 𝜓
1
(𝑡) and 𝐸(𝑡) = 𝜓

2
(𝑡),

for all 𝑡 ∈ [−𝜏, 0]. Here 𝜎 represents the normal rate
(not increased by the presence of the tumour) of the flow
of adult effector cells into the tumour side (region). The
source of the immune cells is considered to be outside of
the system, so it is reasonable to assume a constant influx
rate 𝜎. Furthermore, in the absence of any tumour, the cells
will die at the rate 𝛿. The presence of tumour cells stimulates
the immune response, represented by the positive nonlinear
growth term for the immune cells 𝜌𝐸(𝑡 − 𝜏)𝑇(𝑡 − 𝜏)/(𝜂 +

𝑇(𝑡 − 𝜏)) where 𝜌 and 𝜂 are positive constants and 𝜏 ≥ 0 is
the time delay that presents the time needed by the immune
system to develop a suitable response after recognizing the
tumour cells. The saturation term (Michaelis-Menton form)
with the 𝐸(𝑡) compartment and logistic term with the 𝑇(𝑡)
compartment are consoled. The presence of the tumour cells
virtually initiates the proliferation of tumour-specific effector
cells to reach a saturation level parallel to the increase in the
tumour populations. Let us first prove the nonnegativity and
boundedness solutions of the underlying DDEs model (3)
(see [24]).

2.1. Nonnegativity andBoundedness Solutions ofModel (3). To
show that the solutions of model (3) are bounded and remain
nonnegative in the domain of its application for sufficiently
large values of time 𝑡, we recall the following lemma.

Lemma 1 (Gronwall’s Lemma [25, page 9]). Let 𝑥,𝜓, and𝜒 be
real continuous functions defined in [𝑎, 𝑏], 𝜒 ≥ 0 for 𝑡 ∈ [𝑎, 𝑏].
One supposes that on [𝑎, 𝑏] one has the inequality 𝑥(𝑡) ≤ 𝜓(𝑡)+

∫
𝑡

𝑎

𝜒(𝑠)𝑥(𝑠)𝑑𝑠. Then 𝑥(𝑡) ≤ 𝜓(𝑡) + ∫
𝑇

𝑎

𝜒(𝑠)𝜓(𝑠)𝑒
(∫

𝑡

𝑠
𝜒(𝜉)𝑑𝜉)

𝑑𝑠 in
[𝑎, 𝑏].

Therefore, we arrive at the following proposition.

Proposition 2. Let (𝐸, 𝑇) be a solution of the DDEsmodel (3);
then 𝐸(𝑡) < 𝑀

1
and 𝑇(𝑡) < 𝑀

2
for all sufficiently large time 𝑡,

where

𝑀
1
= 𝐸 (0) +

𝜎

𝛿
exp (𝛿𝑡)

+ ∫

𝑡

0

[𝜌𝑒
𝛿(𝜏+𝑠)

(𝐸 (0) +
𝜎

𝛿
𝑒
𝛿𝑠

)

× exp(∫
𝑡

𝑠

𝜌𝑒
𝛿(𝜏+𝜉)

𝑑𝜉)] 𝑑𝑠,

𝑀
2
= max( 1

𝛽
, 𝑇 (0)) .

(4)

Proof. Let (𝐸, 𝑇) denote the solution of model (3). From the
second equation of system (3), we have 𝑑𝑇/𝑑𝑡 ≤ 𝑟

2
𝑇(𝑡)(1 −

𝛽𝑇(𝑡)). Thus, 𝑇(𝑡)may be compared with the solution of

𝑑𝑋

𝑑𝑡
= 𝑟
2
𝑋(𝑡) (1 − 𝛽𝑋 (𝑡)) , with 𝑋 (0) = 𝑇 (0) . (5)

This proves that 𝑇(𝑡) < 𝑀
2
. From the first equation of system

(3), we obtain

𝐸 (𝑡) = exp (−𝛿𝑡)

× {𝐸 (0) + ∫

𝑡

0

[𝜎 +
𝜌𝐸 (𝑠 − 𝜏) 𝑇 (𝑠 − 𝜏)

𝜂 + 𝑇 (𝑠 − 𝜏)

− 𝜇𝐸 (𝑠 − 𝜏) 𝑇 (𝑠 − 𝜏)]

× exp (𝛿𝑠) 𝑑𝑠} .

(6)

To show that 𝐸(𝑡) is bounded, we use the generalized
Gronwall Lemma. Since 𝑇/(𝜂+𝑇) < 1 and exp (−𝛿𝑡) ∈ (0, 1],
we have

𝐸 (𝑡) ≤ 𝐸
0
+
𝜎

𝛿
exp (𝛿𝑡) + ∫

𝑡

0

𝜌𝐸 (𝑠 − 𝜏) exp (𝛿𝑠) 𝑑𝑠. (7)

The generalized Gronwall Lemma gives 𝐸(𝑡) < 𝑀
1
where𝑀

1

is uniformly bounded. It follows that if (𝐸, 𝑇) is a solution
of (3), then (𝐸, 𝑇) < (𝑀

1
,𝑀
2
) for all 𝑡. This shows that the

solutions ofmodel (3) are uniformly bounded.This completes
the proof.

From (1) and the solution 𝑇(𝑡) = 𝑇(0) exp (∫𝑡
0

[𝑟
2
(1 −

𝛽𝑇(𝑠)) − 𝐸(𝑠)]𝑑𝑠), we arrive at the following result.

Corollary 3. If 𝜌/(𝜂 + 𝑇) ≥ 𝜇, then the solutions (𝐸, 𝑇)
for model (3) are nonnegative for any nonnegative initial
condition. However, if 𝜌/(𝜂 + 𝑇) < 𝜇, then there exist
nonnegative initial conditions such that 𝐸(𝑡) becomes negative
in a finite time interval.

