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The purpose of this note is to study impulsive control and synchronization of memristor based chaotic circuits shown by
Muthuswamy. We first establish a less conservative sufficient condition for the stability of memristor based chaotic circuits. After
that, we discuss the effect of errors on stability. Meanwhile, we also discuss impulsive synchronization of two memristor based
chaotic systems. Our results are more general and more applicable than the ones shown by Yang, Li, and Huang. Finally, several
numerical examples are given to show the effectiveness of our methods.

1. Introduction

The memristor was postulated as the fourth circuit element
by Chua [1, 2] and was realized by HP Labs [2, 3]. Memristor
has widely potential applications in electronic circuits, com-
puter memory, reconfigurable computing, and so on [4–7].
Recently, implementation ofmemristor based chaotic circuits
is an active topic of research. For example, some memristor
based chaotic circuits were proposed by Itoh and Chua [8]
and Muthuswamy and Kokate [9]. Memristor based chaotic
circuits have applications in many fields; for example, a
memristor based chaotic circuit for image encryption was
proposed by Lin and Wang [10].

In practical applications, impulsive control has some
advantages: for example, impulsive control provides an effi-
cient way in dealing with systems especially which cannot
endure continuous control inputs. During the last several
decades, impulsive control theory has attracted considerable
attention because impulsive control method can be employed
in many fields, such as the stabilization and synchronization
of chaotic systems [11–14] and complex dynamical networks
[15–19]. For more results on impulsive control and its

applications, the reader is referred to [11, 20, 21] and the
references therein.

Recently, complex dynamical systems are receiving much
attention, and there is no exception for chaotic systems.
Muthuswamy [22] provided a practical implementation of
a memristor based chaotic circuit. By applying impulsive
control theory, Yang et al. [23] obtained some sufficient con-
ditions for the asymptotic stabilization and synchronization
of the memristor based chaotic system shown in [22].

In this note, we shall also consider the asymptotic sta-
bilization and synchronization of memristor based chaotic
circuits, as in [22].We first derive a less conservative sufficient
condition for the stability of the memristor based chaotic
circuits shown byMuthuswamy [22]. Inmany practical appli-
cations, we cannot guarantee the systems without any error
due to the limit of equipment and technology. For this reason,
we discuss the effect of errors on stability in this note.
Meanwhile, we also discuss impulsive synchronization of two
memristor based chaotic systems. Compared with the results
shown in [23], our methods are more general and more
applicable. Finally, we give some numerical examples which
show the effectiveness of our methods.
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2. Memristor Based Chaotic Circuit and
Its Equivalent Form

The equations for the memristor based chaotic circuit pre-
sented in [22] are described by

𝑑V1 (𝑡)𝑑𝑡 = 1
𝐶1 (

V2 (𝑡) − V1 (𝑡)𝑅 − 𝑖 (𝑡)) ,
𝑑V2 (𝑡)𝑑𝑡 = 1

𝐶2 (
V1 (𝑡) − V2 (𝑡)𝑅 − 𝑖𝐿 (𝑡)) ,

𝑑𝑖𝐿 (𝑡)𝑑𝑡 = V2 (𝑡)𝐿 ,
𝑑𝜙 (𝑡)
𝑑𝑡 = V1 (𝑡) ,

(1)

where

𝑖 (𝑡) = 𝑊 (𝜙 (𝑡)) V1 (𝑡) = 𝑑𝑞𝑑𝜙V1 (𝑡) . (2)

The author of [22] chose a cubic nonlinearity for the 𝑞-𝜙
function:

𝑞 (𝜙) = 𝛼𝜙 + 𝛽𝜙3 (3)

and so the memductance function𝑊(𝜙) is given by

𝑊(𝜙) = 𝑑𝑞𝑑𝜙 = 𝛼 + 3𝛽𝜙2. (4)

We choose the system parameters as

𝛼 = −0.663 ⋅ 10−3,
𝛽 = 0.004 ⋅ 10−3,
𝑅 = 2 kΩ,
𝐿 = 15.8H,
𝐶1 = 6.1 𝜇F,
𝐶2 = 71 𝜇F,

(5)

which make system (1) chaotic [22, 23]. Figure 1 shows the
chaotic phenomenon of this system with the initial condition(V1(0), V2(0), 𝑖𝐿(0), 𝜙(0))𝑇 = (0.1302, 0.0924, 0.0078, 0.1253)𝑇.

