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Weather recognition based on outdoor images is a brand-new and challenging subject, which is widely required inmany fields.This
paper presents a novel framework for recognizing different weather conditions. Compared with other algorithms, the proposed
method possesses the following advantages. Firstly, our method extracts both visual appearance features of the sky region and
physical characteristics features of the nonsky region in images. Thus, the extracted features are more comprehensive than some
of the existing methods in which only the features of sky region are considered. Secondly, unlike other methods which used the
traditional classifiers (e.g., SVMandK-NN),we use discriminative dictionary learning as the classificationmodel forweather, which
could address the limitations of previous works. Moreover, the active learning procedure is introduced into dictionary learning to
avoid requiring a large number of labeled samples to train the classification model for achieving good performance of weather
recognition. Experiments and comparisons are performed on two datasets to verify the effectiveness of the proposed method.

1. Introduction

Traditional weather detection depends on expensive sensors
and is restricted to the number of weather stations. If we
can use existing surveillance cameras capturing images from
the local environment to detect weather conditions, it would
be possible to turn weather observation and recognition
into a low-cost and powerful computer vision application.
In addition, most of current computer vision systems are
designed to execute in clear weather [1]. However, in many
outdoor applications (e.g., driver assistance systems [2], video
surveillance [3], and robot navigation [4]), there is no escape
of “bad” weather. Hence, research of weather recognition
based on images is in urgent demand, which can be used to
recognize the weather conditions for many vision systems to
adaptively turn their models or adjust parameters under the
different weathers.

To date, despite its remarkable value, there are only a few
of works that have been proposed to address the weather
recognition problem. In [5, 6], some researchers proposed

weather recognition models (sunny or rainy) from images
captured by in-vehicle cameras. However, thesemodels heav-
ily relied on prior information of vehicles, whichmay weaken
their performances. Song et al. [7] proposed a method to
classify traffic images into sunny, fog, snowy, and rainy.
Their method extracted several features such as the image
inflection point, power spectral slope, and image noise and
usedK-nearest neighbor (K-NN) as classificationmodel.This
method applied only to classify the weather conditions of
the traffic scene. Lu et al. [8] applied collaborative learn-
ing approach to label the outdoor image as either sunny
or cloudy. In their method, an existence vector is firstly
introduced to indicate the confidence in the corresponding
weather feature being present in the given image. Then,
the existence vector and weather features are combined for
weather recognition. However, this method involved many
complicated technologies (shadow detection, image matting,
etc.); thus its performance largely depended on the accuracies
of these technologies. Chen et al. [9] employed support vector
machine (SVM)with the help of active learning to classify the
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weather conditions of images into sunny, cloudy, or overcast.
Nevertheless, they only extracted the features from sky part
of the images and the useful information in nonsky part of
images is neglected.

In general, the above methods have been successfully
applied to the applications of weather recognition. However,
they still suffer from the following limitations. Firstly, since
these methods just extracted the features (e.g., SIFT, LBP, and
HSV color) from whole images or only sky part of images,
they neglected the different useful information in the sky part
and nonsky part of images. In the sky part of images, the
distribution of cloud and the color of sky are key factors for
weather recognition, so the visual appearance feature such
as the texture, color, and shape should be extracted. In the
nonsky part of images, the features based on physical prop-
erties which can characterize the changes of images caused
by the varying weather conditions and thus image contrast
[5] and dark channel [10] should be considered. Secondly,
these methods directly used K-NN or SVM based algorithms
to classify the different weather conditions. Although K-NN
is a simple classifier and it is easy to implement, it is not
robust enough for the complicated real-world images in the
practical application while SVM is a complex classifier and
it is difficult to select the appropriate kernel function. Lastly,
these methods required a large amount of labeled data for
training, which is often expensive and seldom available.

To address the above problems,we propose a novel frame-
work to recognize different weather conditions (sunny,
cloudy, and overcast) from outdoor images acquired by a
static camera looking at the same scene over a period of time.
The proposed method extracts not only the features from the
sky parts of images which are relevant to the visualmanifesta-
tions of differentweather conditions, but also the features based
on physical characteristics in the nonsky parts. Thus, the
extracted features aremore comprehensive for distinguishing
the images captured under various weather situations. Unlike
other methods which used the traditional classifier (e.g.,
SVM, K-NN), the discriminative dictionary learning is used
as the classification model. Moreover, in order to achieve
good performance of weather recognition with a few labeled
samples, active discriminative dictionary learning algorithm
(ADDL) is proposed. In ADDL, the active learning proce-
dure is introduced to the dictionary learning which selects
the informative and representative samples for learning an
impact and discriminated dictionary to classify weather
conditions. As far as we know, the proposed framework is the
first approachwhich combines the active learning technology
into the dictionary learning for weather recognition.

The rest of this paper is organized as follows. Section 2
briefly reviews some related work. Section 3 presents the
details of the feature extraction and the proposed ADDL
algorithm. Extensive experiments and comparisons are con-
ducted in Section 4, and Section 5 is the conclusion of the
paper.