2.2. Model with Chemotherapy. We extend model (3) to con-
sider extra two variables, namely, amount of chemotherapy,
𝑢(𝑡), and normal cells, 𝑁(𝑡) (see Figure 1). We also assume
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Tumour cells T(t) Effector cells E(t)

Normal cells N(t) Chemotherapy u(t)

Attack

Attack

Stimulate Loss

External input

Attack

AttackAttack Attack Attack

Loss

External input

Attack

Stimulate

Attack
Stimulate

Figure 1: The interaction of tumour cells, immune cells, and normal cells in the presence of chemotherapy drug.

a homogeneity of the tumour cells. The modified model
is

𝑑𝐸 (𝑡)

𝑑𝑡
= 𝜎 +

𝜌𝐸 (𝑡 − 𝜏) 𝑇 (𝑡 − 𝜏)

𝜂 + 𝑇 (𝑡 − 𝜏)

− 𝜇𝐸 (𝑡 − 𝜏) 𝑇 (𝑡 − 𝜏) − 𝛿𝐸 (𝑡)

− 𝑎
1
(1 − 𝑒

−𝑢(𝑡)

) 𝐸 (𝑡) ,

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝑟
2
𝑇 (𝑡) (1 − 𝛽𝑇 (𝑡)) − 𝑛𝐸 (𝑡) 𝑇 (𝑡)

− 𝑐
1
𝑁(𝑡) 𝑇 (𝑡) − 𝑎

2
(1 − 𝑒

−𝑢

) 𝑇 (𝑡) ,

𝑑𝑁 (𝑡)

𝑑𝑡
= 𝑟
3
𝑁(𝑡) (1 − 𝛽

2
𝑁(𝑡)) − 𝑐

2
𝑇 (𝑡)𝑁 (𝑡)

− 𝑎
3
(1 − 𝑒

−𝑢

)𝑁 (𝑡) ,

𝑑𝑢 (𝑡)

𝑑𝑡
= V (𝑡) − 𝑑

1
𝑢 (𝑡) .

(8)

We assume that the drug kills all types of cells but that the
killing rate differs for each type of cells; 𝐹(𝑢) = 𝑎

𝑖
(1 − 𝑒

−𝑢

) is
the fraction cell kill for a given amount of drug, 𝑢(𝑡), at the
tumour site. We denote by 𝑎

1
, 𝑎
2
, and 𝑎

3
the three different

response coefficients. V(𝑡) represents the amount of dose that
is injected into the system, while 𝑑

1
is the decay rate of the

drug once it is injected. In this case, the quantity we will
control directly is not 𝑢(𝑡) but V(𝑡). The tumour cells and
normal cells are modelled by a logistic growth law, with the
parameters 𝑟

𝑖
representing the growth rate of two types of

cells: 𝑖 = 2 identifies the parameter associated with tumour,
and 𝑖 = 3 identifies the one associated with the normal tissue;
𝛽 and 𝛽

2
are the reciprocal carrying capacities of tumour cells

and host cells, respectively. In addition, there are two terms
representing the competition between the tumour and host
cells −𝑐

1
𝑁𝑇 and −𝑐

2
𝑁𝑇.

LetC = C([−𝜏, 0],R4) be the Banach space of continuous
functions mapping the interval [−𝜏, 0] into R4 with the
topology of uniform convergence. It is easy to show that there
exists a unique solution (𝐸(𝑡), 𝑇(𝑡),𝑁(𝑡), 𝑢(𝑡)) of system (8)

with initial data (𝐸
0
, 𝑇
0
, 𝑁
0
, 𝑢
0
) ∈ C. For biological reasons,

we assume that the initial data of system (8) satisfy 𝐸
0
≥ 0,

𝑇
0
≥ 0,𝑁

0
≥ 0, and 𝑢

0
≥ 0. For 𝜏 = 0, the model is reduced

to ODEs model developed by De Pillis and Radunskaya in
[26].

Remark 4. We consider that the units of the model cells are
normalized, so that 𝛽

2
= 1.

The main objective in developing chemotherapy treat-
ment, in system (8), is to reach either tumour-free steady state
or coexisting steady state in which the tumour cells’ size is
small, while the normal cells’ size is closed to its normalized
carrying capacity. We next start the analysis with studying
the stability of the system when there is no drug (treatment)
input; that is, 𝑢(𝑡) = 0, for all 𝑡.

3. Drug-Free Steady States and Their Stability

In the absence of chemotherapy (𝑢(𝑡) = 0), model (8) has the
following types of steady states:

(a) tumour-free steady state, where the tumour cells
population is zero, while the normal cells survive.This
steady state has the formE

0
= (𝜎/𝛿, 0, 1);

(b) dead (lethal) steady state, where the normal cells
population is zero, which has the following forms:

(i) (𝜎/𝛿, 0, 0) in which the normal and tumour cell
populations have died off,

(ii) (𝑓(𝑇∗), 𝑇∗, 0)where the normal cells alone have
died off and the tumour cells have survived,
where

𝑓 (𝑇) =
𝜎 (𝜂 + 𝑇)

𝜇𝑇 (𝜂 + 𝑇) + 𝛿 (𝜂 + 𝑇) − 𝜌𝑇
, (9)

and 𝑇∗ is a nonnegative solution for

𝑇
∗

+ (
𝑛

𝑟
2
𝛽
)𝑓 (𝑇

∗

) −
1

𝛽
= 0; (10)
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Table 1:The stability results for the coexisting steady states by using the functions 𝜌 and𝜎, while fixing the rest of the parameters asmentioned
in the text.

Region
in Figure 2 𝜌 𝜎

Steady state
(𝐸
∗

, 𝑇
∗

, 𝑁
∗

)

Eigenvalues
𝜆
1
, 𝜆
2
, 𝜆
3

Stability
for 𝜏 ≥ 0

Light blue
(1a) 0.1 0.05 (0.0269, 486.9244, 0.9999) −0.9509, −1.9105, −1 Stable node

Light blue
(1b) 1.4 0.1 (1.0299, 0.0238, 0.9999) −1, −0.0486 − 0.3096𝑖,

−0.0486 + 0.3096𝑖

Stable spiral for 𝜏 < 𝜏
∗,

stable limit cycles at 𝜏 = 𝜏
∗

Orange
(2) 0.2 0.23 (0.1648, 419.9672, 0.9999) −0.5942, −1, −1.7876 Stable node

(0.8656, 79.7712, 0.99) 0.276, −1, −0.7291 Unstable saddle node
Brown
(3) 0.6 0.1 (0.0789, 461.688, 0.99) −0.7137, −1.5050, −1 Stable node

(0.7236, 148.7078, 0.99) 0.4060, −1, −0.8506 Unstable saddle node

(1.0298, 0.0623, 0.99) −1, −0.0486 − 0.2922𝑖,
−0.0486 + 0.2922𝑖

Stable spiral for 𝜏 < 𝜏
∗,

stable limit cycles at 𝜏 = 𝜏
∗

(c) coexisting steady state, where both normal and
tumour cells coexist with nonzero populations. The
steady state is given by E