In the sequel, wemainly adopt the notation and terminol-
ogy in [23]. To analyze the asymptotic stabilization of system
(1), we let

𝑥1 = V1,
𝑥2 = V2,

𝑥3 = 𝑖𝐿,
𝑥4 = 𝜙,
𝑎1 = 1

𝐶1 ,
𝑎2 = 1

𝐶2 ,
𝑎3 = 1

𝑅,
𝑎4 = 1𝐿 .

(6)

Then the memristor based chaotic circuit (1) can be rewritten
as

𝑑𝑥1𝑑𝑡 = 𝑎1 (𝑎3 (𝑥2 − 𝑥1) − 𝑊(𝑥4) 𝑥1) ,
𝑑𝑥2𝑑𝑡 = 𝑎2 (𝑎3 (𝑥1 − 𝑥2) − 𝑥3) ,
𝑑𝑥3𝑑𝑡 = 𝑎4𝑥2,
𝑑𝑥4𝑑𝑡 = 𝑥1,

(7)

which is equivalent to

𝑑𝑥1𝑑𝑡 = 𝑎1 (𝑎3 (𝑥2 − 𝑥1) − 𝛼𝑥1 − 3𝛽𝑥1𝑥24) ,
𝑑𝑥2𝑑𝑡 = 𝑎2 (𝑎3 (𝑥1 − 𝑥2) − 𝑥3) ,
𝑑𝑥3𝑑𝑡 = 𝑎4𝑥2,
𝑑𝑥4𝑑𝑡 = 𝑥1.

(8)

By decomposing the linear and nonlinear parts of the mem-
ristor based chaotic circuit system in (8), we can rewrite it as

𝑋̇ = 𝐴𝑋 + 𝜓 (𝑋) , (9)

where

𝑋 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]𝑇 ,
𝜓 (𝑋) = [−3𝑎1𝛽𝑥1𝑥24, 0, 0, 0]𝑇 ,

𝐴 =
[[[[[
[

−𝑎1 (𝛼 + 𝑎3) 𝑎1𝑎3 0 0
𝑎2𝑎3 −𝑎2𝑎3 −𝑎2 0
0 𝑎4 0 0
1 0 0 0

]]]]]
]
.

(10)
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Figure 1: The state trajectory of the memristor based chaotic circuit shown in (1).

The impulsively controlledmemristor based chaotic circuit is
given by

𝑋̇ = 𝐴𝑋 + 𝜓 (𝑋) , 𝑡 ̸= 𝜏𝑘,
Δ𝑋 = 𝐵𝑋, 𝑡 = 𝜏𝑘, 𝑘 = 1, 2, . . . , (11)

where 𝜏𝑘 denote the moments when impulsive control occurs
and 𝐵 ∈ 𝑅𝑛×𝑛 is impulsive control gain. Without loss of
generality, we assume that 𝑡0 < 𝜏1 < 𝜏2 < ⋅ ⋅ ⋅ , lim𝑘→∞𝜏𝑘 =∞.

3. Impulsive Control of the Memristor Based
Chaotic Circuit Shown by Muthuswamy

In this section, we design impulsive control for thememristor
based chaotic circuit shown by Muthuswamy.

Theorem 1. Let 𝜆1 be the largest eigenvalue of (𝐼 + 𝐵)𝑇(𝐼 + 𝐵)
and suppose that 𝜆2 is the largest eigenvalues of 𝐴 + 𝐴𝑇. Then
the origin of impulsive control system (11) is asymptotically
stable if

𝜆2 (𝜏𝑘+1 − 𝜏𝑘) ≤ −ln (𝛾𝜆1) , 𝛾 > 1. (12)

Proof. Let us construct the following Lyapunov function:

𝑉 (𝑡, 𝑋) = 𝑋𝑇𝑋. (13)

It is easy to verify that conditions 1 and 4 ofTheorem 3.1.3 in
[11] are satisfied. When 𝑡 ̸= 𝜏𝑘, we have

𝐷+𝑉 (𝑡, 𝑋) = 𝑋𝑇 (𝐴 + 𝐴𝑇)𝑋 + 2𝑋𝑇𝜓 (𝑋)
= 𝑋𝑇 (𝐴 + 𝐴𝑇)𝑋 − 6𝑎1𝛽𝑥21𝑥24
≤ 𝑋𝑇 (𝐴 + 𝐴𝑇)𝑋 ≤ 𝜆2𝑋𝑇𝑋.

