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Early detection of Lobesia botrana is a primary issue for a proper control of this insect considered as the major pest in grapevine. In
this article, we propose a novel method for L. botrana recognition using image data mining based on clustering segmentation with
descriptors which consider gray scale values and gradient in each segment. This system allows a 95 percent of L. botrana recognition
in non-fully controlled lighting, zoom, and orientation environments. Our image capture application is currently implemented in

a mobile application and subsequent segmentation processing is done in the cloud.

1. Introduction

The grapevine moth or Lobesia botrana (Lepidoptera: Tor-
tricidae) is an invasive insect species considered as one of
the most damaging pests in vineyards (Vitis vinifera L.) [1].
Vineyards damage is caused by direct larval feeding inside
grape berries, producing rot and dehydration, inducing low-
ers productive yields and increasing the susceptible to other
diseases such as gray and black mold (Botrytis cinerea and
Aspergillus niger) [2, 3]. The L. botrana is widely distributed
in Europe and is considered as a major grapevine pest since
the twentieth century. In South America, L. botrana was first
detected in Chile, in the area of Linderos, metropolitan region
in April, 2008 [4]. Today, L. botrana is spread to all grape
growing regions of Chile.

L. botrana management has become particularly relevant
in Chile due to the potential economical impact as the main
grape exporter worldwide. The moth control is performed
using traps containing pheromones which attracts the moth
males [5]. These traps are located on vineyards within an area
formed of radius of 500 meters from a detected outbreak [6].
Currently, there are about 33.000 traps distributed through-
out Chile for the specific control of L. botrana. To calibrate
and verify moth growth models, in order to take measures

focused on the vineyards with outbreaks, it is needed to have
information on the number of moths caught in each trap,
in different time windows. However, the collection of this
information is done manually, making the system costly in
terms of time and not allowing to perform real-time actions
on these vineyards. Therefore, it is needed to have a control
system for automatically detection of L. botrana, to estimate
the real number of the moths and to store the information
associated with each trap for epidemiological studies. Given
the number of traps and images captured, the system must
have the ability to recognize specimens of L. botrana in
large volumes of images. Additionally, because the jobs are
executed in a specific period of the day, it is useful to manage
the computing capacity according to demand.

One of the most satisfactory image recognition systems
rely on binary classification using a sliding window approach.
However, the sliding window approach strongly increases
the computational cost, because the classifier function has
to be evaluated over a large set of candidate subwindows
[7]. Considering the need for massive image processing
for the recognition of L. botrana specimens, this article
proposes a novel method through a mobile application that
captures images using a cell phone camera, together with
an algorithm based on image segmentation, which performs
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fast and automatic recognition of L. botrana specimens. The
algorithm is based on using the k-means clustering technique
together with gray scale and gradient descriptors to perform
the classification [8]. Because the normal operation of the
L. botrana recognition system may need to process over
30,000 images per day, a distributed version of the algorithm
was implemented using Apache Spark as a distribution
framework.

Experiments were performed where a version of the
algorithm was evaluated using sliding window with the
version that uses segmentation. The experiments evaluate the
quality of the recognition and the execution times of both
algorithms. For the algorithm that uses segmentation, we also
evaluated the scalability of the distributed version. The results
show that the segmentation algorithm has improvements to
the execution time and the quality of the recognition with
respect to the one that uses sliding window. The remainder
of this paper is organized as follows. In Section 2 we present
related work in agriculture and segmentation. The application
that captures the images and stores them in the database is
described in Section 3. A brief description of the distribution
framework is done in Section 4. Section 5 describes the details
of the segmentation algorithm together with its distributed
version. Finally results and conclusions are described in
Sections 6 and 7.

2. Related Work

2.1. Computer Vision in Agriculture. Computer vision has
been used in agriculture and food processing over the last
decades, with the aim to automate a variety of processes such
us quality inspection, classification, and sorting of products
[9]. The idea was to replace traditional manual operations
that are labor intensive, slow, and prone to human error
[10]. Despite the significant advances over the past decade,
the creation of new algorithms, new paradigms, and new
challenges to processing big complexity data allows applying
computer vision research in real world problems, with a
particular focus in agriculture [11-14].