+
= (𝑓(𝑇

∗

), 𝑇
∗

, 𝑔(𝑇
∗

))

where 𝑔(𝑇∗) = 1 − (𝑐
2
/𝑟
3
)𝑇
∗, and 𝑇∗ is a nonnegative

solution of
𝐶
3
𝑇
3

+ 𝐶
2
𝑇
2

+ 𝐶
1
𝑇 + 𝐶

0
= 0, where

𝐶
3
= −𝜇𝑟

2
𝛽 +

𝜇𝑐
1
𝑐
2

𝑟
3

,

𝐶
2
= −𝜇𝜂𝑟

2
𝛽 +

𝜇𝜂𝑐
1
𝑐
2

𝑟
3

+ 𝜇𝑟
2
− 𝜇𝑐
1
− 𝛿𝑟
2
𝛽

+
𝛿𝑐
1
𝑐
2

𝑟
3

+ 𝜌𝑟
2
𝛽 −

𝜌𝑐
1
𝑐
2

𝑟
3

,

𝐶
1
= 𝜇𝜂𝑟

2
− 𝜇𝜂𝑐
1
− 𝛿𝜂𝑟
2
𝛽 +

𝛿𝜂𝑐
1
𝑐
2

𝑟
3

+ 𝛿𝑟
2

− 𝛿𝑐
1
− 𝜌𝑟
2
+ 𝜌𝑐
1
− 𝜎𝑛,

𝐶
0
= 𝛿𝜂𝑟

2
− 𝛿𝜂𝑐
1
− 𝜎𝑛𝜂.

(11)

Thenumber of coexisting steady statesmainly depends on the
parameter values. There could be zero, one, two, or three of
these steady states (see Figure 2). We next study the stability
of the previously mentioned steady states.

3.1. Stability of Tumour-Free Steady State. In this subsection,
we investigate the parameter ranges for which the tumour-
free steady state E

0
is locally asymptotically stable. The

Jacobian matrix of the linearized system at the tumour-free
steady state is given by

𝐽E
0

= (

−𝛿
𝜌𝜎

𝜂𝛿
𝑒
−𝜆𝜏

−
𝜇𝜎

𝛿
𝑒
−𝜆𝜏

0

0 𝑟
2
−
𝑛𝜎

𝛿
− 𝑐
1

0

0 −𝑐
2

−𝑟
3

) (12)

with the eigenvalues 𝜆
1
= −𝛿 < 0, 𝜆

2
= 𝑟
2
− 𝑛𝜎/𝛿 − 𝑐

1
,

and 𝜆
3
= −𝑟
3
< 0. Hence, the tumour-free steady state E

0

is locally stable if 𝜆
2
< 0 if and only if

𝑟
2
<
𝑛𝜎

𝛿
+ 𝑐
1
, ∀𝜏 ≥ 0. (13)

This relates 𝑟
2
(the growth rate of the tumour cells) to the 𝑛𝜎/𝛿

(the resistance coefficient), which measures how efficiently
the immune system competes with the tumour cells. If this
tumour-free steady state is unstable, then no amount of
chemotherapywill be able to completely eradicate the tumour
cells.

3.2. Stability of Lethal Steady States. The same analysis done
above shows that the deadly steady state (𝜎/𝛿, 0, 0) has the
eigenvalues 𝜆

1
= −𝛿 < 0, 𝜆

2
= 𝑟
2
−𝑛𝜎/𝛿, and 𝜆

3
= 𝑟
3
> 0 and

hence it is unstable saddle point, while the other deadly steady
state (𝑓(𝑇∗), 𝑇∗, 0) can be either stable or unstable depending
on the model parameters and the value of the time-delay 𝜏.
This can be shown by using Routh Harwatz test and Rouche’s
theorem as shown in detail in the previous chapters. Since the
stability of this steady state is not needed for the developing
treatment therapy, we will not introduce more details in this
part.

3.3. Stability of Coexisting Steady States. To study the stability
of the coexisting steady states, we vary the two parameters 𝜌
(the immune cells growth rate) and 𝜎 (the normal flow rate
of immune cells), with fixing the other parameters: 𝛿 = 0.2,
𝜂 = 0.3, 𝜇 = 0.003611, 𝑟

2
= 1.03, 𝑟

3
= 1, 𝛽 = 2 × 10

−3,
𝑛 = 1, 𝑐

1
= 0.00003, and 𝑐

2
= 3 × 10

−9. Table 1 summarizes
the existence and stability results of the coexisting steady
states as present in different regions of Figure 2. It shows
that the light blue region (1a) represents the “escape” case
where there is a unique stable node steady state with high
tumour size, while the light blue region (1b) represents the
case where there is a unique steady state with low tumour
size. It is stable spiral for 𝜏 < 𝜏

∗, while at 𝜏 = 𝜏
∗ the
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Figure 2: (a) shows the regions of existence of coexisting equilibria of model (3) in (𝜌, 𝜎)-plane with the parameter values 𝛿 = 0.2, 𝜂 = 0.3,
𝜇 = 0.003611, 𝑟

2
= 1.03, 𝑟

3
= 1, 𝛽 = 2 × 10

−3, 𝑛 = 1, 𝑐
1
= 0.00003, and 𝑐

2
= 3 × 10

−9. The dark blue region (0) represents the case where there
is no equilibrium, the light blue regions (1a, 1b) represent the case where there is a unique equilibrium, the orange region (2) represents the
case where there are two steady states, and the brown region (3) represents the case where there is three equilibria. (b) shows the nullclines
of the model which has up to four steady states: tumour-free steady state “E

0
”; tumour dormancy steady state “E+

1
”; medium concentration

tumour steady state “E+
2
”; and escape tumour steady state “E+

3
.”
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Figure 3: The phase space for the cell populations in the case where 𝜌 = 1.4 and 𝜎 = 0.1. (a) shows that, for 𝜏 = 1, the steady state is
asymptotically stable. (b) shows that, for 𝜏 = 1.2, a limit cycle is born around the steady state.

limit cycle occurs due to Hopf bifurcation. Furthermore, the
orange region (2) represents the case where there are two
steady states; one is stable node and the other is unstable
sacdle node. To this end, the brown region (3) represents the
case where there are three steady states: one is stable node,
one is unstable node, and the last steady state is spiral stable
for 𝜏 < 𝜏

∗, while the limit cycle occurs at 𝜏 = 𝜏
∗. Of interest

are the existence and stability of steady states where a small
tumour population size might coexist with a large number
of normal cells. Figure 3 presents the phase space for the cell

populations in the case where 𝜌 = 1.4 and 𝜎 = 0.1. It shows
that, for 𝜏 = 0.8, the steady state is asymptotically stable
(Figure 3(a)), while, for 𝜏 = 1.2, a limit cycle is born around
the steady state (Figure 3(b)).We utilize MIDDE code [27] to
solve the DDEs model, which is suitable to simulate stiff and
nonstiff problems, using monoimplicit RK methods [28]. We
next consider the chemotherapy treatment (𝑢(𝑡) > 0) in the
underlying model and establish the existence of an optimal
control for the model and provide necessary conditions for
the optimal control.
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4. Optimal Control Problem
Governed by DDEs

Once a suitable model of interacting cell populations is
constructed, we then focus on the design of an efficient
treatment protocol, where we employ the tools of optimal
control theory.

