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We study the singularity of multivariate Hermite interpolation of type total degree on 𝑚 nodes with 3 + 𝑑 < 𝑚 ≤ 𝑑(𝑑 + 3)/2. We
first check the number of the interpolation conditions and the dimension of interpolation space. And then the singularity of the
interpolation schemes is decided for most cases. Also some regular interpolation schemes are derived, a few of which are proved
due to theoretical argument and most of which are verified by numerical method. There are some schemes to be decided and left
open.

1. Introduction

Let Π𝑑 be the space of all polynomials in 𝑑 variables, and let
Π
𝑑

𝑛
be the subspace of polynomials of total degree at most 𝑛.

LetX = {𝑋1, 𝑋2, . . . , 𝑋𝑚} be a set of pairwise distinct points
in R𝑑 and p = {𝑝1, 𝑝2, . . . , 𝑝𝑚} be a set of 𝑚 nonnegative
integers.TheHermite interpolation problem to be considered
in this paper is described as follows: Find a (unique) polyno-
mial 𝑓 ∈ Π𝑑

𝑛
satisfying

𝜕
𝛼
1
+𝛼
2
+⋅⋅⋅+𝛼

𝑑

𝜕𝑥
𝛼
1

1
⋅ ⋅ ⋅ 𝜕𝑥
𝛼
𝑑

𝑑

𝑓 (𝑋𝑞) = 𝑐𝑞,𝛼, 1 ≤ 𝑞 ≤ 𝑚, 0 ≤ |𝛼| ≤ 𝑝𝑞, (1)

for given values 𝑐𝑞,𝛼, where the numbers𝑝𝑞 and 𝑛 are assumed
to satisfy

(

𝑛 + 𝑑

𝑑

) =

𝑚

∑

𝑞=1

(

𝑝𝑞 + 𝑑

𝑑

) . (2)

Following [1, 2], such kind of problem is called Hermite
interpolation of type total degree. The interpolation problem
(p,X) is called regular if the above equation has a unique
solution for each choice of values {𝑐𝑞,𝛼, 1 ≤ 𝑞 ≤ 𝑚, 0 ≤ |𝛼| ≤
𝑝𝑞}. Otherwise, the interpolation problem is singular. As

shown in [3], the regularity of Hermite interpolation problem
(p,X) implies that it is regular for almost all X ⊂ R𝑑 with
|X| = 𝑚. Hence, in this paper, we will call p almost 𝑑-
regular if (p,X) is regular for some X ⊂ R𝑑. Otherwise,
we call p 𝑑-singular. With no confusion, we also call it
almost regular or singular for convenience. If𝑓 is a nontrivial
polynomial satisfying (1) with zero interpolation condition,
we call 𝑓 a vanishing polynomial with respect to X and p.
Obviously, (p,X) being singular is equivalent to the existence
of a vanishing polynomial of degree no more than 𝑛.

The research of regularity of multivariate Hermite inter-
polation is more difficult than Lagrange case, although the
latter is also difficult. One of the main reasons is that (2) does
not hold in some cases. About the results of multivariate Her-
mite interpolation, one can refer to [1–10] and the references
therein.Most recently, authors [5]made further development
and gave complete description for the regularity of the inter-
polation problem on 𝑚 = 𝑑 + 𝑘 (𝑘 ≤ 3) nodes, which is an
extension of the results mentioned in [1, 2]. Besides, not any
other results appeared for a big number of nodes.This paper is
an extension of [5] and we will investigate the singularity of
Hermite interpolation for 𝑚 = 𝑑 + 𝑘 ≤ 𝑑(𝑑 + 3)/2 with
𝑑 ≥ 3, 𝑘 ≥ 4.
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This paper is organized as follows. In Section 2, we
consider the singularity of the Hermite interpolation of type
total degree and present the main results. In Section 3, we
present theoretical proofs for some regular schemes. Finally,
in Section 4, we conclude our results.