One of these challenges is the application of image
segmentation techniques, which separates the product region
from background in image processing. It is one of the first
steps in image analysis after the image capture to subdivide
an image into meaningful regions. The segmentation result
affects the subsequent image analysis. Image segmentation
techniques in agriculture have been applied to the estimation
of product size [15], shape [16], sorting [17], weed detection
for site-specific treatment [18], and ground classification [19].

Another important area of research in the field of com-
puter vision and agriculture has been the application of
deep learning techniques [20-22]. This machine learning
technique is based on the concept of neural networks and
convolution to learn image features automatically by repeated
training, error propagation, and incremental learning [20,
23-25]. Some deep learning architectures have been tested
to identify moths and other insect pictures using images
obtained mainly in laboratory conditions with great success
[26-30].
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2.2. Segmentation Techniques. In the next section we present
the main image segmentation techniques currently being
used.

(1) Edge Based Image Segmentation. Edge detection includes a
variety of mathematical methods that is aimed at identifying
points in a image at which the brightness changes sharply or
has discontinuities. Using spectral methods and watershed
morphological algorithms in [31], a segmentation framework
based on edge detection was proposed. In [32] an edge
detection based on illumination invariant feature detector
phase congruency was proposed. The authors show that use of
phase congruency for marking features has significant advan-
tages over gradient-based methods. In [33] an edge based
auto threshold select method to generate multiscale image
segmentation was proposed. Band weight and Normalized
Difference Vegetation Index (NDVI) are used to calculate
edge weight.

(2) Threshold-Based Image Segmentation. In classical thresh-
old image segmentation, an image is usually segmented
and simply sorted to object and background by setting a
threshold. But if there is complex information in the image,
the threshold is not simple to obtain. An important line of
research in threshold-based image segmentation has been
to design algorithms that allow obtaining the optimum
threshold. For example, in [34] a method to detect threshold
based on entropy and applied to images in scale of grays
was developed. Histograms were used in [35] to address the
automatic detection of a threshold. In [36] a threshold-based
level set approach including threshold-based segmentation
and fast marching method was proposed. It was applied
to medical image segmentation. In [37] they presented a
new threshold segmentation method based on computational
intelligence to improve the acquisition of images process in
computer vision.

(3) Partial Differential Equation Based Image Segmentation.
One way to perform segmentation is to detect the contours
of the objects lying in the original image. The main idea
of the PDE model is to translate the problem of segment
objects into minimizing an energy function of a close curve.
In literature there are numerous examples that apply PDE to
segmentation. In [38] a variation model is presented using
4th-order PDE with 2nd-order PDE for the removal of finger
vein image. In [39] a new segmentation model was used based
on the geodesic contour model applied to color images. A new
nonlinear partial differential equation (PDE) applied to gray
images was proposed by [40].

3. Image Capture Application

A mobile and web application was developed in order to
capture images and report relevant information to users.
Figures 1 and 2 show screen shots for the mobile and web
application. The mobile application is a native Android app.
Images where taken on-field where traps hang, recording GPS
position and date time of the capture. The image is then
uploaded via cellular network (or Wi-Fi if available) to a
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FIGURE 2: Web application.

cloud server to be processed. After processing, the image is
displayed at the web application to an expert entomologist in
order to asses the moth count and take action based on the
pest situation for that specific place.

Figure 3 depicts the steps for capturing a trap image. First
the trap must be opened and the sticky grid side must be
placed facing forward to the capturing device. This device
can be a cellular phone with a camera or a regular digital
camera. Some traps have a triangular shape (delta traps) or a
box shape. For some traps its sticky side has no grid, as shown
in the example picture in Figure 3.

During September 2016 until February 2017, 50 traps
where deployed between V, VI, VII, and metropolitan
regions. A total of 26 users generated more than 400 on-field
images. Figure 4 shows trap locations across V, VI, VII, and

metropolitan regions. These traps were visited regularly once
a week and a picture was obtained each time. Figure 5 shows
example of images obtained on-field using the developed
mobile application.

4, Spark Distributed Framework

This section describes the main concepts of the distributed
Spark framework. This framework will be used in Section 5.4
for the distributed version implementation of the segmenta-
tion algorithm. Distributed implementation aims to address
the problem of large volumes of images.