Consider the optimal control problem with pure state
constraints and control bounds, as follows:

max
𝑥,V

𝐽 (𝑥, V) = Ψ (𝑥 (𝑡
𝑓
)) + ∫

𝑡
𝑓

0

𝐿 (𝑡, 𝑥 (𝑡) , V (𝑡)) 𝑑𝑡, (14a)

subject to the DDEs

𝑥
󸀠

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , V (𝑡)) , 𝑡 ∈ [0, 𝑡
𝑓
] , (14b)

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] , (14c)

with the control constraint

𝑎 ≤ V (𝑡) ≤ 𝑏, 𝑡 ∈ [0, 𝑡
𝑓
] (14d)

and state constraint

𝑥 (𝑡) ≥ 𝑐, 𝑡 ∈ [0, 𝑡
𝑓
] . (14e)

𝐽 is called objective functional and the integrand 𝐿(⋅) is called
the Lagrangian of objective functional. Furthermore, 𝑎 and 𝑏
are called the lower and upper bounds. The function V(𝑡) is
called an admissible control if and only if it fulfills inequality
constraints (14d). The set of all admissible controls is called
the admissible set and we referred to it by 𝑉ad (where “ad”
stands for the admissible). The state 𝑥(⋅) enters with a delay
𝜏 as 𝑥(𝑡 − 𝜏) in the system of the state equations (14b) while
it is evaluated at the time 𝑡 as 𝑥(𝑡) in the objective functional
(14a). The set of all admissible states 𝑋ad, which satisfy the
state equations and the state constraint, is called the set of
admissible state.

The goal of chemotherapy is to eradicate the tumour cells,
while maintaining adequate amounts of healthy tissue. From
amathematical point of view, adequate destruction to tumour
cells might mean forcing the system out of the basin of an
unhealthy spiral node, out of a limit cycle, and into a basin of
attraction of a stable tumour-free equilibrium. Alternatively,
if the therapy pushes the system into a limit cycle in which
the size of the tumour is small for a long period of time (as
long as the life of the patient, for example), this could also be
considered a “cure.”

Optimality in treatment might be defined in a variety
of ways. Some studies have been done in which the total
amount of drug administered is minimized, or the number
of tumour cells is minimized. The general goal is to keep the
patient healthy while killing the tumour. Since our model
takes into account the toxicity of the drug to all types of cells,
our control problem consists of determining the function
V(𝑡) that will maximize the amount of effector cells and
minimize the number of tumour cells and the cost of the
control with the constraint that we do not kill too many
normal cells. If the units of cells are normalized, so that the

carrying capacity of normal cells is 1, we then require that
the number of normal cells stays above three-fourths of the
carrying capacity.Therefore, ourmain objective is to optimize
the functional

max
V∈𝑉ad

𝐽 (V) = ∫

𝑡
𝑓

0

(𝐸 (𝑡) − 𝑇 (𝑡) −
𝐵V

2
[V (𝑡)]2)𝑑𝑡 (15a)

which subject to the underlying DDEs

𝑑𝐸 (𝑡)

𝑑𝑡
= 𝜎 +

𝜌𝐸 (𝑡 − 𝜏) 𝑇 (𝑡 − 𝜏)

𝜂 + 𝑇 (𝑡 − 𝜏)

− 𝜇𝐸 (𝑡 − 𝜏) 𝑇 (𝑡 − 𝜏) − 𝛿𝐸 (𝑡)

− 𝑎
1
(1 − 𝑒

−𝑢(𝑡)

) 𝐸 (𝑡) ,

(15b)

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝑟
2
𝑇 (𝑡) (1 − 𝛽𝑇 (𝑡)) − 𝑛𝐸 (𝑡) 𝑇 (𝑡)

− 𝑐
1
𝑁(𝑡) 𝑇 (𝑡) − 𝑎

2
(1 − 𝑒

−𝑢

) 𝑇 (𝑡) ,

(15c)

𝑑𝑁 (𝑡)

𝑑𝑡
= 𝑟
3
𝑁(𝑡) (1 − 𝛽

2
𝑁(𝑡)) − 𝑐

2
𝑇 (𝑡)𝑁 (𝑡)

− 𝑎
3
(1 − 𝑒

−𝑢

)𝑁 (𝑡) ,

(15d)

𝑑𝑢 (𝑡)

𝑑𝑡
= V (𝑡) − 𝑑

1
𝑢 (𝑡) (15e)

with control constraint

0 ≤ V (𝑡) ≤ Vmax < ∞, 𝑡 ∈ [0, 𝑡
𝑓
] (15f)

and state constraint

𝑘 (𝑁) = 𝑁 − 0.75 ≥ 0, 𝑡 ∈ [0, 𝑡
𝑓
] . (15g)

Here, 𝐵V is a weight factor that describes the patient’s
acceptance level of chemotherapy. We choose the control
parameter as a class of piecewise continuous functions
defined for all 𝑡 such that 0 ≤ V(𝑡) ≤ Vmax < ∞, where
V(𝑡) = Vmax represents the maximum chemotherapy, while
V(𝑡) = 0 represents the case where there is no chemotherapy.
Thus, we depict the class of admissible controls as

𝑉ad = {V ∈ 𝐿∞ ([0, 𝑡
𝑓
] ,R) |

0 ≤ V (𝑡) ≤ Vmax < ∞, ∀𝑡 ∈ [0, 𝑡
𝑓
]} .

(16)

We next prove the existence of the optimal solution of the
underlying system (15a)–(15g).

5. Existence of an Optimal Solution

To prove the existence of the optimal solution of (15a)–(15g),
we use the results of Fleming and Rishel [29, Theorem 4.1,
pages 68-69] and Lukes [30, Theorem 9.2.1, page 182].

Theorem 5. There exists an optimal solution (𝑥
∗

, V∗) ∈

𝑊
1,∞

([0, 𝑡
𝑓
],R4) × 𝐿

∞

([0, 𝑡
𝑓
],R) for the optimal control

problem (15a)–(15g) such that

𝐽 (V∗) = max
V∈𝑉ad

𝐽 (V) , (17)



8 Computational and Mathematical Methods in Medicine

where 𝑥∗ = [𝐸
∗

, 𝑇
∗

, 𝑁
∗

, 𝑢
∗

]
𝑇 if the following conditions are

satisfied.

(1) The set of admissible state is nonempty.
(2) The admissible set𝑉ad is nonempty, convex, and closed.
(3) The right-hand side of the state system is bounded by a

linear combination of the state and control variables.
(4) The integrand,𝐿(𝐸, 𝑇, V) = (𝐸(𝑡)−𝑇(𝑡)−(𝐵V/2)[V(𝑡)]

2

),
of the objective functional is a concave on 𝑉ad.