(14)

Hence, condition 2 of Theorem 3.1.3 in [11] is satisfied with

𝑔 (𝑡, 𝜔) = (𝜆2 − 2𝑎1𝛼)𝜔. (15)

From the fact that

‖𝑋 + 𝑈 (𝑘,𝑋)‖ = ‖𝑋 + 𝐵𝑋‖ ≤ ‖𝐼 + 𝐵‖ ‖𝑋‖ (16)
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and ‖𝐼 + 𝐵‖ is finite, we know that there exists a 𝜌0 > 0 such
that 𝑋 ∈ 𝑆𝜌0 , which implies that 𝑋 + 𝑈(𝑘,𝑋) ∈ 𝑆𝜌 for all 𝑘.
When 𝑡 = 𝜏𝑘, we have

𝐷+𝑉 (𝜏𝑘, 𝑋 + 𝐵𝑋) = (𝑋 + 𝐵𝑋)𝑇 (𝑋 + 𝐵𝑋)
= 𝑋𝑇 (𝐼 + 𝐵)𝑇 (𝐼 + 𝐵)𝑋
≤ 𝜆1𝑋𝑇𝑋.

(17)

Hence, condition 3 of Theorem 3.1.3 in [11] is satisfied with

𝜒𝑘 (𝜔) = 𝜆1𝜔. (18)

It follows from Theorem 3.1.3 in [11] that the asymptotic
stability of the impulsive control system (11) is implied by that
of the following comparison system:

𝜔̇ (𝑡) = (𝜆2 − 2𝑎1𝛼)𝜔, 𝑡 ̸= 𝜏𝑘,
𝜔 (𝜏+𝑘 ) = 𝜆1𝜔 (𝜏𝑘) ,
𝜔 (𝜏+0 ) = 𝜔0 ≥ 0.

(19)

It follows fromTheorem 3.1.4 in [11] that if

(𝜆2 − 2𝑎1𝛼) (𝜏𝑘+1 − 𝜏𝑘) ≤ − ln (𝛾𝜆1) , 𝛾 > 1, (20)

is satisfied, then the origin of (11) is asymptotically stable.This
completes the proof.

Remark 2. Let

𝐴 =
[[[[[
[

−𝑎1𝑎3 𝑎1𝑎3 0 0
𝑎2𝑎3 −𝑎2𝑎3 −𝑎2 0
0 𝑎4 0 0
1 0 0 0

]]]]]
]

(21)

and suppose that 𝜆̃2 is the largest eigenvalues of 𝐴 + 𝐴𝑇.
Yang et al. showed in [23] that the origin of impulsive control
system (11) is asymptotically stable if

(𝜆̃2 + 2√sup {𝑎21𝑊2 (𝑥4)}) (𝜏𝑘+1 − 𝜏𝑘) ≤ − ln (𝛾𝜆1) ,
𝛾 > 1.

(22)

Since

𝜆2 = 𝜆max (𝐴 + 𝐴𝑇)
= 𝜆max (𝐴 + 𝐴𝑇 + 2 diag (−𝑎1𝛼, 0, 0, 0))
≤ 𝜆max (𝐴 + 𝐴𝑇) + 𝜆max (2 diag (−𝑎1𝛼, 0, 0, 0))
= 𝜆̃2 − 2𝑎1𝛼 ≤ 𝜆̃2 + 2√sup {𝑎21𝑊2 (𝑥4)},

(23)

our result is less conservative than Theorem 1 of [23].
Meanwhile, our method is also simpler than Theorem 1 of
[23], because we do not need to calculate the supremum of|𝑊(𝑥4)|.

In many practical applications, we cannot guarantee the
impulses without any error due to the limit of equipment
and technology. So we should take into account the influence
of impulsive control gain errors on the systems. Motivated
by the above discussions, we will study the stabilization of
system (11) with bounded impulsive control gain error. The
corresponding system can be described as

𝑋̇ = 𝐴𝑋 + 𝜓 (𝑋) , 𝑡 ̸= 𝜏𝑘,
Δ𝑋 = (𝐵 + Δ𝐵)𝑋, 𝑡 = 𝜏𝑘, 𝑘 = 1, 2, . . . , (24)

where Δ𝐵 is gain error, which is often time-varying and
bounded. As pointed out in [21, 24], we can assume thatΔ𝐵 = 𝑚𝐹(𝑡)𝐵, 𝑚 ≥ 0, and 𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼.
Theorem 3. Let 𝜆1 be the largest eigenvalue of