In recent years the amount of available data has increased
significantly [41]. This is mainly due to the simple and
inexpensive storage process. However, this amount of data is
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useless without an adequate process of extraction of knowl-
edge where we use machine learning methods. This volume,
diversity, and complexity [42] of the data brings challenges
to researchers, because traditional machine learning methods
can not deal with this situation. Cloud-based technologies
provide an ideal environment to handle the data challenge.
A pioneer in addressing this problematic of massive and
complex data was the MapReduce Framework [43]. This

framework is based on the principle of locality of the
data [44] which is implemented in a distributed filesystem.
However, MapReduce is insufficient for applications that
need to share data through multiple steps, or for iterative
algorithms [45]. Many platforms for large-scale processing
have recently emerged to overcome the issues presented by
Hadoop MapReduce. Among them, Spark [46] appears as
one of the most flexible and powerful engines to perform
faster distributed computing in big data by using in-memory
primitives.

Spark is a state of the art framework for high performance
parallel computing designed to deal with iterative procedures
that recursively perform operations over the same data.
This has been used in machine learning algorithms [47],
imaging processing [48], bioinformatics [49], computational
intelligence [50], astronomy [51], medical information [52],
and so on.

Spark was born as an in-memory cluster computing
framework for processing and analyzing large amounts of
data. It provides a simple programming interface, which
enables an application developer to easily use the CPU,
memory, and storage resources across a cluster of servers for
processing large datasets in memory [46].

Spark has been positioned quickly as a general pur-
pose platform. It provides a unified integrated platform
for different types of data processing jobs. It can be used
for batch processing, iterative process, interactive analysis,
stream processing, machine learning, and graph computing.

Resilient Distributed Datasets (RDDs) are the core data
units in Spark. These units are distributed and immutable;
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FIGURE 5: Captures images examples.

that is, the transformation of RDDs is RDDs and fault-
tolerant memory abstraction. There are two types of opera-
tions: transformations, which take RDDs and produce RDDs,
and actions, which take RDDs and produce values. Various
cluster management options can be used for run Spark,
from simple Spark’s standalone solutions, Apache Mesos, and
Hadoop YARN [53].

Considering engineering applications we choose to use
the Hadoop YARN management. Hadoop YARN, most recent
implementation, uses cloud computing [54] which makes
hundreds of machines provide services such as computing
and storage on demand. Generally in-house implementations
require large investments in hardware, software, and mainte-
nance [54].

5. Algorithm

This section aims to describe the segmentation algorithm.
First, a general description will be presented and then detailed
by modules. The last section contains the distributed version
of the algorithm.

Figure 6 shows the flowchart that allows constructing
the classifier for L. botrana moths. As a dataset we consider
360 images obtained through the application described at
Section 3. The 360 images correspond to three groups of 120
images each with resolutions 1280 x 720, 1920 x 1080, and
2048 x 1536. 100 images are left to perform validation. For
each one of the images a preprocessing, then a segmentation,
and finally the generation of the descriptors that allow
performing the training for the SVM classifier are applied. For
the classifier training, a set of 5018 segments without moths
and 2136 segments with moths were selected.

Additionally with the goal of evaluating the segmentation
algorithm with respect to the recognition of L. Botrana
we compared the performance to different elements usually
glued on the sticky floor of the trap like other insects, leaf
pieces, and equipment used in the trap. With this purpose, we
analyzed 5018 segments without moths and a subset of 1325
segments containing elements other than the bottom of the
trap were extracted.

5.1. Preprocessing Stage. As the first activity of the prepro-
cessing stage, a Median Filter is used with the intention of
removing particles of dust and brightness that appear at the
photographs. An example is shown in Figure 7. The filter used
was a 4 X 4 matrix where each pixel has the same weight.
Subsequently an equalization is applied using the Con-
trast Limited Adaptive Histogram Equalization (CLAHE)
algorithm. This algorithm uses histograms computed over
different tile regions of the image. Local details can therefore
be enhanced even in regions that are darker or lighter than
most of the image. Then we apply 3 scaling ratios to the
image: 0.75, 0.5, and 0.25. These scaling steps aim to consider
that photographs can be taken at different distances from
the cell phone. To perform the scaling, nearest-neighbor
interpolation was used. Finally a gray scale conversion was
executed. This conversion uses the ratio 0.3R + 0.6G + 0.1B.