(5) There exist constants ℎ
2
, ℎ
3
> 0, and 𝑏 > 1 such that

𝐿(𝐸, 𝑇, V) ≤ ℎ
2
− ℎ
3
(|V|)𝑏.

Proof. In order to verify the above conditions, we should first
prove the existence of the solution for system of the state
equations (15b)–(15e). Since 𝜌𝑇(𝑡 − 𝜏)/(𝜂 + 𝑇(𝑡 − 𝜏)) < 𝜌,
Vmax < ∞ and, by neglecting the negative terms in themodel,
we have

𝑑𝐸 (𝑡)

𝑑𝑡
< 𝜎 + 𝜌𝐸 (𝑡 − 𝜏) ,

𝑑𝑇 (𝑡)

𝑑𝑡
< 𝑟
2
𝑇,

𝑑𝑁 (𝑡)

𝑑𝑡
< 𝑟
3
𝑁,

𝑑𝑢 (𝑡)

𝑑𝑡
< Vmax.

(18)

System (18) can be rewritten in the form

(

𝐸(𝑡)

𝑇 (𝑡)

𝑁 (𝑡)

𝑢 (𝑡)

)

󸀠

< (

0 0 0 0

0 𝑟
2
0 0

0 0 𝑟
3
0

0 0 0 0

)(

𝐸(𝑡)

𝑇 (𝑡)

𝑁 (𝑡)

𝑢 (𝑡)

)

+(

𝜌 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

)(

𝐸(𝑡 − 𝜏)

𝑇 (𝑡 − 𝜏)

𝑁 (𝑡 − 𝜏)

𝑢 (𝑡 − 𝜏)

) +(

𝜎

0

0

Vmax

),

(19)

where 󸀠 = 𝑑/𝑑𝑡. This system is linear in finite time
with bounded coefficients. Then the solutions of this linear
system are uniformly bounded. Therefore, the solution of
the nonlinear system (15b)–(15e) is bounded and exists [30].
Hence, condition one is satisfied.

Clearly, the second condition is satisfied by the definition
of 𝑉ad. System (15b)–(15e) is bilinear in the control variable V
and can be rewritten as

𝐹⃗ (𝑡, 𝑋⃗ (𝑡) , 𝑋⃗ (𝑡 − 𝜏) , V) = 𝛼⃗ (𝑡, 𝑋⃗) + ⃗𝛽 (𝑡, 𝑋⃗ (𝑡 − 𝜏)) + 𝜎 + V,
(20)

where 𝑋⃗(𝑡) = (𝐸, 𝑇,𝑁, 𝑢), 𝑋⃗(𝑡−𝜏) = (𝐸(𝑡−𝜏), 𝑇(𝑡−𝜏),𝑁(𝑡−

𝜏), 𝑢(𝑡 − 𝜏)), and 𝛼⃗ and ⃗𝛽 are the vector valued functions
of 𝑋⃗(𝑡) and 𝑋⃗(𝑡 − 𝜏), respectively. Using the fact that the
solutions are bounded, we have

󵄨󵄨󵄨󵄨󵄨
𝐹⃗ (𝑡, 𝑋⃗ (𝑡) , 𝑋⃗ (𝑡 − 𝜏) , V)

󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝐹1𝑋 (𝑡)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐹2𝑋 (𝑡 − 𝜏)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐹3

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐹4

󵄨󵄨󵄨󵄨

≤ ℎ
1

󵄨󵄨󵄨󵄨󵄨
𝑋⃗
󵄨󵄨󵄨󵄨󵄨
+ |𝜎| + |V| ,

(21)

where ℎ
1
depends on the coefficients of the system, and

𝐹
1
= (

0 0 0 0

0 𝑟
2
0 0

0 0 𝑟
3
0

0 0 0 0

) , 𝐹
2
= (

𝜌 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

) ,

𝐹
3
= (

𝜎

0

0

0

) , 𝐹
4
= (

0

0

0

V

).

(22)

We also note that the integrand of 𝐽(V) is concave in 𝑉ad.
Finally,

𝐸 (𝑡) − 𝑇 (𝑡) −
𝐵V

2
[V (𝑡)]2 < 𝐸 −

𝐵V

2
[V (𝑡)]2

≤ ℎ
2
− ℎ
3
|V (𝑡)|2,

(23)

where ℎ
2
depends on the upper bounds of 𝐸(𝑡) and 𝑇(𝑡), and

ℎ
3
= 𝐵V/2. This completes the proof.

We also conclude that there exists an optimal control
variable V∗.

6. Optimality Conditions

In this section, we establish the necessary conditions for the
optimal solution of the optimization problem (15a)–(15g);
we use Pontryagin’s minimum (maximum) principle derived
by Göllmann et al. [31] for the retarded optimal control
problem with mixed control-state constraints. To this end,
we define the augmentedHamiltonian function involving the
inequality constraints by

H (𝑡, 𝐸, 𝑇, 𝐸
𝜏
, 𝑇
𝜏
, 𝑢, V, 𝜆)

= 𝐸 (𝑡) − 𝑇 (𝑡) −
𝐵V

2
[V (𝑡)]2 + 𝜆

1
(𝑇)

𝑑𝐸 (𝑡)

𝑑𝑡

+ 𝜆
2
(𝑡)

𝑑𝑇 (𝑡)

𝑑𝑡
+ 𝜆
3
(𝑡)

𝑑𝑁 (𝑡)

𝑑𝑡
+ 𝜆
4

𝑑𝑢 (𝑡)

𝑑𝑡

+ 𝛾 (𝑡) 𝑘 (𝑁) ,

(24)

where

𝛾 (𝑡) = {
1 if 𝑁(𝑡) ≤ 0.75,

0 otherwise
(25)

and 𝜆
𝑖
(𝑖 = 1, 2, 3, 4) are the adjoint variables that satisfy

𝜆
󸀠

1
(𝑡) = −

𝜕H

𝜕𝐸
(𝑡) − 𝜒

[0,𝑡
𝑓
−𝜏]

(𝑡)
𝜕H

𝜕𝐸
𝜏

(𝑡 + 𝜏) , 𝜆
1
(𝑡
𝑓
) = 0,

𝜆
󸀠

2
(𝑡) = −

𝜕H

𝜕𝑇
(𝑡) − 𝜒

[0,𝑡
𝑓
−𝜏]

(𝑡)
𝜕H

𝜕𝑇
𝜏

(𝑡 + 𝜏) , 𝜆
2
(𝑡
𝑓
) = 0,
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𝜆
󸀠

3
(𝑡) = −

𝜕H

𝜕𝑁
(𝑡) , 𝜆

3
(𝑡
𝑓
) = 0,

𝜆
󸀠

4
(𝑡) = −

𝜕H

𝜕𝑢
(𝑡) , 𝜆

4
(𝑡
𝑓
) = 0.