2. Related Work

2.1. Dictionary Learning. Dictionary learning has emerged in
recent years. It is one of the most popular tools for learning

the intrinsic structure of images and has achieved state-of-
the-art performances in many computer vision and pattern
recognition tasks [11–13].The unsupervised dictionary learn-
ing algorithms such asK-SVD [14] have achieved satisfactory
results in image restoration, but they are not suitable for
classification tasks because it only requires that the learned
dictionary could faithfully represent the training samples.
By exploring the label information of training dataset, some
supervised dictionary learning approaches have been pro-
posed to learn a discriminative dictionary for the classifi-
cation task. Among these methods, one may directly use
training data of all classes as the dictionary, and the test image
can be classified by finding which class leads to the minimal
reconstruction error. Such a naive supervised dictionary
learning method is called sparse representation based clas-
sification (SRC) algorithm [15], which has shown good per-
formance in face recognition. However, it was less effective in
classification when the raw training images include the noise
and trivial information and cannot sufficiently exploit the dis-
criminative information in the training data. Fortunately, this
problem can be addressed by properly learning a dictionary
from the original training data. After the test samples are
encoded over the learned dictionary, both the coding residual
and the coding coefficients can be employed for identifying
the different classes of samples [16]. Jiang et al. [17] proposed a
method named label consistent K-SVD (LC-K-SVD), which
encouraged samples from the same class to have similar
sparse codes by applying a binary class label sparse code
matrix. Fisher discrimination dictionary learning (FDDL)
method [18] was proposed based on the Fisher criterion,
which learned a structured dictionary to distinguish samples
from different classes. In most existing supervised dictionary
learningmethods, 𝑙

0
-norm or 𝑙

1
-norm sparsity regularization

was adopted. As a result, they often suffer heavy computa-
tional costs in both training and testing phases. In order to
address this limitation, Gu et al. [19] developed a projective
dictionary pair learning (DPL) algorithm, which learned an
analysis dictionary together with a synthesis dictionary to
attain the goal of signal representation and discrimination.
DPLmethod can successfully avoid solving the 𝑙

0
-norm or 𝑙

1
-

norm to accelerate the training and test process, so we adopt
the DPL algorithm as the classification model in our work.

2.2. Active Learning. Active learning, which aims to con-
struct an efficient training dataset for improving the classifi-
cation performance through iterative sampling, has been well
studied in the computer vision fields. According to [20], the
existing active learning algorithms can be generally divided
into three categories: stream-based [21, 22], membership
query synthesis [23, 24], and pool-based [25–27]. Among
them, pool-based active learning is most widely used for real-
world learning problems because it assumes that there is a
small set of labeled data and a large pool of unlabeled data
available. This assumption is consistent with the actual situa-
tion. In this paper, we adopt the pool-based active learning.

The crucial point of pool-based active learning is how to
define a strategy to rank the unlabeled sample in the pool.
There are two criteria, informativeness and representative-
ness, which are widely considered for evaluating unlabeled
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Figure 1: The flow chart of the proposed method.

samples. Informativeness measures the capacity of the sam-
ples in reducing the uncertainty of the classification model,
while representativeness measures whether the samples well
represent the overall input patterns of unlabeled data or not
[20]. Most of active learning methods only take one of the
two criteria into account when selecting unlabeled samples,
which restricts the performance of the active learning [28].
Although several approaches [29–31] have considered both
informativeness and representativeness of unlabeled data, to
our knowledge, almost no researchers have introduced these
two criteria of active learning into the dictionary learning
algorithms.

3. Proposed Method

In this section, we present an efficient scheme, including the
effective feature extraction and ADDL classification model,
to classify the weather conditions of images into sunny,
cloudy, and overcast. Figure 1 shows a flow chart of the
overall procedure of our method. First, the visual appearance
based features are extracted from the sky region and the
physical characteristics based features are extracted from
the nonsky region of images. Secondly, the labeled training
dataset is used to learn an initial dictionary, and then the
samples are iteratively selected from unlabeled dataset based
on two measures: informativeness and representativeness.
These selected samples are used to expand the labeled dataset
for learning a more discriminative dictionary. Finally, the
testing dataset is classified by the learned dictionary.

3.1. Features Extraction. Feature extraction is an essential
preprocessing step in pattern recognition problems. In order

to express the difference among the images of the same
scene taken under various weather situations, we analyze the
different visual manifestations of images caused by different
weather conditions and extract the features which describe
both visual appearance properties and physical characteris-
tics of images.

From the viewpoint of visual appearance features of
images, the sky is the most important part in an outdoor
image for identifying theweather. In the case of sunny, the sky
appears blue because the light is refracted as it passes through
the atmosphere, scattering blue light, while, under the over-
cast condition, the sky is white or grey due to the thick cloud
cover. The cloudy day is a situation between sunny and over-
cast. On a cloudy day, the clouds are floating in the sky, which
exhibit a wide range of shapes and textures. Hence, we extract
the SIFT [32], HSV color, LBP [33], and the gradient magni-
tude of the sky parts of images as the visual appearance feature
of images. These extracted features are used to describe the
texture, color, and shape of images for weather classification.