5.2. K-Means Segmentation Algorithm. The main objective of
the project is to recognize L. botrana moths. A fundamental
stage corresponds to the segmentation of moths. To perform
the segmentation, each color image is scaled at 0.75, 0.50,
and 0.25 and K-means clustering technique is applied to each
image. In the definition of metric space to be able to apply
K-means, the pixel distance shown in (1) and color distance
shown in (2) are used. To achieve the proper segmentation a
trade-oft between pixel distance and color distance is realized.
This trade-oft is defined in (3). This type of segmentation has
previously been used by [55] in benchmark datasets and in
biomedical applications:

dyy = \/(ix - iy)2 + (i~ jy)Z’ M
G = \(L-L,) + (e -a,) 4 (b-b)s @

D, = \/(alm,)2 ¥ (%)2 ()", where S = J% (3)

D, corresponds to the metric used to perform the seg-
mentation and S is a normalizing factor, where N is the
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FIGURE 7: (b) The original image, where powder can interfere with the histogram. (a) The processed image with equalization and median

filter applied; the dust particles disappear.

number of pixels and K is the number of segments. The
parameter m allows handling the weighting between the
spatial distance and the colors distance. In Figure 8 it is
possible to observe two segmentations. Figure 8(a) uses K =
500 and Figure 8(b) uses K = 1000.

5.3. Descriptors and SVM Classifier. After segmentation was
performed, the next step is to differentiate the segments
containing moths from those that do not include moths.
To achieve this classification, gray scale segments are used.
For each segment two descriptors are defined. The first
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FIGURE 8: (a) corresponds to a segmentation considering 500 segments. (b) corresponds to segmentation considering 1000 segments.

descriptor corresponds to the histogram of the gray values
of the segment. The histogram is configured with 10 bins
and each bin is normalized with the amount of pixels that
the segment contains. This generates a 10-dimensional vector
where each dimension has values in the interval [0, 1]. A
second descriptor is obtained as a result of calculating the
histogram on the gradient modulus. This histogram is also
normalized by the total number of pixels in the segment. In
this case the number of bins used is 5. The following steps are
used to calculate the gradient modulus.

(1) Gradient Calculation. A Sobel [56] operator is used. The
complete image, I, is used to calculate each component of the
gradient in all pixels of the image:

-1 0 1
G,=1]-202|=I
-1 0 3
(4)
-1 -2 -1
G,=[0 0 0 =L
1 2 1

(2) Calculation of the Gradient Modulus. For all pixels in
image I the gradient modulus is calculated according to

G=1G2+G. (5)

(3) Histogram Calculation. The histogram of G is calculated
for each segment obtained from the K-means segmentation
process.

The last step corresponds to the training the classifier.
At training, 5018 segments are used without moths and
2136 segments with moths are considered. A K-fold cross
validation was performed with K = 5 to perform the
parameter adjustment.

5.4. Distributed Algorithm. Due to the estimated volume of
photographs that need to be processed and considering that
the process of segmentation along with the generation of
descriptors corresponds to the one who consumes the most
time, in this section we present a distributed version of the
algorithm for segmentation and generation of descriptors.
This version was designed using the Spark distributed com-
puting framework.

The algorithm can be divided into two main stages: a
segmentation stage and a descriptor generation stage. In the
segmentation stage the algorithm operates on the complete
image. The result of this stage corresponds to a list of
segments. The descriptor generation stage has as input the list
of segments and, for each one of these segments, descriptors
are calculated. The distributed algorithm will address the
distribution of calculations in the segmentation process as
well as the calculation of descriptors in the segment list.

Segmentation Stage. Let us assume that the list of images
has been read from Hadoop distributed file system (HDES),
used to store images. To perform the reading, the binaryFiles
function is used, generating the corresponding RDD files.
In addition, the list ¢ of initial centroids has been obtained,
considering an equidistant distribution for the different
centroids. The distribution process in the segmentation stage
is performed at the pixel and centroid level, where a pixel cor-
responds to the 5-dimensional distance-color vector defined
in (3). The first stage of the segmentation phase is to perform
a mapping shown in Algorithm 1. Each pixel i is mapped
to the pair (closestC, i) where closestC corresponds to the
centroid closest to pixel i. To perform this operation we use
the Spark map transformation. The second stage is to perform
a reducebykey, where the key corresponds to the centroid
closestC(see Algorithm 2). The vector sum of the pixels is
done in the 5-dimensional space, together with the count
of the pixels associated with the centroid. To perform this



(1) Input Pixel i, ListCentroids

(2) Output Pixel i, ClosestC

(3) for each cin ListCentroids do
(4) if D,(p,c) < MinDist then
(5) MinDist «— Dy(p,c)

(6)  ClosestC « ¢

(7) endif

(8) end for

(9) return (closestC, i)

ALGORITHM I: Map segmentation function.

