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The present review describes and validates a new ratio “𝑆” created for matching predictability and balance between TP and TN.
Validity of 𝑆 was studied in a three-step process as follows: (i) 𝑆 was applied to the data of a past study predicting cardiac output
response to fluid bolus from response to passive leg raise (PLR); (ii) 𝑆was comparatively analyzedwith traditional ratios bymodeling
different 2 ∗ 2 contingency tables in 1000 hypothetical patients; (iii) precision of 𝑆 was compared with other ratios by computing
randomfluctuations in the same patients. In comparison to other ratios, 𝑆 performs better in predicting the cardiac response to fluid
bolus and supportsmore directly the clinical conclusions.When the proportion of false responses is high, 𝑆 is close to the coefficient
correlation (CC).When the proportion of true responses is high, 𝑆 is the unique ratio that identifies the categorization that balances
the proportion of TP and TN.The precision of 𝑆 is close to that of CC. In conclusion, 𝑆 should be considered for creating categories
from quantitative variables; especially when matching predictability with balance between TP and TN is a concern.

1. Introduction

Numerous metrics and receiver operating characteristics
(ROC) curves are used to test the performance of prediction
methods [1]. However, these traditional tools are not, or
mildly so, weighted according to the balance between TP
(sign predicts event) and TN (nonsign predicts nonevent).
This can be a limitation when categorizing a quantitative
event with the objective of reaching occurrences (event and
nonevent) of comparable probability. Indeed, predicting an
event whose prevalence is close to 0 or 1 may have no
clinical impact.This is especially the case when the prediction
method is used to change patients’ treatments and/or for
including a patient in one arm of a controlled study.

For example, in patients with both severe lung injury
and circulatory shock, it has been suggested to test the
cardiac output response during a passive leg raise (PLR)
for predicting the effects of a fluid bolus (not reversible
and potentially harmful) [2–4]. Basically, we expect a linear
relationship between PLR response and fluid bolus response
since PLR acts like an internal transfusion. However, if we
look at creating protocols driving fluid therapy in this setting,
we must determine the PLR response that best discriminates

relevant fluid bolus response. To achieve this, we can use
an existing database and test sequentially all possible PLR
response cut-off thresholds versus all possible fluid response
cut-off thresholds. In this situation, the best value of tradi-
tional ratios is in two situations: (i) with high PLR thresholds
(e.g., >25%) predicting high fluid bolus thresholds (e.g.,
>50%) and (ii) with low PLR thresholds predicting low fluid
bolus thresholds. However, these two pairs of thresholds have
poor practical interest. In the first case, the prevalence of high
fluid response is low and most patients are classified as TN
(no high PLR response predicts no high fluid bolus response).
A protocol based on this would nearly never recommend
fluid bolus. Conversely, in the second case, the prevalence of
low fluid response is high and most patients are classified as
TP (PLR response over a low threshold predicts fluid bolus
response over a low threshold) and a protocol would always
suggest giving fluid. Thus, actual recommendations do not
result from systematic statistical analyses but from clinical
and metrological (least significant change) considerations.

We present in this paper the formula of a new “𝑆” ratio
and show that this new ratio better matches predictability
with balance between TP and TN as compared to other tradi-
tional statistics. More generally, 𝑆 would be of interest when
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dichotomizing a quantitative variable in existing databases
for creating protocols like cited in our example but also for
decision trees and study inclusion criterion.

2. Methods

Measuring the quality of any categorization is a particular
case of a general approach of prediction-performance assess-
ment. These methods first define the predictor (P) and the
event (E), and then determine the 2 × 2 cells matrix of TP (P
predicts E), TN (non P predicts non E), FP (P predicts non
E), and FN (non P predicts E).

E Non E
P

Non P
TP FP
FN TN

(1)

The best method for analyzing prediction performance is to
consider the whole matrix. However, it is not immediately
clear if a matrix gives a proper answer to the question asked
and if a given matrix is superior to another one. Different
metrics have been suggested tomeasure the distance between
P and E using a single number.