Unlike Chen et al. [9] who directly eliminated the nonsky
regions of images, we extract two features in the nonsky parts
of images based on the physical characteristics, which also
can be used as powerful features to distinguish the different
weather conditions. The interaction of light with the atmo-
sphere has been studied as atmospheric optics. In the sunny
(clear) day, the light rays reflected by scene objects reach
to the observer without alteration or attenuation. However,
under bad weather conditions, atmospheric effects cannot be
neglected anymore [34–36]. The bad weather (e.g., overcast)
causes decay in the image contrast, which is exponential in
the depths of scene points [35]. So images of the same scene
taken in different weather conditions should have different
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contrasts. The contrast CON of an image can be computed
by

CON =
𝐸max − 𝐸min
𝐸max + 𝐸min

, (1)

where 𝐸max and 𝐸min are the maximum and minimum
intensities of the image, respectively.

Overcast weather may come with haze [8]. The dark
channel prior presented in [10] is effective to detect the
image haze. It is based on the observation that most haze-
free patches in the nonsky regions of images should have a
very low intensity at least one RGB color channel. The dark
channel 𝐽dark was defined as

𝐽
dark

(𝑥) = min
𝑐∈{𝑟,𝑔,𝑏}

( min
𝑥
󸀠
∈Ω(𝑥)

(𝐽
𝑐
(𝑥
󸀠
))) , (2)

where 𝐽
𝑐 is one color channel of the image J and Ω(𝑥) is a

local patch centered at 𝑥.
In summary, both the visual appearance features (SIFT,

HSV color, LBP, and the gradient magnitude) of the sky
region and the physical characteristics based features (the
contrast and the dark channel) of the nonsky region are
extracted to distinguish the images under different weather
situations. And then, the “bag-of-words” model [37] is used
to code each feature for forming the feature vectors.

3.2. The Proposed ADDL Classification Model. Inspired by
the technological advancements of discriminative dictionary
learning and active learning, we design an active discrimi-
native dictionary learning (ADDL) algorithm to improve the
discriminative power of the learned dictionary. In ADDL
algorithm, DPL [19] is applied to learn a discriminative
dictionary for recognizing different weather conditions, and
the strategy of active samples selection is developed to
iteratively select the unlabeled sample from a given pool to
enlarge the training dataset for improving the DPL classifi-
cation performance. The criterion of active samples selection
includes the informativenessmeasure and the representative-
ness measure.

3.2.1. DPL Algorithm. Suppose there is a set of 𝑚-dimen-
sionality training samples from 𝐶 classes, denoted by 𝑋

= [𝑋
1
, . . . , 𝑋

𝑐
, . . . , 𝑋

𝐶
] with the label set 𝑌 = [𝑌

1
, . . . , 𝑌

𝑐
, . . . ,

𝑌
𝐶
], where 𝑋

𝑐
∈ 𝑅
𝑚×𝑛 denotes the sample set of 𝑐th class

and 𝑌
𝑐
denotes the corresponding label set. DPL [19] algo-

rithm jointly learned an analysis dictionary 𝑃 = [𝑃
1
; . . . ; 𝑃

𝑐
;

. . . ; 𝑃
𝐶
] ∈ 𝑅
𝑘𝐶×𝑚 and a synthesis dictionary 𝐷 = [𝐷

1
, . . . , 𝐷

𝑐
,

. . . , 𝐷
𝐶
] ∈ 𝑅
𝑚×𝑘𝐶 to avoid resolving the costly 𝑙

0
-norm or 𝑙

1
-

norm sparse coding process. 𝑃 and 𝐷 were used for linear
encoding representation coefficients and class-specific dis-
criminative reconstruction, respectively. The object function
of DPL model is

{𝑃
∗
, 𝐷
∗
} = argmin

𝑃,𝐷

𝐶

∑

𝑐=1

󵄩󵄩󵄩󵄩𝑋𝑐 − 𝐷
𝑐
𝑃
𝑐
𝑋
𝑐

󵄩󵄩󵄩󵄩
2

𝐹
+ 𝜆

󵄩󵄩󵄩󵄩󵄩
𝑃
𝑐
𝑋
𝑐

󵄩󵄩󵄩󵄩󵄩

2

𝐹
,

s.t. 󵄩󵄩󵄩󵄩𝑑𝑖
󵄩󵄩󵄩󵄩
2

2
≤ 1,

(3)

where 𝐷
𝑐

∈ 𝑅
𝑚×𝑘 and 𝑃

𝑐
∈ 𝑅
𝑘×𝑚 represent subdictionary

pairs corresponding to class 𝑐,𝑋
𝑐
represents the complemen-

tary matrix of 𝑋
𝑐
, 𝜆 ≻ 0 is a scalar constant to control the

discriminative property of 𝑃, and 𝑑
𝑖
denotes the 𝑖th element

of dictionary 𝐷.
The objective function in (3) is generally nonconvex. But

it can be relaxed to the following form by introducing a
variable matrix 𝐴:

{𝑃
∗
, 𝐴
∗
, 𝐷
∗
} = argmin
𝑃,𝐴,𝐷

𝐶

∑

𝑐=1

󵄩󵄩󵄩󵄩𝑋𝑐 − 𝐷
𝑐
𝐴
𝑐

󵄩󵄩󵄩󵄩
2

𝐹

+ 𝜏
󵄩󵄩󵄩󵄩𝑃𝑐𝑋𝑐 − 𝐴

𝑐

󵄩󵄩󵄩󵄩
2

𝐹

+ 𝜆
󵄩󵄩󵄩󵄩󵄩
𝑃
𝑐
𝑋
𝑐

󵄩󵄩󵄩󵄩󵄩

2

𝐹
,

s.t. 󵄩󵄩󵄩󵄩𝑑𝑖
󵄩󵄩󵄩󵄩
2

2
≤ 1,

(4)

where 𝜏 is an algorithm parameter. According to [19], the
objective function in (4) can be solved by an alternatively
updated manner.

When 𝐷 and 𝑃 have been learned, given a test sample
𝑥
𝑡
, the class-specific reconstruction residual is used to assign

the class label. So the classification model associated with the
DPL is defined as

label (𝑥
𝑡
) = argmin

𝑐

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝐷
𝑐
𝑃
𝑐
𝑥
𝑡

󵄩󵄩󵄩󵄩2 . (5)

When dealing with the classification task, DPL requires
sufficient labeled training samples to learn discriminative
dictionary pair for obtaining good results. In fact, it is difficult
and expensive to obtain the vast quantity of labeled data.
If we can exploit the information provided by the massive
inexpensive unlabeled samples and choose small amounts of
the “profitable” samples (the “profitable” unlabeled samples
are the ones that are most beneficial for the improvement of
the DPL classification performance) from unlabeled dataset
to be labeled manually, we would learn a more discriminative
dictionary than the one learned only using a limited number
of labeled training data. To achieve this, we introduce the
active learning technique to DPL in the next section.

3.2.2. Introducing Active Learning to DPL. When evaluating
one sample is “profitable” or not, two measures are consid-
ered: informativeness and representativeness. The proposed
ADDL iteratively evaluates both informativeness and repre-
sentativeness of unlabeled samples in a given pool for seeking
the ones that are most beneficial for the improvement of
theDPL classification performance. Specifically, the informa-
tiveness measure is constructed based on the reconstruction
error and the entropy on the probability distribution over the
class-specific reconstruction error, and the representativeness
is obtained from the distribution of the unlabeled dataset in
this study.

Assume that we are given an initial training dataset D
𝑙
=

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛𝑙
} with its label set Y

𝑙
= {𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛𝑙
} and

an unlabeled dataset D
𝑢

= {𝑥
𝑛𝑙+1

, 𝑥
𝑛𝑙+2

, . . . , 𝑥
𝑁
}, where 𝑥

𝑖
∈

𝑅
𝑚×1 is an 𝑚 dimensional feature vector and 𝑦

𝑖
∈ {1, 2, 3}

is the corresponding class label (sunny, cloudy, or overcast).
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The target of ADDL is to iteratively select𝑁
𝑠
most “profitable”

samples, denoted by D
𝑠
, from D

𝑢
to query their labels Y

𝑠
and

then add them to D
𝑙
for improving the performance of the

dictionary learning classification model.

Informativeness Measure. Informativeness measure is an
effective criterion to select informative samples for reducing
the uncertainty of the classification model, which captures
the relationship of the candidate samples with the current
classification model. Probabilistic classification models select
the one that has the largest entropy on the conditional
distribution over its labels [38, 39]. Query-by-committee
algorithms choose the samples which have themost disagree-
ment among a committee [22, 26]. In SVM methods, the
most informative sample is regarded as the one that is closest
to the separating hyperplane [40, 41]. Since DPL is used
as the classification model in our framework, we design an
informativeness measure based on the reconstruction error
and the entropy on the probability distribution over the class-
specific reconstruction error of the sample.

For dictionary learning, the samples which are well-
represented through the current learned dictionary are less
likely to provide more information in further refining the
dictionary. Instead, the samples have large reconstruction
error and large uncertainty should be mainly cared about,
because they have some additional information that is not
captured by the current dictionary. As a consequence, the
informativeness measure is defined as follows:

𝐸 (𝑥
𝑗
) = Error 𝑅

𝑗
+ Entropy

𝑗
, (6)

where Error 𝑅
𝑗
and Entropy

𝑗
denote the reconstruction error

of the sample 𝑥
𝑗

∈ D
𝑢
with respect to the current learned

dictionary and the entropy of probability distribution over
class-specific reconstruction error of the sample 𝑥

𝑗
∈ D
𝑢
,

respectively. Error 𝑅
𝑗
is defined as

Error 𝑅
𝑗
= min
𝑐

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑗
− 𝐷
𝑐
𝑃
𝑐
𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩

2

, (7)

where𝐷
𝑐
and𝑃
𝑐
represent subdictionary pairs corresponding

to the class 𝑐, which is learned by DPL algorithm as shown
in (4). The larger Error 𝑅

𝑗
indicates that the current learned

dictionary does not represent the sample 𝑥
𝑗
well.