(1) Input keyValue closestC, Pixel i
(2) Output total, count

(3) for each cin closestC do

(4) total « total +i

(5) count < count + 1

(6) end for

(7) return (total, count)

ALGORITHM 2: ReducebyKey segmentation function.

(1) Input segment s

(2) Output segment s, descriptor d
d « getDescriptor(s)

(3) return (s, d)

ALGORITHM 3: Map descriptor function.

operation, consider the reducebykey action. Finally the value
of the new centroid is updated.

Descriptor Generation Stage. This stage aims to perform the
calculation of the descriptors that allows classification. At
this stage the image is distributed at the segment level. To
perform the distribution a map function is used that maps the
segment to the pair (segment, descriptor). Each map involves
the calculation on a segment (see Algorithm 3).

6. Results

6.1. Parameters Setting. Considering that each algorithm
involved requires parametrization, in order to find the best
parameters, it was considered to perform a k-fold cross
validation for each of the combinations shown at the Range
column in Table 1. In the cross validation, K = 5 was con-
sidered. As a measure of the best configuration, F,-score =
2((precision * recall) /(precision+recall)) was used. In Table 1,
final column shows the selected value for the configuration
that yields the best accuracy.

In order to have a better clarity of the effect of the seg-
mentation on the classification, the parameter NumSegment
was studied. In order to perform this study, an experiment
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TABLE 1: Segmentation algorithm setting parameters.

Parameters Description Range Final
GridSize CLAHE grid size  [8x8,16x16,32x32] 16 x 16
clipLimit Clipping limit 2,3, 4] 3
histogram
Me.dlan Filter Medlum.ﬁlter grid [4x45%x56x6 4x4
Grid size
Number of image
NumSegment ~ S¢8ments for [500,1000,1500] 1000
segmentation
algorithm
Distance-color
m e oft [10,15,20] 15
Penalty parameter C
C SUM [0.1,1,10] 1
0.96 | ’
3
2094
2
=
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&
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1 — specificity (FPR)
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FIGURE 9: Sensitivity-specificity number segment evaluation.

was defined in which the remaining parameters are fixed
considering the value of the final column and K-fold cross
validation is performed with K = 5 considering the values
500, 1000, and 1500 in the parameter NumSegment. For each
cross validation result, the True Positive Rate (TPR) and
the False Positive Rate (FPR) were calculated. The result of
the experiment is shown in Figure 9. It is observed that
NumSegment = 1000, represented in blue color, corresponds
to the best result, for the case NumSegment = 500 has a worse
TPR performance and NumSegment = 1500 has a lower
performance for FPR.

6.2. Descriptors Setting. As described at Section 5.3 a descrip-
tor was used that combines a normalized histogram of
gray scale with a normalized histogram using the gradient
modulus. Equation (6) was used in order to determine the
number of bins that best differentiates moth segments from
those that do not contain moths

Histogram Measure = Zabs (H; (L) - H;(WL)). (6)

i=1
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L corresponds to the normalized average histogram of the
segments with L. botrana and WL to the normalized average
histogram of the segments without L. botrana. H; corre-
sponds to the function that returns the bin i of a histogram.
For each bin, the value obtained from the L. botrana segments
is subtracted to the value of segments without L. botrana.
Then the modulus function and the sum on 7 bins are applied.
The more alike the histograms are, the closer the Histogram
Measure value is to 0; in our case we seek to maximize the
Histogram Measure value. Ranges between 5 and 12 bins for
the gray scale case and 4 to 10 bins for the gradient module
were verified. The best results obtained after applying (6) are
shown in Figures 10 and 11.