2.1. Traditional Ratios. Herein, two situations are clearly
different.

First, when P and E are naturally binary, the most widely
used ratios are as follows:

(i) sensitivity: (Se) = TP/(TP + FN);
(ii) specificity: (Sp) = TN/(TN + FP);
(iii) positive predictive value: (PPV) = TP/(TP + FP);
(iv) negative predictive value: (NPV) = TN/(TN + FN).

The quality of the matrix may be analyzed using other
ratios providing close information when P is a risk factor, a
sign, or a treatment and E is a natural category like a disease
or an outcome:

(i) risk ratio or relative risk: (RR) = (TP/(TP+FP))/
(FN/(TN+FN));

(ii) Yule’s 𝑄 coefficient: (𝑄) = [(TP ∗ TN) − (FP ∗ FN)]/
[(TP ∗ TN) + (FP ∗ FN)];

(iii) Youden 𝑌 coefficient: (𝑌) = (Se + Sp − 1);
(iv) likelihood ratio positive: (LR+) = Se/(1 − Sp);
(v) likelihood ratio negative: (LR−) = (1 − Se)/Sp;
(vi) odds ratio (OR) = LR+/LR− = (TP∗TN)/(FP∗FN).

The best choice depends on the clinical context and the
underlying question to be answered. For example, OR is
more suitable for case-control or retrospective studies; RR is
preferably used in randomized controlled trials and cohort
studies [5].

In contrast, when P and E are quantitative, a binary
classification requires conventional cut-off thresholds. There
is consequently a different matrix foreach possible P and E

pair of thresholds. A series of categories can be created for
each variable, based on incremental thresholds. To determine
which matrix works best, the use of LRs, RR, 𝑄, 𝑌, and OR
suffers from one to three weaknesses. (i) LRs, RR, and OR
are impossible to derive when the denominator of is null
and 𝑄 = −1 when TP or TN is null. (ii) All these ratios,
except𝑄 and 𝑌, range from zero to infinity.This nonlinearity
is poorly intuitive for quantifying practical usefulness. (iii)
These ratios aremarginally weighted according to the balance
between TP andTN.The differentmethods used for assessing
the matrix performance in case of dichotomized quantitative
E and P have been reviewed by Baldi et al. in 2000 [1].
The best practical solution is the Pearson product-moment
correlation coefficient (CC) for two binary categories, also
called Matthews correlation coefficient or phi coefficient [6].
This coefficient is derived as follows:

[(TP ∗ TN) − (FP ∗ FN)]
[(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)]1/2

.

(2)

It ranges from −1 to +1 and is weighed according to the
proportion of observations in each category since it turns to
be the square root of a chi-square (𝜒2) divided by the total
number of observations (𝑁). However, this relationship is
complex and poorly related to the balance between TP and
TN when the proportion of errors (FP + FN) tends towards
zero.

2.2. ROC Space. The ROC space is defined by the false
positive rate FP/(FP + TN) = (1 − Sp, ) as 𝑥-axis and by the
true positive rate TP/(TP + FN) = Se as 𝑦-axis. Each matrix
represents one plot in the ROC space. Therefore, a specific
ROC curve is created by a set of matrixes using a given fixed
E threshold and all possible P thresholds. If E is quantitative,
different curves can be created using different E thresholds.
The area under ROC curves can be calculated with their
confidence intervals and compared using nonparametric tests
[7, 8].The predictability increases when the area under curve
becomes significantly different from 0.5, towards 1 or 0. In
this latter case, P is predictive when under, rather than the
above, considered threshold. ROC curves are based on a set
of matrixes and cannot be compared to traditional ratios
assessing one singlematrix. However, the best possiblematrix
would yield a point in the upper left corner of the ROC space
with coordinate (0, 1), obtained when FP/(FP + TN) = 0
and TP/(TP + FN) = 1, leading to an area under the curve
= +1. The distance (𝐷) between an observed ROC plot and
this optimal value can be measured by triangulation leading
to 𝐷 = [(1 − Sp)2 + (1 − Se)2]1/2. The smallest distance
(𝐷 = 0) is obtained with 100% of TP. Similarly, with
100% of TN, the ROC plot would reach the lower right
corner and the area under curve would be 0. However, a
dichotomy based on these perfect predictions would not lead
to a discriminative decision as seen previously. Therefore,
neither ROC curves nor ROC plots are adequate answers to
the issue of matching prediction and a balance between TP
and TN.
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2.3. The New 𝑆 Ratio. After a careful literature review, it
was not possible to find an adequate solution matching
the predictability with a balance between TP and TN. For
creating a new ratio reaching this complimentary objective,
we first consider as numerator the difference between the
highest possible quantity from right classifications, obtained
by the product (TN∗TP), and wrong classifications, obtained
by the product (FP ∗ FN). We standardized this quantity by
using as denominator the optimal quantity obtained from the
best possible balanced prediction. If𝑁 is the total number of
observations, the best possible balanced prediction is given
by TP = TN = 𝑁/2 and the optimal quantity is obtained by
TP ∗ TN = 𝑁/2 ∗ 𝑁/2 = 𝑁2/4. Therefore,