Since the class-specific reconstruction error is used to
identify the class label of sample 𝑥

𝑗
(as shown in (5)), the

probability distribution of class-specific reconstruction error
of 𝑥
𝑗
can be acquired. The class-specific reconstruction error

probability of 𝑥
𝑗
in class c is defined as

𝑝
𝑐
(𝑥
𝑗
) =

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑗
− 𝐷
𝑐
𝑃
𝑐
𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩

2

∑
𝐶

𝑐=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑗
− 𝐷
𝑐
𝑃
𝑐
𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩

2
. (8)

The class probability distribution 𝑝(𝑥
𝑗
) for sample 𝑥

𝑗
is

computed as 𝑝(𝑥
𝑗
) = [𝑝

1
, 𝑝
2
, . . . , 𝑝

𝐶
], which demonstrates

how well the dictionary distinguishes the input sample. That
is, if an input sample can be expressed well by the current
dictionary, we will get a small value of ‖𝑥

𝑗
− 𝐷
𝑐
𝑃
𝑐
𝑥
𝑗
‖
2

to one of class-specific subdictionaries, and thus the class
distribution should reach the valley at the most likely class.
Entropy is a measure of uncertainty. Hence, in order to
estimate the uncertainty of an input sample label, the entropy
of probability distribution over class-specific reconstruction
error is calculated as follows:

Entropy
𝑗
= −

𝐶

∑

𝑐=1

𝑝
𝑐
(𝑥
𝑗
) log𝑝

𝑐
(𝑥
𝑗
) . (9)

The high Entropy
𝑗
value demonstrates that 𝑥

𝑗
is difficult to be

classified by the current learned dictionary; thus it should be
selected to be labeled and added to the labeled set for further
training dictionary learning.

Representativeness Measure. Since the informativeness mea-
sure only considers how the candidate samples relate to the
current classificationmodel, it ignores the potential structure
information of the whole input unlabeled dataset. Therefore,
the representativeness measure is employed as an additional
criterion to choose the useful unlabeled samples. Represen-
tativeness measure is to evaluate whether the samples well
represent the overall input patterns of unlabeled data, which
exploits the relation between the candidate sample and the
rest of unlabeled samples.

The distribution of unlabeled data is very useful for
training a good classifier. In previous active learning work,
the marginal density and cosine distance are used as the
representativeness measure to gain the information of data
distribution [39, 42]. Li and Guo [43] defined a more
straightforward representativeness measure called mutual
information. Its intention is to select the samples located in
the density region of the unlabeled data distribution, which is
more representative regarding the remaining unlabeled data
than the ones located in the sparse region. We introduce the
framework of representativenessmeasure proposed by Li and
Guo [43] into the dictionary learning.

For an unlabeled sample 𝑥
𝑗
, the mutual information with

respect to other unlabeled samples is defined as follows:

𝑀(𝑥
𝑗
) = 𝐻(𝑥

𝑗
) − 𝐻(𝑥

𝑗
| 𝑋
𝑈
𝑗

) =
1

2
ln(

𝜎
2

𝑗

𝜎2
𝑗|𝑈
𝑗

) , (10)

where 𝐻(𝑥
𝑗
) and 𝐻(𝑥

𝑗
| 𝑋
𝑈
𝑗

) denote the entropy and the
conditional entropy of sample 𝑥

𝑗
, respectively. 𝑈

𝑗
represents

the index set of unlabeled samples where 𝑗 has been removed
from 𝑈, 𝑈

𝑗
= 𝑈 − 𝑗, and 𝑋

𝑈
𝑗

represents the set of samples
indexed by𝑈

𝑗
. 𝜎2
𝑗
and 𝜎

2

𝑗|𝑈
𝑗

can be calculated by the following
formulas:

𝜎
2

𝑗
= K (𝑥

𝑗
, 𝑥
𝑗
) ,

𝜎
2

𝑗|𝑈
𝑗

= 𝜎
2

𝑗
− ∑

𝑗𝑈
𝑗

−1

∑

𝑈
𝑗
𝑈
𝑗

∑

𝑈
𝑗
𝑗

.

(11)
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Inputs: Labeled set D
𝑙
and its label set Y

𝑙
, Unlabeled set D

𝑢
, the number of iteration 𝐼

𝑡

and the number of unlabeled samples 𝑁
𝑠
to be selected in each iteration.

(1) Initialization: Learn an initial dictionary pair 𝐷∗ and 𝑃
∗ by DPL algorithm from the D

𝑙
.

(2) For 𝑖 = 1 to 𝐼
𝑡
, do

(3) Compute 𝐸(𝑥
𝑗
) and 𝑀(𝑥

𝑗
) by (6) and (10) for each sample 𝑥

𝑗
in the unlabeled dataset D

𝑢
.

(4) Select 𝑁
𝑠
samples (denoted by D

𝑠
) from the D

𝑢
by (13), and add them into D

𝑙
with their

class labels which manually assigned by user. Then updates D
𝑢
= D
𝑢
− D
𝑠
and D

𝑙
= D
𝑙
∪ D
𝑠
.

(5) Learn the refined dictionaries 𝐷∗new and 𝑃
∗

new over the expanded dataset D
𝑙
.