(26)

Here 𝜒
[0,𝑡
𝑓
−𝜏]

denotes the indicator function of the interval
[0, 𝑡
𝑓
− 𝜏] and defined by

𝜒
[0,𝑡
𝑓
−𝜏]

= {
1 if 𝑡 ∈ [0, 𝑡

𝑓
− 𝜏] ,

0 otherwise.
(27)

To minimize the Hamiltonian functional, the Pontrya-
gin’s minimum principle [31] is used. Thus, we arrive at the
the following theorem.

Theorem 6. Let (𝑥∗, V∗) ∈ 𝑊1,∞([0, 𝑡
𝑓
],R4) × 𝐿∞([0, 𝑡

𝑓
],R)

be the optimal solutions of (15a)–(15g), where 𝑥
∗

=

[𝐸
∗

, 𝑇
∗

, 𝑁
∗

, 𝑢
∗

]
𝑇. Then, there exists an adjoint state 𝜆(𝑡) ∈

𝑊
1,∞

([0, 𝑡
𝑓
],R4), defined by (26), such that the triple

(𝑥
∗

, V∗, 𝜆) satisfies the state equation

𝑑𝐸
∗

(𝑡)

𝑑𝑡
= 𝜎 +

𝜌𝐸
∗

(𝑡 − 𝜏) 𝑇
∗

(𝑡 − 𝜏)

𝜂 + 𝑇∗ (𝑡 − 𝜏)
− 𝜇𝐸
∗

(𝑡 − 𝜏) 𝑇
∗

(𝑡 − 𝜏)

− 𝛿𝐸
∗

(𝑡) − 𝑎
1
(1 − 𝑒

−𝑢
∗

)𝐸
∗

(𝑡) ,

𝑑𝑇
∗

(𝑡)

𝑑𝑡
= 𝑟
2
𝑇
∗

(𝑡) (1 − 𝛽𝑇
∗

(𝑡)) − 𝜇𝐸
∗

(𝑡) 𝑇
∗

(𝑡)

− 𝑐
1
𝑁
∗

(𝑡) 𝑇
∗

(𝑡) − 𝑎
2
(1 − 𝑒

−𝑢
∗
(𝑡)

)𝑇
∗

(𝑡) ,

𝑑𝑁
∗

(𝑡)

𝑑𝑡
= 𝑟
3
𝑁
∗

(𝑡) (1 − 𝛽
2
𝑁
∗

(𝑡)) − 𝑐
2
𝑇
∗

(𝑡)𝑁
∗

(𝑡)

− 𝑎
3
(1 − 𝑒

−𝑢
∗
(𝑡)

)𝑁
∗

(𝑡) ,

𝑑𝑢
∗

(𝑡)

𝑑𝑡
= V∗ (𝑡) − 𝑑

1
𝑢
∗

(𝑡) ,

(28)

with the initial conditions

𝐸
∗

(𝑡) = 𝜙
1
(𝑡) , 𝑇

∗

(𝑡) = 𝜙
2
(𝑡) ,

𝑁
∗

(𝑡) = 𝜙
3
(𝑡) , 𝑢 (𝑡) = 𝜙

4
(𝑡) ,

𝑡 ∈ [−𝜏, 0] ,

(29)

the adjoint state equations

𝜆
󸀠

1
(𝑡) = −1 + 𝜆

1
(𝑡) [𝛿 + 𝑎

1
(1 − 𝑒

−𝑢
∗

)]

+ 𝜆
2
(𝑡) 𝑛𝑇

∗

+ 𝜆
1
(𝑡 + 𝜏) 𝜒

[0,𝑡
𝑓
−𝜏]

[𝜇𝑇
∗

−
𝜌𝑇
∗

𝜂 + 𝑇∗
] ,

𝜆
󸀠

2
(𝑡) = 1 + 𝜆

2
[ − 𝑟
2
+ 2𝑟
2
𝛽𝑇
∗

+ 𝑛𝐸
∗

+ 𝑐
1
𝑁
∗

+𝑎
2
(1 − 𝑒

−𝑢
∗

)] + 𝜆
3
𝑐
2
𝑁
∗

+ 𝜒
[0,𝑡
𝑓
−𝜏]
𝜆
1
(𝑡 + 𝜏) [

𝜌𝐸
∗

𝑇
∗

(𝜂 + 𝑇∗)
2

−
𝜌𝐸
∗

𝜂 + 𝑇∗
+ 𝜇𝐸
∗

] ,

𝜆
󸀠

3
(𝑡) = 𝜆

2
𝑐
1
𝑇
∗

− 𝜆
3
(𝑟
3
− 2𝑟
3
𝛽
2
𝑁
∗

− 𝑐
2
𝑇
∗

− 𝑎
3
(1 − 𝑒

−𝑢
∗

)) − 𝛾,

𝜆
󸀠

4
(𝑡) = −𝜆

1
(𝑡) 𝑎
1
𝑒
−𝑢
∗

𝐸
∗

+ 𝜆
2
(𝑡) 𝑎
2
𝑒
−𝑢
∗

𝑇
∗

+ 𝜆
3
(𝑡) 𝑎
3
𝑒
−𝑢
∗

𝑁
∗

+ 𝜆
4
(𝑡) 𝑑
1
,

(30)

with transversality conditions

𝜆
𝑖
(𝑡
𝑓
) = 0, 𝑖 = 1, 2, 3, 4, (31)

and the optimal control

V∗ = min(Vmax,
𝜆
4

𝐵V
) . (32)

Proof. The optimal control V∗ can be solved from the opti-
mality condition (𝜕H/𝜕V)(𝑡) = 0; that is, −𝐵VV + 𝜆4 = 0. By
using the handedness of the control set𝑉ad, it is easy to obtain
V∗ in the form of (32).