(i) 𝑆 = [(TP ∗ TN) − (FP ∗ FN)]
(𝑁2/4)

, or

(ii) 𝑆 = 4 [(TP ∗ TN) − (FP ∗ FN)]
𝑁2

(3)

The 𝑆 ratio is symmetric, always derivable and ranges from
−1 to +1. When the expected probability 𝑝 of the event E is
not exactly 0.5, 𝑆 can be corrected by replacing 0.5 by 𝑝 and
(1 − 𝑝) leading to

(i) 𝑆 = [(TP ∗ TN) − (FP ∗ FN)]
(𝑝𝑁 ∗ (1 − 𝑝)𝑁)

,

(ii) 𝑆 = [(TP ∗ TN) − (FP ∗ FN)]
(𝑝 (1 − 𝑝)𝑁2)

,

(iii) 𝑆 =
(1 − 𝑝)

𝑝

[(TP ∗ TN) − (FP ∗ FN)]
𝑁2

.

(4)

This however does not change the linearity of the 𝑆 ratio,
just the scale and the limits, ranging from −1/(4𝑝(1 − 𝑝))
to +1/(4𝑝(1 − 𝑝)). In this situation, the 𝑆 ratio becomes
equivalent to Youden’s 𝑌 coefficient, very close to the CC and
to the distance from the best ROC plot. Since 𝑆 is used in
situations where we expect a balance between TP and TN,
𝑝 approximates 0.5. In this situation, range of 𝑆 marginally
changes. For instance, if𝑝 = 0.4, 𝑆 ranges from−1.04 to+1.04.
Therefore, it is always suitable to use the standardized formula
(3), ranging between −1 and +1.

2.4. The 𝑆 Validation. For validation, first, we applied 𝑆 to
the real clinical challenge presented in the introduction.
We used the data of a recently published study relating the
performance of cardiac output response during PLR tests for
predicting cardiac output response to 500mL fluid bolus on
75 patients [9]. In this study, CC was used to determine the
best pair of PLR and fluid bolus response cut-points. We
reproduced here the complete CC table and we applied 𝑆 to
the same data to compare the two ratios.

Second, we made a complete analysis of 𝑆 utility as
compared to traditional ratios, by modeling all possible
proportions in 2 ∗ 2 matrixes of TP, TN, FP, and FN, in a
hypothetical population of 1000 patients. Traditional ratios
were RR, LR+, LR−, OR, 𝜒2, 𝑄, 𝐷, and CC, listed above plus
other quantities listed by Rosner [10], including accuracy,

contingency coefficient, and Equitable Threat Score. Then,
we computed different proportions of total true responses
(TP + TN). For each proportion of total true responses, we
plotted 𝑆 and other ratios’ values when the balance between
TP and TNwas changing. We were therefore able to compare
the impact of TP and TN balance, on each ratio, and for each
level of total true responses.