(1 + 𝜀) (𝐼 + 𝐵 + 𝐵𝑇) + (1 + 𝜀 + 𝑚2 (1 + 1𝜀 ))𝐵𝑇𝐵, (25)

where 𝜀 > 0 and suppose that 𝜆2 is the largest eigenvalues of𝐴 + 𝐴𝑇. Then the origin of impulsive control system (24) is
asymptotically stable if

𝜆2 (𝜏𝑘+1 − 𝜏𝑘) ≤ − ln (𝛾𝜆1) , 𝛾 > 1. (26)

Proof. Let us construct the following Lyapunov function:

𝑉 (𝑡, 𝑋) = 𝑋𝑇𝑋. (27)

When 𝑡 = 𝜏𝑘, we have
𝐷+𝑉 (𝜏𝑘, 𝑋 + 𝐵𝑋) = 𝑋𝑇 (𝐶 + Δ𝐵)𝑇 (𝐶 + Δ𝐵)𝑋
≤ 𝑋𝑇 ((1 + 𝜀) 𝐶𝑇𝐶 + (1 + 1𝜀 ) (Δ𝐵)𝑇 Δ𝐵)𝑋
≤ 𝑋𝑇 ((1 + 𝜀) 𝐶𝑇𝐶 + 𝑚2 (1 + 1𝜀 ) 𝐵𝑇𝐵)𝑋
≤ 𝜆1𝑋𝑇𝑋𝑇,

(28)

where 𝐶 = 𝐼 + 𝐵. The rest of proof is the same as that of
Theorem 1, so we omit it here for simplicity. This completes
the proof.

In many practical applications, the parameters 𝑎1 =1/𝐶1, 𝑎2 = 1/𝐶2, 𝑎3 = 1/𝑅, and 𝑎4 = 1/𝐿 may also contain
errors. In what follows, we will consider system (24) with
parameter uncertainty. The corresponding system can be
described as

𝑋̇ = (𝐴 + Δ𝐴)𝑋 + 𝜓 (𝑋) , 𝑡 ̸= 𝜏𝑘,
Δ𝑋 = (𝐵 + Δ𝐵)𝑋, 𝑡 = 𝜏𝑘, 𝑘 = 1, 2, . . . , (29)
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whereΔ𝐴 is the parametric uncertainty and has the following
form: Δ𝐴 = 𝜇𝐺(𝑡)𝐴, 𝐺(𝑡)𝐺𝑇(𝑡) ≤ 𝐼, 𝜇 ≥ 0.
Theorem 4. Let 𝜆1 be the largest eigenvalue of

(1 + 𝜀) (𝐼 + 𝐵 + 𝐵𝑇) + (1 + 𝜀 + 𝑚2 (1 + 1𝜀 ))𝐵𝑇𝐵, (30)

where 𝜀 > 0 and suppose that 𝜆2 is the largest eigenvalues of(𝐴 + 𝐴𝑇) + 𝜇(𝐴𝑇𝐴 + 𝐼). Then the origin of impulsive control
system (29) is asymptotically stable if

𝜆2 (𝜏𝑘+1 − 𝜏𝑘) ≤ − ln (𝛾𝜆1) , 𝛾 > 1. (31)

Proof. Let us construct the following Lyapunov function:

𝑉 (𝑡, 𝑋) = 𝑋𝑇𝑋. (32)

When 𝑡 ̸= 𝜏𝑘, we have
𝐷+𝑉 (𝑡, 𝑋) = 𝑋𝑇 (𝐶 + 𝐶𝑇)𝑋 − 6𝑎1𝛽𝑥21𝑥24

≤ 𝑋𝑇 (𝐶 + 𝐶𝑇)𝑋
≤ 𝑋𝑇 ((𝐴 + 𝐴𝑇) + 𝑚 (𝐴𝑇𝐴 + 𝐼))𝑋
≤ 𝜆2𝑋𝑇𝑋,

(33)

where 𝐶 = 𝐴 + Δ𝐴. The rest of proof is the same as that of
Theorem 1, so we omit it here for simplicity. This completes
the proof.