Finally, using the other elements dataset described in
Section 5, we generate normalized average histograms for
Gray and modulus of gradient. In Figures 12 and 13 the results
are shown. Although the behavior of dataset histograms
without L. botrana differs from histograms obtained by the
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FIGURE 12: Gray scale descriptor Lobesia versus other elements.
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dataset with other elements, when comparing the latter with
L. botrana histograms, an adequate separation is observed.

6.3. K-Means Segmentation Algorithm Evaluation. The eval-
uation of the segmentation algorithm was performed using
the 100 images that were not included at the parameters con-
figuration stage. To perform the comparisons an algorithm
was designed using sliding window. When we apply sliding
window, it is assumed that objects have regular appearance
that do not deform much. A database is built with nxm
fixed size windows containing the centered object and others
that do not contain it. This is used to train the classifier.
A nxm window is slid across the entire image and the
classifier is queried if each of these windows contains or not
the object. The sliding algorithm uses the same steps and
configurations as the segmentation algorithm described at
Section 5.2, except in the K-means segmentation stage where
it uses sliding window. The window size was 64 x 64 and the
step size was 8 pixels.
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TaBLE 2: Confusion matrix results.
Scale Segmentation Sliding window
TP TN FN FP TP TN FN Fp
1 4336 95174 191 299 4138 94805 389 668
0.75 4337 95120 190 353 4205 94996 322 477
0.50 4269 95062 257 411 4097 95187 430 286
0.25 4285 95082 242 391 4142 95091 385 382
Average 4307 92110 220 363 4145 95020 382 454
Comparisons were focused on the quality of the recogni- TaBLE 3: Confusion matrix results with other elements.
tion as well as the execution speed of the different algorithms. Saal :
. . L cale Segmentation
In the case of the quality evaluation, the recognition for the Trae False
rescaled images at 1, 0.75, 0.5, and 0.25 was analyzed. For the
execution of the instances we use a PC running Windows 10, Ground 1 True 4336 191
on an Intel® Core i7-4770 processor with 16 GB in RAM and Truth False 21 1114
programmed in Python 2.7 Ground 0.75 True 4337 190
Table 2 shows the resulting confusion matrix for both Truth False 22 1113
algorithms. It should be noted that the segmentation algo- Ground 05 True 4269 257
rithm was superior to sliding window in all cases. Because Truth ’ False 17 1118
our matrix has unbalanced class distribution, the following Ground True 4285 242
indicators were considered for comparison: Truth 0.25 False 20 115
(1) Sensitivity: TP/(TP + FN) Ground Average True 4306.8 220
(2) Precision: TP/(TP + FP) Truth False 20 115
(3) F, Score: 2((precision = sencitivity)/(precision +
sencitivity)) 1800
(4) Mathews correlation coefficient: (TP * TN — FP
FN)/~/(TP + EP)(TP + EN)(TN + FP)(TN + EN). 1600 4 '
1400 - ,
The segmentation algorithm yielded an average speci- 1200 | 7 L
ficity of 95.1%; in the case of sliding window this was 91.4%. .
In the case of the precision indicator, the segmentation = 1000 1
algorithm yielded an average value of 92.2%, and the sliding E 800 4+ o
window was 90.01%. The F, score yielded by the segmentation eod %}
algorithm was 93.65% and in the case of sliding window was
90.76%. Finally for the Matthews coefficient the value was 4004 % ooy
93.36% for segmentation and 90.41% for sliding windows. 2009 R
Additionally, a confusion matrix was constructed to 0 L —=——0 ——
evaluate the performance of the algorithm with respect to 1280 x 720 1920 x 1080 2048 x 1536
the other elements data (Table 3). This dataset was generated Resolution

from the 100 images with 1135 segments containing other
elements. The segmentation algorithm for the case of the
other elements data, obtained an average specificity of 95.15%,
anaccuracy of 99.5%, an F, coefficient of 97.2, and a Matthews
coefficient of 88.1%.

To perform the comparison of execution times, we
considered the three groups of images with resolutions of
1280 x 720, 1920 x 1080, and 2048 x 1536. For each of the
images the processing time is obtained and represented by a
box plot shown in Figure 14. In this figure it is observed that
the segmentation algorithm has a better execution time than
sliding window. For the case of the segmentation algorithm
the average time was 31.8 (s) for the group 1280 x 720, 51.5 (s)
for the result 1920 x 1080, and 118 (s) for 2048 x 1536. When
using sliding window the time was 316.5, 649.2, and 1515.5
respectively. Finally Figure 15 shows the classification result
for two test images.