Lastly, we derived the standard deviation (SD), precision
(2SD/mean), and 95% confidence interval (mean ± 2SD) of
𝑆 by computing a random 5% fluctuation in the different 2 ∗
2 matrixes of 1000 hypothetical observations. Further, these
quantities were compared with those obtained with other
ratios.

3. Results

3.1. First Step (Clinical Challenge). Table 1(a) shows the
performance of PLR tests for predicting fluid bolus responses
using CC, as done in the original study, along with reproduc-
ing the complete incremental analysis. Table 1(b) depicts the
𝑆 values applied to the same patients and the same cut-off
points.

On Table 1(a), CC reaches high predictivity on the two
extremities of the table. Perfect CC value = 1 is observedwhen
PLR response ≥ −15% is tested for predicting fluid bolus
response ≥ −15%.This is obtained from 74TP, 1TN, 0FP, and
0FN. When PLR response ≥0% is tested for predicting fluid
bolus response ≥0%, CC = 0.78 is obtained from 50TP, 18TN,
0FP, and 7FN. On the other hand, when PLR response ≥25%
is tested for predicting fluid bolus response ≥50%, CC = 0.7
is obtained from 1TP, 73TN, 1FP, and 0FN.

In contrast, on Table 1(b), 𝑆 high values are concentrated
in themiddle of the table.The best value is reachedwhen PLR
response ≥5% is tested for predicting fluid bolus response
≥10%. This is obtained from 33TP, 32TN, 6FP, and 4FN. In
addition, Table 1(b) shows that 𝑆 isolates the highest values
better than CC; in Table 1(a), 3 values are 15% close to the
best score (0.78) while in Table 1(b) no 𝑆 values are 15% close
to the best score (0.73).

3.2. Step Two (Comparative Analysis). RR, LR+, LR−, OR,
and 𝜒2 ranges from zero to infinity, so that 𝑆 cannot be
directly compared with them. Figure 1 compares exp(𝑆) with
these ratios when the proportion of TP and TN are changing
and for two different levels of total true responses (97%
Figure 1(a) and 60% Figure 1(b)).
𝑄, 𝑌,𝐷, and CC are normalized from −1 to +1; thus, they

can be directly compared to 𝑆 (Figure 2).TheEquitableThreat
Score not represented on this figure for clarity is very close
to CC. All curves on Figures 1 and 2 have comparable shape
than 𝑆 curve when the predictability is poor (Figures 1(b) and
2(b)). When the predictability is good (Figures 1(a) and 2(a)),
all ratios except 𝑆 have relatively flat curve shape, indicating
independence from the balance between TP and PN.

Figures 1 and 2 compared 𝑆 with other ratios using
only two proportions of total true responses. A complete
comparison between CC and 𝑆 is given in Figures 3 and 4.
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Table 1: Comparison of CC in Table 1(a) and 𝑆 in Table 1(b) assessing the performance of PLR tests for predicting cardiac output responses
to fluid bolus. As example, on line 6, column 6, a PLR test increasing cardiac output by more than 10% predicts a cardiac output response over
10% after 500mL fluid bolus with CC = 0.65 and 𝑆 = 0.62. Imp = not derivable (divided by zero). Below −15% and over 25% for PLR response
and 50% for fluid response, CC is not derivable and 𝑆 is close to 0.