4. Impulsive Synchronization of
the Memristor Based Chaotic Circuit
Shown by Muthuswamy

In this section, we investigate impulsive synchronization of
two memristor based chaotic circuits. Equation (9) is the
driving system and the driven system is defined as

𝑌̇ = 𝐴𝑌 + 𝜓 (𝑌) , 𝑡 ̸= 𝜏𝑘,
Δ𝑌 = −𝐵𝑒, 𝑡 = 𝜏𝑘, 𝑘 = 1, 2, . . . , (34)

where 𝐵 ∈ 𝑅𝑛×𝑛 is impulsive control gain and 𝑒𝑇 = (𝑒1, 𝑒2,𝑒3, 𝑒4) = (𝑥1−𝑦1, 𝑥2−𝑦2, 𝑥3−𝑦3, 𝑥4−𝑦4) is the synchronization
error.Then the error system of the impulsive synchronization
is given by

̇𝑒 = 𝐴𝑒 + 𝜙 (𝑋) − 𝜙 (𝑌) , 𝑡 ̸= 𝜏𝑘,
Δ𝑒 = 𝐵𝑒, 𝑡 = 𝜏𝑘, 𝑘 = 1, 2, . . . . (35)

Note that

𝜙 (𝑋) − 𝜙 (𝑌) = −3𝑎1𝛽 [𝑥1𝑥24 − 𝑦1𝑦24 , 0, 0, 0]𝑇
= −3𝑎1𝛽𝑁 (𝑋, 𝑌) 𝑒,

(36)

where

𝑁(𝑋, 𝑌) =
[[[[[
[

𝑥24 0 0 𝑦1 (𝑥4 + 𝑦4)
0 0 0 0
0 0 0 0
0 0 0 0

]]]]]
]
. (37)

The eigenvalues of𝑁(𝑋, 𝑌) + 𝑁𝑇(𝑋, 𝑌) are
𝜇1 = 𝜇2 = 0,
𝜇3 = 𝑥24 − √𝑥44 + 𝑦21 (𝑥4 + 𝑦4)2 ≤ 0,
𝜇4 = 𝑥24 + √𝑥44 + 𝑦21 (𝑥4 + 𝑦4)2 ≥ 0.

(38)

From Figure 1, we know that the state variable of (11) is
bounded and suppose that |𝑥1| ≤ 𝑀1, |𝑥4| ≤ 𝑀4.
Theorem 5. Let 𝜆1 be the largest eigenvalue of (𝐼 + 𝐵)𝑇(𝐼 +𝐵) and suppose that 𝜆2 is the largest eigenvalues of 𝐴 + 𝐴𝑇.
Then the origin of impulsive synchronization error system (35)
is asymptotically stable if

(𝜆2 + 6𝑎1𝛽𝑀1𝑀4) (𝜏𝑘+1 − 𝜏𝑘) ≤ − ln (𝛾𝜆1) , 𝛾 > 1. (39)

Proof. Let us construct the following Lyapunov function:

𝑉 (𝑡, 𝑒) = 𝑒𝑇𝑒. (40)

When 𝑡 ̸= 𝜏𝑘, we have
𝐷+𝑉 (𝑡, 𝑒)
= 𝑒𝑇 (𝐴 + 𝐴𝑇) 𝑒
− 3𝑎1𝛽𝑒𝑇 (𝑁 (𝑋, 𝑌) + 𝑁𝑇 (𝑋, 𝑌)) 𝑒

≤ 𝜆2𝑒𝑇𝑒 − 3𝑎1𝛽𝑒𝑇 (𝑁 (𝑋, 𝑌) + 𝑁𝑇 (𝑋, 𝑌)) 𝑒
≤ 𝜆2𝑒𝑇𝑒 − 3𝑎1𝛽(𝑥24 − √𝑥44 + 𝑦21 (𝑥4 + 𝑦4)2) 𝑒𝑇𝑒
= (𝜆2 + 3𝑎1𝛽(√𝑥44 + 𝑦21 (𝑥4 + 𝑦4)2 − 𝑥24)) 𝑒𝑇𝑒
≤ (𝜆2 + 3𝑎1𝛽 󵄨󵄨󵄨󵄨𝑦1󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑥4 + 𝑦4󵄨󵄨󵄨󵄨) 𝑒𝑇𝑒
≤ (𝜆2 + 6𝑎1𝛽𝑀1𝑀4) 𝑒𝑇𝑒.

(41)

The rest of proof is the same as that of Theorem 1, which is
omitted here for simplicity. This completes the proof.

5. Numerical Examples

In this section, some numerical examples are given to
illustrate the effectiveness of our results.The initial condition
of the system (11) is𝑋(0) = (0.1302, 0.0924, 0.0078, 0.1253)𝑇.
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Figure 2: The state trajectory of the controlled memristor based chaotic circuit.