(6) End for
Output: Final learned dictionary pair 𝐷∗new and 𝑃

∗

new.

Algorithm 1: Active discriminative dictionary learning (ADDL).

Assume that the index set 𝑈
𝑗
= (1, 2, 3, . . . , 𝑡) and ∑

𝑈
𝑗
𝑈
𝑗

is a kernel matrix defined over all the unlabeled samples
indexed by 𝑈

𝑗
; it is computed by the following form:

∑

𝑈
𝑗
𝑈
𝑗

= (

K (𝑥
1
, 𝑥
1
) K (𝑥

1
, 𝑥
2
) ⋅ ⋅ ⋅ K (𝑥

1
, 𝑥
𝑡
)

K (𝑥
2
, 𝑥
1
) K (𝑥

2
, 𝑥
2
) ⋅ ⋅ ⋅ K (𝑥

2
, 𝑥
𝑡
)

.

.

.
.
.
.

.

.

.
.
.
.

K (𝑥
𝑡
, 𝑥
1
) K (𝑥

𝑡
, 𝑥
2
) ⋅ ⋅ ⋅ K (𝑥

𝑡
, 𝑥
𝑡
)

).

(12)

K(⋅) is a symmetric positive definite kernel function. In
our approach, we apply simple and effective linear kernel
K(𝑥
𝑗
, 𝑥
𝑗
) = ‖𝑥

𝑖
− 𝑥
𝑗
‖
2 for our dictionary learning task.

The mutual information is used to implicitly exploit the
information between the selected samples and the remaining
ones. The samples which have large mutual information
should be selected from the pool of unlabeled data for refining
the learned dictionary in DPL.

Procedure of Active Samples Selection. Based on the above
analysis, we aim to integrate the strengths of informativeness
measure and representativeness measure to select the unla-
beled samples from the pool of the unlabeled data.We choose
the samples that have not only large reconstruction error
and the entropy of probability distribution over class-specific
reconstruction error with respect to the DPL classification
model, but also the large representativeness regarding the rest
of unlabeled samples. The sample set D

𝑠
= {𝑥
𝑠

1
, 𝑥
𝑠

2
, . . . , 𝑥

𝑠

𝑁
𝑠

}

are iteratively selected from pool by the following formula:

𝑥
𝑠
= argmin
𝑥
𝑗

(𝐸 (𝑥
𝑗
) + 𝑀(𝑥

𝑗
)) ,

𝑗 ∈ {𝑛𝑙 + 1, 𝑛𝑙 + 2, . . . , 𝑁} .

(13)

The overall of our ADDL is given in Algorithm 1.

4. Experiments

In this section, the performance of the proposed framework
is evaluated on two weather datasets. We first give the

details about the datasets and experimental settings.Then, the
experimental results are provided and analyzed.

4.1. Datasets and Experimental Setting

Datasets. The first dataset employed in our experiment is the
dataset provided by Chen et al. [9] (denoted as DATASET
1). DATASET 1 contains 1000 images of size 3966 × 270, and
each image has been manually labeled as sunny, cloudy, or
overcast. There are 276 sunny images, 251 cloudy images, and
473 overcast images in DATASET 1. Figure 2 shows three
images from DATASET 1 with the label sunny, cloudy, and
overcast, respectively.

Because there are few available public datasets for
weather recognition, we construct a new dataset (denoted
as DATASET 2) to test the performance of the proposed
method. The images in DATASET 2 are selected from the
panorama images collected on the roof of BC building
at EPFL (http://panorama.epfl.ch/ provides high resolution
(13200× 900) panorama images from 2005 till now, recording
at every 10 minutes during daytime) and categorized into
sunny, cloudy, or overcast based on the classification criterion
presented in [9]. It includes 5000 images whichwere captured
at approximately every 30 minutes during daytime in 2014,
and the size of each image is 4821 × 400. Although both
DATASET 1 and DATASET 2 are constructed based on the
images provided by http://panorama.epfl.ch/, DATASET 2
is more challenging because it contains a large number of
images captured in different seasons. In Figure 3, some exam-
ples of different labeled images in DATASET 2 are shown.

Experimental Setting. For the sky region of each image, four
types of visual appearance features are extracted, including
200-dim SIFT, 600-dim HSV color feature (200-dim his-
togram of H channel, 200-dim histogram of S channel, and
200-dimhistogramofV channel), 200-dimLBP, and 200-dim
gradient magnitude feature.These features are only extracted
from the sky part of each image, and the sky detector and
feature extraction procedure provided by Chen et al. [9] are
used in this paper. Besides the visual appearance features, two
kinds of features based on physical characteristics of images
captured under different weather are also extracted from
the nonsky region, which consists of 200-dim bag-of-words
representation of the contrast and 200-dim bag-of-word
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(a) (b)

(c)

Figure 2: Examples in DATASET 1. (a) Sunny; (b) cloudy; (c) overcast.

(a) (b)

(c)

Figure 3: Examples in DATASET 2. (a) Sunny; (b) cloudy; (c) overcast.

representation of the dark channel. To be specific, we divide
each nonsky region of the image into 32 × 32 blocks and
extract the contrast and the dark channel features by (1)
and (2) and then use bag-of-words model [37] to code each
feature.