(a) Predictability of PLR-test for fluid bolus response based on CC value

PLR
≥ −15%

PLR
≥ −10%

PLR
≥ −5%

PLR
≥0%

PLR
≥5%

PLR
≥10%

PLR
≥15%

PLR
≥20%

PLR
≥25%

Fluid ≥ −15% 1.00∗ 0.49∗∗∗ 0.24# 0.17 0.12 0.08 0.04 0.03 0.03
Fluid ≥ −10% 0.43∗∗∗ 0.41∗∗∗ 0.44∗∗∗ 0.39# 0.28# 0.18 0.09 0.06 0.06
Fluid ≥ −5% 0.31# 0.64∗∗ 0.70∗∗ 0.54∗∗∗ 0.38# 0.25# 0.13 0.09 0.09
Fluid ≥0% 0.22# 0.45∗∗∗ 0.75∗∗ 0.78∗∗ 0.57∗∗∗ 0.41∗∗∗ 0.21# 0.19 0.07
Fluid ≥5% 0.15 0.31# 0.52∗∗∗ 0.71∗∗ 0.67∗∗ 0.53∗∗∗ 0.27# 0.27 0.09
Fluid ≥10% 0.1 0.21# 0.41∗∗∗ 0.61∗∗ 0.73∗∗ 0.65∗∗∗ 0.40# 0.39# 0.14
Fluid ≥15% 0.08 0.15 0.31# 0.46∗∗∗ 0.52∗∗∗ 0.38# 0.24# 0.33# 0.08
Fluid ≥20% 0.05 0.1 0.19 0.28# 0.35# 0.20# 0.18 0.22# 0.07
Fluid ≥25% 0.03 0.06 0.12 0.18 0.31# 0.19 0.19 0.25# 0.17
Fluid ≥30% 0.03 0.06 0.12 0.16 0.28# 0.25# 0.24# 0.30# 0.21#

Fluid ≥35% 0.02 0.05 0.09 0.14 0.24# 0.18 0.26# 0.25# 0.25#

Fluid ≥40% 0.02 0.03 0.05 0.08 0.13 0.18 0.28# 0.34# 0.49∗∗∗

Fluid ≥45% 0.01 0.01 0.05 0.08 0.13 0.19 0.28# 0.34# 0.70∗∗

Fluid ≥50% imp imp imp 0.02 0.08 0.12 0.31# 0.42∗∗∗ 0.70∗∗

(b) Predictability of PLR-test for fluid bolus response based on 𝑆 value

PLR
≥ −15%

PLR
≥ −10%

PLR
≥ −5%

PLR
≥0%

PLR
≥5%

PLR
≥10%

PLR
≥15%

PLR
≥20%

PLR
≥25%

Fluid ≥ −15% 0.05 0.05 0.05 0.04 0.03 0.02 0.01 0 0
Fluid ≥ −10% 0.05 0.09 0.17 0.18 0.14 0.08 0.05 0.01 0.01
Fluid ≥ −5% 0.05 0.19 0.34# 0.33# 0.25# 0.15 0.05 0.03 0.03
Fluid ≥0% 0.04 0.17 0.46∗∗∗ 0.60∗∗∗ 0.47∗∗∗ 0.27# 0.11 0.10 0.01
Fluid ≥5% 0.03 0.13 0.38# 0.59∗∗∗ 0.62∗∗ 0.46∗∗∗ 0.17 0.16 0.02
Fluid ≥10% 0.02 0.09 0.31# 0.56∗∗∗ 0.73∗∗ 0.62∗∗ 0.27# 0.24 0.03
Fluid ≥15% 0.02 0.07 0.21# 0.39# 0.51∗∗∗ 0.34# 0.14 0.19 0.02
Fluid ≥20% 0.01 0.06 0.1 0.19 0.25# 0.14 0.12 0.10 0.02
Fluid ≥25% 0 0.03 0.05 0.09 0.15 0.09 0.02 0.08 0.04
Fluid ≥30% 0 0.03 0.04 0.07 0.12 0.08 0.03 0.08 0.04
Fluid ≥35% 0 0.01 0.03 0.05 0.09 0.05 0.03 0.05 0.04
Fluid ≥40% 0 0 0.01 0.02 0.04 0.04 0.05 0.05 0.05
Fluid ≥45% 0 0 0.01 0.02 0.03 0.04 0.05 0.05 0.05
Fluid ≥50% 0 0 0 0.00 0.00 0.04 0.04 0.05 0.05
For better readability, values >0.8 are marked with (∗), >0.6 are marked with (∗∗), >0.4 are marked with (∗ ∗ ∗), and >0.2 are marked with (#). The
bold values inside Tables 1(a) and 1(b) delimitates the data originally published (see [9]). Corresponding 𝑆 values are also delimited in Table 1(b).