[ Segmentation
[ Sliding windows

FIGURE 14: Time comparison using segmentation and sliding win-
dow techniques. Interquartile ranges: 25%, the median and 75% of
the values.

6.4. K-Means Segmentation Algorithm Scalability. Inthe case
of the distributed algorithm the experiments were focused on
measuring its scalability. The algorithm was developed using
Python 2.7 and Spark libraries. It was run on Azure platform
using version 1.5.2 of Spark and Hadoop 2.4.1.

In order to evaluate the algorithm we considered the
resolution, number of images, and different numbers of
executors. As dataset the 360 images used to train and validate
the algorithm were considered. These images were replicated
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1

FIGURE 15: Example of processed images.

TABLE 4: Spark configuration.

num-executors Executor-cores Executor-memory (Gb)

1 3 4
2 3 4
4 3 4
8 3 4
16 3 4

1, 10, and 100 times in order to generate groups of 360, 3600,
and 36000 images. Each group was divided according to their
image resolution. For the scalability test 1, 2, 4, 8, and 16
executors were considered. The relative speed-up by group
and resolution was measured. For the Spark configuration,
three parameters were considered: num-executors which
controls the number of executor requested, executor-cores
property which controls the number of concurrent tasks an
executor can run, and executor-memory which corresponds
to the memory per executor. For the proper use of an
executor it is recommended to use between 3 and 5 cores. The
considered Spark settings are shown in Table 4.

Figure 16 shows the relative speed-up curves for Spark
distributed implementation of segmentation algorithm. The
relative speed-up is calculated with respect to the execution
time obtained when performing the calculation using 1
executor. The blue line corresponds to the perfect result.
Curves show at the three experiments that they continue
delivering speed-up to 16 executors. When over 16 executors
the performance is clearly sublineal. For the dataset with 360
images the deviation from the perfect result on average was
20.6%, for the case of 3600 images 25.6%, and for the case of
36000 images 32.1%. Regarding resolutions, the one that had
the best performance in all cases was the one with the lowest
resolution, but the effect of the resolution was small.

7. Conclusions

In this work we have presented a segmentation algorithm
to perform the early recognition of Lobesia botrana. A
mechanism for the adequate parameter setting selection
and definition of the descriptors that allow classification

was developed. Image capture mobile and web application
was created for Lobesia botrana recognition. The native
Android mobile application takes the images and records the
GPS position and date, making possible the real-time moth
counting. The image recognition system was validated during
September 2016 until 2017, in 50 traps deployed in vineyards
between V, VI, VII, and metropolitan region in Chile.

The classifier algorithm developed for L. botrana recog-
nition included a preprocessing step using a median filter
and CLAHE equalization and then a segmentation step using
K-means clustering and the generation of two descriptors;
one corresponds to the gray scale segment histogram and the
other obtained calculating the gradient modulus histogram.
A dataset of 360 images was used for classifier construction.

The K-means segmentation algorithm was evaluated in
comparison with the sliding window approach. The segmen-
tation algorithm was superior to sliding window in quality of
the recognition for the rescaled images at1, 0.75, 0.5, and 0.25.
The segmentation algorithm yielded an average specificity of
95.1.

A Spark distributed version of the system was developed.
This system allows fast and scalable cloud-computing analysis
of the images, providing an ideal environment for on-
field applications. The scalability of the distributed K-means
segmentation algorithm was evaluated. The curves show they
continue delivering speed-up to 16 executors. When over 16
executors the performance is clearly sublineal. For the dataset
with 360 images the deviation from the perfect result on
average was 20.6%, for the case of 3600 images 25.6%, and
for the case of 36000 images 32.1%. The one that had the
best performance in all cases was the one with the lowest
resolution, but the effect of the resolution was small.

Using the additional information of timestamps and GPS
positioning captured by the implemented application, future
work is intended to generate models that allow determining
areas of risk of Lobesia botrana in addition to conditions that
favor the development of the plague. From the point of view
of computer science it is interesting to work in a compu-
tational intelligence algorithm that allows determining the
best parameters setting. This automatic determination of
parameters would allow the algorithm to be easily adaptable
to similar recognition problems.
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FIGURE 16: Relative speed-up experiments.
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