7. Immunochemotherapy

Model (8) is extended to include external source of
immunotherapy treatment of the effector cells such as ACI.
We then add the term 𝑤(𝑡)𝑠

1
to represent the input rate of

externally administered antitumour effector cells, where𝑤(𝑡)
is the control parameter. Our goal is tomaximize an objective
functional 𝐽 subject to the new model with a combination of
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chemotherapy and ACI and constraints on the control and
the state:

max
V,𝑤∈𝑊ad

𝐽 (V, 𝑤) = ∫

𝑡
𝑓

0

(𝐸 (𝑡) − 𝑇 (𝑡)

− [
𝐵V

2
[V (𝑡)]2 +

𝐵
𝑤

2
[𝑤 (𝑡)]

2

]) 𝑑𝑡,

(33a)

subject to DDEs

𝑑𝐸 (𝑡)

𝑑𝑡
= 𝜎 +

𝜌𝐸 (𝑡 − 𝜏) 𝑇 (𝑡 − 𝜏)

𝜂 + 𝑇 (𝑡 − 𝜏)
− 𝜇𝐸 (𝑡 − 𝜏) 𝑇 (𝑡 − 𝜏)

− 𝛿𝐸 (𝑡) − 𝑎
1
(1 − 𝑒

−𝑢(𝑡)

) 𝐸 (𝑡) + 𝑤 (𝑡) 𝑠
1
,

(33b)

𝑑𝑇 (𝑡)

𝑑𝑡
= 𝑟
2
𝑇 (𝑡) (1 − 𝛽𝑇 (𝑡)) − 𝑛𝐸 (𝑡) 𝑇 (𝑡) − 𝑐

1
𝑁(𝑡) 𝑇 (𝑡)

− 𝑎
2
(1 − 𝑒

−𝑢(𝑡)

) 𝑇 (𝑡) ,

(33c)

𝑑𝑁 (𝑡)

𝑑𝑡
= 𝑟
3
𝑁(𝑡) (1 − 𝛽

2
𝑁(𝑡)) − 𝑐

2
𝑇 (𝑡)𝑁 (𝑡)

− 𝑎
3
(1 − 𝑒

−𝑢(𝑡)

)𝑁 (𝑡) ,

(33d)

𝑑𝑢 (𝑡)

𝑑𝑡
= V (𝑡) − 𝑑

1
𝑢 (𝑡) , (33e)

the control constraints

0 ≤ V (𝑡) ≤ Vmax < ∞, 0 ≤ 𝑤 (𝑡) ≤ 𝑤max < ∞,

𝑡 ∈ [0, 𝑡
𝑓
] ,

(33f)

and the state constraint

𝑘 (𝑁) = 𝑁 − 0.75 ≥ 0, 𝑡 ∈ [0, 𝑡
𝑓
] , (33g)

where 𝐵
𝑤
is a weight factor that describes a patient’s accep-

tance level of immunotherapy and the set of all admissible
controls𝑊ad is defined by

𝑊ad = { (V, 𝑤) : (V, 𝑤) piecewise continuous, such that

0 ≤ V (𝑡) ≤ Vmax < ∞, 0 ≤ 𝑤 (𝑡) ≤ 𝑤max < ∞,

∀𝑡 ∈ [0, 𝑡
𝑓
]} .

(34)

Similarly, the optimal solution of the optimization prob-
lem (33a)–(33g) satisfies the state equations

𝑑𝐸
∗

(𝑡)

𝑑𝑡
= 𝜎 +

𝜌𝐸
∗

(𝑡 − 𝜏) 𝑇
∗

(𝑡 − 𝜏)

𝜂 + 𝑇∗ (𝑡 − 𝜏)
− 𝜇𝐸
∗

(𝑡 − 𝜏) 𝑇
∗

(𝑡 − 𝜏)

− 𝛿𝐸
∗

(𝑡) − 𝑎
1
(1 − 𝑒

−𝑢
∗

)𝐸
∗

(𝑡) + 𝑤
∗

(𝑡) 𝑠
1
,

𝑑𝑇
∗

(𝑡)

𝑑𝑡
= 𝑟
2
𝑇
∗

(𝑡) (1 − 𝛽𝑇
∗

(𝑡)) − 𝜇𝐸
∗

(𝑡) 𝑇
∗

(𝑡)

− 𝑐
1
𝑁
∗

(𝑡) 𝑇
∗

(𝑡) − 𝑎
2
(1 − 𝑒

−𝑢
∗
(𝑡)

)𝑇
∗

(𝑡) ,

𝑑𝑁
∗

(𝑡)

𝑑𝑡
= 𝑟
3
𝑁
∗

(𝑡) (1 − 𝛽
2
𝑁
∗

(𝑡)) − 𝑐
2
𝑇
∗

(𝑡)𝑁
∗

(𝑡)

− 𝑎
3
(1 − 𝑒

−𝑢
∗
(𝑡)

)𝑁
∗

(𝑡) ,

𝑑𝑢
∗

(𝑡)

𝑑𝑡
= V∗ (𝑡) − 𝑑

1
𝑢
∗

(𝑡) ,

𝐸
∗

(𝑡) = 𝜙
1
(𝑡) , 𝑇

∗

(𝑡) = 𝜙
2
(𝑡) ,

𝑁
∗

(𝑡) = 𝜙
3
(𝑡) , 𝑢 (𝑡) = 𝜙

4
(𝑡) ,

𝑡 ∈ [−𝜏, 0] .

(35)

The adjoint state equations are

𝜆
󸀠

1
(𝑡) = −1 + 𝜆

1
(𝑡) [𝛿 + 𝑎

1
(1 − 𝑒

−𝑢
∗
(𝑡)

)]

+ 𝜆
2
(𝑡) 𝑛𝑇

∗

(𝑡) + 𝜆
1
(𝑡 + 𝜏) 𝜒

[0,𝑡
𝑓
−𝜏]

× [𝜇𝑇
∗

(𝑡) −
𝜌𝑇
∗

(𝑡)

𝜂 + 𝑇∗ (𝑡)
] ,

𝜆
󸀠

2
(𝑡) = 1 + 𝜆

2
[ − 𝑟
2
+ 2𝑟
2
𝛽𝑇
∗

(𝑡) + 𝑛𝐸
∗

(𝑡)

+ 𝑐
1
𝑁
∗

(𝑡) + 𝑎
2
(1 − 𝑒

−𝑢
∗

)]

+ 𝜆
3
𝑐
2
𝑁
∗

(𝑡) + 𝜒
[0,𝑡
𝑓
−𝜏]
𝜆
1
(𝑡 + 𝜏)

× [
𝜌𝐸
∗

(𝑡) 𝑇
∗

(𝑡)

(𝜂 + 𝑇∗ (𝑡))
2

−
𝜌𝐸
∗

(𝑡)

𝜂 + 𝑇∗ (𝑡)
+ 𝜇𝐸
∗

(𝑡)] ,

𝜆
󸀠

3
(𝑡) = 𝜆

2
𝑐
1
𝑇
∗

(𝑡) − 𝜆
3
(𝑡)

× (𝑟
3
− 2𝑟
3
𝛽
2
𝑁
∗

(𝑡) − 𝑐
2
𝑇
∗

(𝑡) − 𝑎
3
(1 − 𝑒

−𝑢
∗
(𝑡)

))