3.3. Step Three (Precision). The SD, precision and 95% CI
of 𝑆 is very close to these of CC, depending on the ratio
value (Figure 5). For example, the average precision of on
Figure 5(b) is 58% versus 56% for CC (NS). On the middle
of Figure 5(a) when 𝑆 and CC are close to 1, the precision is
<1% for both ratios.

4. Discussion

A natural cut-off for categorizing two quantitative variables
may be found when there is a clear inflexion point in their
relationship. This is observed for the pressure-flow relation-
ship in a Starling resistor [11] or the cells oxygen-supply
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Figure 1:The figure shows the changes of four traditional ratios when the balance between TP and TN varies form 0–100% to 100–0%; for the
same proportion of total true responses (TP + TN). The 𝑦-axis has log scale since these ratios range from zero to infinity. To report 𝑆 (which
is normalized from −1 to +1), we derived exp(𝑆). (a) has been computed with a high proportion of true responses (TP+TN = 97% of the total
number𝑁). False responses are set to FN = 1% and to FP = 2% to derive LRs, RR, and OR (not derivable if 0). (b) idem, but the proportion
of total true responses is low: FP = 26% and FN = 14%; therefore, TP + TN = 60% of𝑁. LR− symetric of LR+ is not represented here.
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Figure 2:The figure represents modeling of the same proportions of true and false responses rather than those shown in Figure 1 and depicts
the changes of 𝑆 as compared to other normalized ratios: 𝑄, 𝑌,𝐷, and CC. Therefore, the 𝑦-axis has standard scale.

and demand relationship [12]. In these two examples, a clear
inflexion point leads to determine two clear-cut categories
(pressure-flow dependency or not and oxygen-supply and
demand dependency or not). Alternatively, the existence
of a threshold of possible diagnostic interest may also be

suspected from a clear inflexion point in a ROC curve, very
close to the upper left or the lower right corner of the ROC
space.

In other situations, dichotomization most often leads to
loss of information, hiding the dose-response effect in most
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Figure 3: The figure shows simulating 𝑆 and CC values according to different proportions of TP, TN, FP, and FN. On the 𝑥-axis are reported
the different proportions of total true responses ((TP + TP)/𝑁) from 100 to 0% and, therefore, the symmetrical proportion of total false
responses. On the 𝑧-axis are reported the proportions of TP and TN for each level of total true responses. On the 𝑦-axis are reported the ratio
values. In this figure, we have balanced the total false responses as 50% FP and 50% FN.This explains that 𝑆 and CC have very close negative
values.
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Figure 4: The figure idem that of Figure 3(a) but computes different balances of FP and FN as done for TN and TP. The negative values of 𝑆
and CC are inversely symmetrical to the positive values.
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Figure 5:The figure compares the 95% confidence interval of 𝑆 and those of CC. (a) and (b) represents the same proportions of true and false
responses rather than those used for creating Figure 2.

biological processes. Nevertheless, it is sometimes necessary
to create conventional categories for various reasons. In this
case, it is often of interest to create categories of comparable
proportions and sizes; for instance, when generalizing the
results of a study for creating therapeutic tests or protocols
or for determining the cut-off point of an inclusion criterion
of a two arms-study. Ideally, in 50% of patients, presence of an
indicator will predict the event (TP) and, in 50%, the absence
of this indicator will predict the nonevent (TN).

The 𝑆 ratio described above is close to the coefficient
correlation (CC) and other normalized ratios (from −1 to
+1) when the predictability is poor. In contrast, when the
predictive value is high, which usually is the first objective
of any classification, 𝑆 is the unique ratio weighed by the
proportion of patients classified as TP and TN. Therefore, 𝑆
appears as an interesting tool to match good predictability
with two arms of comparable sizes.