In our experiment, 50% images are randomly selected
in each dataset for training and the remaining data is used
for testing. The training data are randomly partitioned into
labeled sample set D

𝑙
and unlabeled sample set D

𝑢
. D
𝑙
is

applied for learning an initial dictionary andD
𝑢
is utilized for

actively selecting “profitable” samples to iteratively improve
the classification performance. To make the experiment
resultsmore convincing, each following experimental process
is repeated ten times, and then the mean and standard
deviation of the classification accuracy are reported.

4.2. Experiment I: Verifying the Performance of Feature
Extraction. The effectiveness of the feature extraction of
our method is first evaluated. Many previous works merely
extract the visual appearance features of the sky part for
weather recognition [9]. In order to validate the power of
our extracted features based on physical characteristics of
images, the results of two weather recognition schemes are
compared. One only uses the visual appearance features to
classify the weather conditions, and the other combines the
visual appearance features with features based on physical
characteristics of images to identify the weather conditions.
In order to weaken the influence of classifier on the results of
weather recognition,𝐾-NN classification (𝐾 is experientially
set to 30), SVM with the radial basis function kernel, and
the original DPL without active samples selection procedure
are applied in this experiment. Figures 4 and 5 show the
comparison results on DATASET 1 and DATASET 2, respect-
ively.

In Figures 4 and 5, 𝑥-axis represents the different number
of training samples and 𝑦-axis represents the average classifi-
cation accuracy. The red dotted lines indicate just six visual
appearance features of the sky area are used, and the blue
solid lines indicate both six visual appearance features and

two features based on physical characteristics of the nonsky
area are applied for recognition. From Figures 4 and 5, it is
clearly observed that the combination of visual appearance
features and physical features can achieve better performance
for weather recognition task.

4.3. Experiment II: Recognizing Weather Conditions by the
Proposed ADDL. In this section, the performance of the
proposed ADDL algorithm is evaluated. First experiment
is conducted to give the best parameters for ADDL. And
thenADDL is compared against several popular classification
methods.

4.3.1. Parameters Selection. There are three important param-
eters in the proposed approach, that is, 𝑘, 𝜆, and 𝜏. 𝑘 is
the number of atoms in each subdictionary 𝐷

𝑐
learned from

samples in each class, 𝜆 is used to control the discriminative
property of 𝑃, and 𝜏 is a scalar constant in DPL algorithm.
The performances of our ADDL under various values of 𝑘, 𝜆,
and 𝜏 are studied on DATASET 1. Figure 6(a) lists the classi-
fication results when 𝑘 = {15, 25, 35, 45, 55, 65, 75, 85, 95}. It
can be seen that the highest average classification accuracy
is obtained when 𝑘 = 25. This demonstrates that ADDL
is effective to learn a compact dictionary. According to
the observation in Figure 6(a), we set 𝑘 to be 25 in all
experiments. The classification results obtained by using the
different 𝜏 and 𝜆 are shown in Figures 6(b) and 6(c). From
Figures 6(b) and 6(c), the optimal values of 𝜆 and 𝜏 are 0.05
and 25, respectively. This is because of the fact that a too big
or too small 𝜆 value will lead the reconstruction coefficient in
ADDL to be too sparse or too dense, which will deteriorate
the classification performance. If 𝜏 is too large, the effect of
the reconstruction error constraint (the first term in (4)) and
the sparse constraint (the third term in (4)) is weakened,
which will decrease the discrimination ability of the learned
dictionary. On the contrary if 𝜏 is too small, the second term
in (4) will be neglected in dictionary learning, which also
reduces the performance of algorithm.Hence, we set𝜆 = 0.05

and 𝜏 = 25 for all experiments.
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Figure 4: Weather recognition results over DATASET 1 by using different features.

Now we evaluate weather active samples selection can
improve the recognition performance. 500 samples in
DATASET 1 are randomly selected as training data and the
remaining samples are used for testing. In training dataset,
50 samples are randomly selected as the labeled dataset D

𝑙

and the remaining 450 samples are selected as the unlabeled
datasetD

𝑢
.The proposedADDLuses the labeled datasetD

𝑙
to

learn an initial dictionary pair and then iteratively selects 50
samples from D

𝑢
to label for expanding the training dataset.

Figure 7 shows the recognition accuracy versus the number
of iterations.

In Figure 7, the 0th iteration indicates that we only use
the initial 50 labeled samples to learn the dictionary, and the
9th iterationmeans using all 500 training samples to learn the
dictionary for recognition. The recognition ability of ADDL

is improved by active samples selection procedure, and it
achieves highest accuracy when the number of iterations
is 3; total 200 samples are used for training. It is worth
mentioning that ADDL obtains the best results when the
number of iterations is set as 3. If iterations are larger than 3,
the recognition rates will drop about 1%.This is because there
are somenoisy examples or “outliers” in the unlabeled dataset,
and the more noisy examples or “outliers” will be selected
to learn the dictionary along with the increase of iterations,
which interferes with the dictionary learning and leads to the
classification performance degradation. In the following the
number of iterations is set to 3 for all experiments.