Example 1. It is easy to see that

𝐴 =
[[[[[
[

26.7213 81.9672 0 0
7.0423 −7.0423 −14084.5070 0
0 0.0633 0 0
1 0 0 0

]]]]]
]

(42)

and 𝜆2 = 14077.6856. In this example, we choose the impul-
sive control gain matrix 𝐵 as

𝐵 =
[[[[[
[

−0.8000 0 0 0
0 −0.8000 0 0
0 0 −0.8000 0
0 0 0 −0.8000

]]]]]
]
. (43)

Then, we have 𝜆1 = 0.0400. By Theorem 1, we know that if

𝜏𝑘+1 − 𝜏𝑘 ≤ − ln (0.0400𝛾)14077.6856 , 𝛾 > 1, (44)

holds, then origin of impulsive control system (11) is asymp-
totically stable. To do this, we choose 𝛾 = 1.0001; then we
have

𝜏𝑘+1 − 𝜏𝑘 ≤ 0.00022. (45)

The simulation results with 𝜏𝑘+1 − 𝜏𝑘 = 0.0002 are shown in
Figure 2.

Example 2. In this example, the coefficient matrix 𝐴 and the
impulsive control gain matrix 𝐵 are the same as Example 1.
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Figure 3: The state trajectory of the controlled memristor based chaotic circuit.

Suppose that Δ𝐵 = 0.05 sin 𝑡𝐵. Then, we have 𝑚 = 0.05. By
Theorem 3, we know that if

𝜏𝑘+1 − 𝜏𝑘 ≤ − ln (𝛾𝜆1)14077.6856 , 𝛾 > 1, (46)

holds, then origin of impulsive control system (24) is asymp-
totically stable. To do this, we choose 𝛾 = 1.0001, 𝜀 = 0.2100;
then we have 𝜆1 = 0.0576 and so

𝜏𝑘+1 − 𝜏𝑘 ≤ 0.00020. (47)

The simulation results with 𝜏𝑘+1 − 𝜏𝑘 = 0.00020 are shown in
Figure 3.

Example 3. In this example, thematrices𝐴, 𝐵, andΔ𝐵 are the
same as Example 2. For the sake of simplicity, Δ𝐴 is specified
as

Δ𝐴 = 5 × 10−6 cos 𝑡𝐴. (48)

Then, we have 𝜇 = 0.05. By Theorem 4, we know that if

𝜏𝑘+1 − 𝜏𝑘 ≤ − ln (𝛾𝜆1)𝜆2 , 𝛾 > 1, (49)

holds, then origin of impulsive control system (29) is asymp-
totically stable. To do this, we choose 𝛾 = 1.0001, 𝜀 = 0.2100;
then we have 𝜆1 = 0.0576, 𝜆2 = 14582.0997 and so

𝜏𝑘+1 − 𝜏𝑘 ≤ 0.00019. (50)
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Figure 4: The state trajectory of the controlled memristor based chaotic circuit.

The simulation results with 𝜏𝑘+1 − 𝜏𝑘 = 0.00019 are shown in
Figure 4.

Example 4. In this example, the matrix 𝐴 is the same as
Example 1. We choose the matrix 𝐵 as

𝐵 =
[[[[[
[

−1.5000 0 0 0
0 −1.5000 0 0
0 0 −1.5000 0
0 0 0 −1.5000

]]]]]
]
. (51)

Then, we have 𝜆1 = 0.250, 𝜆2 = 14077.6856. Meanwhile, we
know that |𝑥1| ≤ 200, |𝑥4| ≤ 10. ByTheorem 5, we know that
if

𝜏𝑘+1 − 𝜏𝑘 ≤ − ln (𝛾𝜆1)𝜆2 + 6𝑎1𝛽𝑀1𝑀4 , 𝛾 > 1, (52)

holds, then the origin of impulsive synchronization error
system (35) is asymptotically stable. To do this, we choose𝛾 = 1.0001 and so

𝜏𝑘+1 − 𝜏𝑘 ≤ 0.00006. (53)

The initial condition of the driving system (9) is also 𝑋(0) =(0.1302, 0.0924, 0.0078, 0.1253)𝑇 and the initial condition of
the driven system (35) is 𝑌(0) = (0.3922, 0.6787, 0.7577,0.7431)𝑇. The simulation results with 𝜏𝑘+1 − 𝜏𝑘 = 0.00006 are
shown in Figure 5.

6. Conclusion

In this note, we discuss impulsive control and synchro-
nization of memristor based chaotic circuits shown by
Muthuswamy [22]. Our first result is less conservative than
Theorem 1 of [23]. Meanwhile, we also discuss the effect of
errors on stability, so our results are more general and more
applicable than the ones shown in [23].
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Figure 5: Simulation results of synchronization errors.
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