The 𝑆 ratio has few limitations. When the proportion of
false response is balanced between FN and FP, 𝑆 is lower in
comparison to when FP and FN are clearly different, since the
product FP ∗ FN is subtracted in the numerator of 𝑆. Except
if homogeneity in the false responses is viewed as interesting,
which seems to be a hypothetical situation, this decrease in 𝑆
value does not indicate real loss of clinical interest. However,
this effect is also observed in other ratios that share with 𝑆 the
same numerator (𝑄 and CC). Moreover, this effect is mostly
effective when there is a high proportion of false response
thus relating to poor predictability.

In the present validation study, it was not possible to
derive a specific mathematic formula for estimating the
standard deviation of 𝑆. It would have been controversial
to compare a modeled 𝑆 confidence interval with these of
other ratios based on constant chi-square boundaries or
specific formulas that are often approximate. According to us,
modeling a 5% random error in 1000 hypothetical patients

as done presently is suitable for comparing the precision
of 𝑆 with that of other ratios. Nevertheless, determining an
appropriate 𝑆 standard deviation formula stands as future
research.

The best balance between TP and TN influences decision
outcome. If we create a therapeutic protocol or recommen-
dations by generalizing the conclusion of the clinical study
presented here [9], the best cut-off, identified fromCCvalues,
will lead to give fluid to all patients with positive PLR tests
(we excluded negative thresholds predicting harmful fluid
bolus, as done in the published results, see Table 1(a), CC =
0.78). If the studied population is representative of future
patients, 76% of patients (50TP + 7FN/75) will receive fluid
amongst which 67% will probably benefit (50TP/75) and 9%
will not (7FN/75). Patients with a negative PLR will receive
no fluid with low risk since there was no FP. In contrast, if we
consider the 𝑆-based best dichotomization, fluid infusionwill
be restricted to these patients with a PLR test ≥5%, therefore
to 49% of the patients (33TP + 4FN/75), among which 44%
will benefit from it (33TP/75) and 5% will not (4FN/75). The
other 51%of the patients will receive no fluid (32TN+6FP/75)
and, for 8% of these, it will be inappropriate (6FN/75).

In this example, use of 𝑆, leads to a more conservative
protocol (49% of interventions instead of 76%) but with a
small increase of apparent inappropriate categorization (13%
versus 9%). This illustrates the fact that, by using 𝑆, a better
balance between TP and TNmay be paid by a small decrease
in the absolute predictability. The final choice is a clinical
decision depending on the cost and side effects of treatments
as well as on the consequences of miscategorizations. In
this example, we can imagine that, in a specific unit with
a low incidence of lung injury, a protocol based on CC
would be preferred since the risk of overfilling would be
limited. However, in this type of unit, a PLR test can be
viewed as unnecessary since a fluid challenge can be proposed
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safely. In contrast, in a unit treating acute lung injuries,
the risk of overfilling would lead to the use of 𝑆. In their
conclusions, although the researchers did not derive the
𝑆 ratio, they recommended using that specific threshold
determined by 𝑆 (PLR > 4% for predicting fluid response
> 9%) after considering the least significant change of their
measurements and the balance between risk of over treating
and under treating the patients [9]. This illustrates the fact
that using CC and looking at the best balance between TP
and TN may provide with the same information than using
𝑆. However, 𝑆 holds the advantage of allowing easier, faster,
and a more reproducible approach.

The fact that 𝑆 reached the same conclusion as clinicians
in this example is not a chance. We can speculate that in
this population of patients, the probability of nonoptimal
filling was close to 0.5. 𝑆 best pair of thresholds represents
the highest real link including physiological and random
variations. Noteworthy, the least significant change (change
that have 95% chances to be real and not due to fluctuations
of measurements) of the cardiac output monitoring system
used here was 10%. In other words, 𝑆 confirms that, using this
specific cardiac output monitoring system, a real increase in
cardiac output after fluid bolus was 10%, and it was optimally
predicted by a PLR response over 5%.

We conclude that a new ratio, 𝑆 = 4{(TP ∗ TN) − (FP ∗
FN)}/𝑁2, stands a consideration when creating conventional
categories fromquantitative variables besideswhen expecting
a balance between true positive and true negative.
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