4.3.2. Comparisons of ADDL with Other Methods. Here, the
proposed ADDL is compared with several methods. The first
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Figure 5: Weather recognition results over DATASET 2 by using different features.

two methods are 𝐾-NN algorithm used by Song et al. [7]
and SVM with the radial basis function kernel (RBF-SVM)
adopted by Roser and Moosmann [5]. The third method
is SRC [15] which directly uses all training samples as the
dictionary for classification. In order to confirm that the
active samples selection in our ADDLmethod is effective, the
proposed ADDL is compared with the original DPL method
[19]. We also compare ADDL with the method proposed
by Chen et al. [9]. As far as we know, the work in [9] is
the only framework which addresses the same problem with
our method, that is, recognizing different weather conditions
(sunny, cloudy, and overcast) of images captured by a still
camera. It actively selected useful samples to training SVM
for recognizing different weather conditions.

For DATASET 1, 500 images are randomly selected as the
training samples and the rest of images are used as the testing
samples. In the training dataset, 50 images are randomly
chosen as the initial labeled training dataset D

𝑙
, and the

remaining 450 images are regarded as the unlabeled dataset
D
𝑢
. ADDL and Chen’s method [9] both include the active

learning procedure; thus they iteratively choose 150 samples
from D

𝑢
to be labeled based on their criterion of the samples

selection and add these samples toD
𝑙
for further training the

classification model. For 𝐾-NN, RBF-SVM, SRC, and DPL
methods which are without the active learning procedure,
150 samples are randomly selected from D

𝑢
to be labeled

for expanding the labeled training dataset D
𝑙
. Table 1 lists

the comparisons of our approach with several methods for



10 Mathematical Problems in Engineering

5 15 25 35 45 55 65 75 85 95

90

92

94
Av

er
ag

e a
cc

ur
ac

y 
(%

)

k

(a)

0.0005 0.005 0.05 0.5 10 30 50 70 90

90

92

94

Av
er

ag
e a

cc
ur

ac
y 

(%
)

𝜆

(b)

0.005 0.5 5 25 45 65 85

90

92

94

Av
er

ag
e a

cc
ur

ac
y 

(%
)

𝜏

(c)
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Figure 7: Recognition accuracy on DATASET 1 versus the number
of iterations.

Table 1: Comparisons on DATASET 1 among different methods.

Methods Classification rate (mean ± std)
𝐾-NN 82.9%± 1.2%
RBF-SVM 85.6%± 1.6%
SRC 89.7%± 0.9%
DPL 91.3%± 1.6%
Chen’s method [9] 92.98%± 0.55%
ADDL 94.0%± 0.2%

weather classification. As can be seen from Table 1, ADDL
outperforms other methods. The mean classification rate of
ADDL reaches about 94%.

In DATASET 2, 2500 images are randomly selected as
the training samples and the rest of images are used as

Table 2: Comparison on DATASET 2 among different methods.

Methods Classification rate (mean ± std)
𝐾-NN 85.0%± 1.6%
RBF-SVM 88.1%± 1.4%
SRC 88.2%± 1.1%
DPL 89.6%± 0.8%
Chen’s method [9] 88.8%± 1.6%
ADDL 90.4%± 1.0%

the testing samples. In the training dataset, 50 images are
randomly chosen as the initial labeled training datasetD

𝑙
; the

remaining 2450 images are regarded as the unlabeled dataset
D
𝑙
. All parameters setting for DATASET 2 are the same as

DATASET 1. Table 2 lists the recognition results of different
methods, which indicates that the validity of the proposed
ADDL is better than other methods.

FromTables 1 and 2, two points can be observed. First, we
can find that the recognition performances of 𝐾-NN, RBF-
SVM, SRC, and DPL are overall inferior to the proposed
ADDL algorithm. This is probably because these four algo-
rithms randomly select the unlabeled data from the given
pool, which do not consider whether the selected samples are
beneficial for improving the performance of the classification
model or not. Second, although the proposed ADDL and
Chen’smethod [9] both include the active learning paradigm,
the proposed ADDL performs better than Chen’s method
[9]. This is due to the fact that Chen’s method [9] only
considers the informativeness and ignores representativeness
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of samples when selecting the unlabeled samples from the
given pool.

5. Conclusions

We have presented an effective framework for classifying
three types of weather (sunny, cloudy, and overcast) based
on the outdoor images. Through the analysis of the different
visual manifestations of images caused by different weathers,
the various features are separately extracted from the sky area
and nonsky area of images, which describes visual appear-
ance properties and physical characteristics of images under
different weather conditions, respectively. ADDL approach
was proposed to learn a more discriminative dictionary for
improving the weather classification performance by select-
ing the informative and representative unlabeled samples
from a given pool to expand the training dataset. Since
there is not much image dataset on weather recognition, we
have collected and labeled a new weather dataset for testing
the proposed algorithm. The experimental results show that
ADDL is a fairly effective and inspiring strategy for weather
classification, which also can be used inmany other computer
vision tasks.
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