− 𝛾,

𝜆
󸀠

4
(𝑡) = −𝜆

1
(𝑡) 𝑎
1
𝑒
−𝑢
∗
(𝑡)

𝐸
∗

(𝑡) + 𝜆
2
(𝑡) 𝑎
2
𝑒
−𝑢
∗
(𝑡)

𝑇
∗

(𝑡)

+ 𝜆
3
(𝑡) 𝑎
3
𝑒
−𝑢
∗
(𝑡)

𝑁
∗

(𝑡) + 𝜆
4
(𝑡) 𝑑
1
,

(36)
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Figure 4: Simulations of system (28)–(32), in the stable region, before and after the treatmentswith control with the initial conditions𝐸
0
= 0.3,

𝑇
0
= 300, and𝑁

0
= 0.9 and the parameter values are given in the text.

with the transversality conditions 𝜆
𝑖
(𝑡
𝑓
) = 0, 𝑖 = {1, 2, 3, 4},

and the minimum condition

V∗ = min(Vmax,
𝜆
4

𝐵V
) , 𝑤

∗

= min(𝑤max,
𝜆
1
𝑠
1

𝐵
𝑤

) . (37)

When 𝑠
1
= 0 (without immunotherapy), system (35)–(37)

reduces to system (28)–(32).

Remark 7. In the case of immunotherapy alone (𝑢(𝑡) = 0), the
objective functional becomes

𝐽 (𝑤) = ∫

𝑡
𝑓

0

(𝐸 (𝑡) − 𝑇 (𝑡) −
𝐵
𝑤

2
[𝑤 (𝑡)]

2

)𝑑𝑡. (38)

8. Numerical Simulations of the
Optimal Control System

Numerical simulations leading to the approximation of the
optimal controls (35)–(37) are carried out using the forward
Euler method for the state system and backward difference
approximation for the adjoint system. We assume the step-
size ℎ, such that 𝜏 = 𝑚ℎ and 𝑡

𝑓
− 𝑡
0
= 𝑛ℎ, where (𝑚, 𝑏) ∈

N2. We define the state, adjoint, and control variables at
the mesh points. An initial guess is given for the controls
V and 𝑤, which are then updated continuously until the
objective functional satisfies the conditions. However, there
are several major problems to be overcome when solving
delay differential equations. These include stability, stiffness,
and discontinuities in the right-hand side of the equation.
Stability and stiffness can be handled by the correct choice
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Figure 5: Simulations of the system (28)–(32), in an unstable region, before and after the chemotherapy treatment with the control and initial
conditions 𝐸

0
= 1, 𝑇

0
= 200, and𝑁

0
= 0.9 and the parameter values are given in the text.

of implicit solvers [27]. The delay terms can create a whole
suite of discontinuities; see [32, 33].

We choose a different set of parameter values (in stable
and unstable regions). In the current simulations, we vary the
three parameters 𝜎, 𝜌, and 𝜏, and fix the other parameters:

𝛿 = 0.2, 𝜂 = 0.3, 𝜇 = 0.003611, 𝑠
1
= 0.3,

𝑟
2
= 1.03, 𝑟

3
= 1, 𝛽 = 2 × 10

−3

, 𝛽
2
= 1,

𝑛 = 1, 𝑐
1
= 0.00003, 𝑐

2
= 0.00000003, 𝑎

1
= 0.2,

𝑎
2
= 0.4, 𝑎

3
= 0.1, 𝑑

1
= 0.01, 𝐵 = 100.

(39)

We solve the optimality system to determine the optimal
control situation (i.e., the drug strategy) and predict the
evolution of the tumour cells, effector cells, and normal cells
of each control strategy in 30 days.

Figure 4 shows the numerical simulations of the state
system before and after chemotherapy treatment using opti-
mality system (28)–(32) when 𝜎 = 0.5, 𝜌 = 0.01, and
𝜏 = 1.2 (in the stable region). We note that, in the presence
of chemotherapy with optimal control, the effector cells
population grows up significantly, while the tumour cells
population decreases and is totally eradicated after 20 days. In
themeantime, the normal cells population remains over 75%.
Yet, Figure 5 shows the impact of chemotherapy treatments
(with optimal control) when we choose the parameter values
in an unstable region (𝜎 = 0.2, 𝜌 = 0.2, and 𝜏 = 1.5).
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Figure 6: Simulations of system (35)–(37), in the stable region, before and after the immunochemotherapy treatments with controls. It shows
that the tumour cells population can be eradicated in day 12.

The tumour and effector cells populations are oscillating over
time in the absence of chemotherapy, while the presence of
treatment helps the immune system to keep the growth of the
tumour cells under its control.

Figure 6 presents the evolution of system (35)–(37) in the
case of combination of chemotherapy and ACI. The parame-
ters values are chosen in the stable region. We notice that the
tumour cells population can be eradicated after day 12 which
is faster compared to the results of Figure 4 when we used the
chemotherapy alone. In other words, the numerical results
show that using the combination immunochemotherapy is
more effective than using chemotherapy treatment alone.

However, Figure 7 shows evolution of the system with
only immunotherapy (i.e., without chemotherapy). We may
notice from the figure that this case reflects the best thera-
peutic strategies for treatment of tumour, where the recovery
becomes faster with high dosage of immunotherapy where
𝑤(𝑡) can reach the value of 3.5 level compared with the
combination it was in level 2.

9. Concluding Remarks

In this paper, we provided a delay differential model with
control variables that describe the interactions of immune
cells, tumour cells, normal cells, and immunochemother-
apy treatment with control variables. A pontryagin-type
maximum principle is derived, for retarded optimal control
problems with delays in the state variable when the control
system is subject to a mixed controlstate constraint, in order
to minimize the cost of treatment, reduce the tumour cells
load, and keep the number of normal cells above 75% of
its carrying capacity. We presented an efficient numerical
technique, based on forward difference approximation to the
state system and backward difference scheme to the adjoint
system, to solve the optimal control problem and identify
the best treatment strategy when we adopt the chemotherapy
treatment alone or a combination of chemoimmunotherapy,
with minimum side effects. The numerical results show and
confirm that the optimal treatment strategies reduce the
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Figure 7: Simulations of the tumour cells population of system (35)–(37), before and after immunotherapy with control. It shows that the
tumour cells can be eradicated at day 7 with high immunotherapy dosage where the control value 𝑤(𝑡) reaches the value of 3.5.

tumour cells load and increase the effector cells after few days
of therapy.The performance of combination therapy protocol
was better than the standard protocol of chemotherapy alone.
The numerical simulations show the rationality of the model
presented, which in some degree meets the natural facts.

This work can be extended to more sophisticated prob-
lems with delays in both state and control variables, when the
control system is subject to a mixed controlstate constraints.
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