2. Singularity of Interpolation Schemes

In this section, we will investigate the singularity of Hermite
interpolation of type total degree and (2) is always assumed
to hold. Hermite interpolation of type total degree is affinely
invariant in the sense that the interpolation is singular or
regular for one choice of nodes. In what follows, we assume
𝑚 = 𝑑 + 𝑘 ≤ 𝑑(𝑑 + 3)/2. In this case, since 𝑚 < (

𝑑+2
2
),

there must exist a nontrivial quadratic polynomial 𝑄 which
vanishes at 𝑋1, 𝑋2, . . . , 𝑋𝑚. Also there exists a nontrivial
linear polynomial 𝐿 vanishing at𝑋𝑘+1, 𝑋𝑘+2, . . . , 𝑋𝑘+𝑑. Given
̃X = {𝑋𝑖

1

, 𝑋𝑖
2

, . . . , 𝑋𝑖
𝜏

} ⊂ X and p̃ = {𝑝𝑖
1

, 𝑝𝑖
2

, . . . , 𝑝𝑖
𝜏

}, if
there are vanishing polynomials with respect to p̃ and̃X, we
will denote by 𝑑

𝑡
[𝑓]

p̃
X̃
one vanishing polynomial of them.

Here we always assume that no interpolation happens at
𝑋𝑖
𝑟

if the 𝑟th component 𝑝𝑖
𝑟

of p̃ is −1. Obviously, vanishing
polynomials always exist if

𝜏

∑

𝑗=1

(

𝑝𝑖
𝑗

+ 𝑑

𝑑

) < (

𝑡 + 𝑑

𝑡

) , (3)

since the number of the equations is less than the number of
the unknowns.

For convenience, we always order 0 ≤ 𝑝1 ≤ 𝑝2 ≤ ⋅ ⋅ ⋅ ≤ 𝑝𝑚
with 𝑝𝑚 ≥ 1. In [5], authors showed that the inequality

𝑛 ≥ 𝑝𝑚 + 𝑝𝑚−1 + 1 (4)

must hold if (p,X) is regular, which gives evaluation of 𝑛 in
(2). The following theorem implies that inequality (4) is very
sharp.

Theorem 1. Given X = {𝑋1, 𝑋2, . . . , 𝑋𝑚} and p = {𝑝1, 𝑝2,

. . . , 𝑝𝑚}, if 𝑛 > 𝑝𝑚 + 𝑝𝑚−1 + 1, then p is singular.

Proof. We first assume 𝑝𝑘 + 1 ≤ 𝑝𝑚. Then 𝑓 = 𝑄𝑝𝑘+1𝐿𝑝𝑚−𝑝𝑘 is
a vanishing polynomial with respect toX and p, and

deg (𝑓) = 2 (𝑝𝑘 + 1) + 𝑝𝑚 − 𝑝𝑘 ≤ 𝑝𝑚 + 𝑝𝑘 + 2

≤ 𝑝𝑚 + 𝑝𝑚−1 + 2 ≤ 𝑛.

(5)

Thus, in this case p is singular.
If 𝑝𝑘 = 𝑝𝑘+1 = ⋅ ⋅ ⋅ = 𝑝𝑚, then 𝑛 > 𝑝𝑚+𝑝𝑚−1+1 = 2𝑝𝑚+1.

Thus 𝑄𝑝𝑚+1 is a vanishing polynomial with respect toX and
p, and

deg (𝑄𝑝𝑚+1) = 2𝑝𝑚 + 2 ≤ 𝑛. (6)

Collecting two cases, we complete the proof.

Next, we assume 𝑛 = 𝑝𝑚 + 𝑝𝑚−1 + 1.

Lemma 2. GivenX = {𝑋1, 𝑋2, . . . , 𝑋𝑚} and p = {𝑝1, 𝑝2, . . . ,
𝑝𝑚}, if 𝑝𝑘 + 1 ≤ 𝑝𝑚−1, then p is singular.

Proof. Let 𝑓 = 𝑄
𝑝
𝑘
+1
⋅ 𝐿
𝑝
𝑚
−𝑝
𝑘 . Then 𝑓 is a vanishing poly-

nomial with respect toX and p. Moreover

deg (𝑓) = 2 (𝑝𝑘 + 1) + 𝑝𝑚 − 𝑝𝑘 = 𝑝𝑚 + 𝑝𝑘 + 2

≤ 𝑝𝑚 + 𝑝𝑚−1 + 1 = 𝑛.

(7)

This completes the proof.

If 𝑝𝑘 + 1 > 𝑝𝑚−1, we easily get 𝑝𝑘 = 𝑝𝑘+1 = ⋅ ⋅ ⋅ = 𝑝𝑚−1.
The following theorem is due to [5], whichwill be used in next
lemma.

Theorem 3 (see [5]). Assume 𝑚 ≥ 2. Given X = {𝑋1, 𝑋2,

. . . , 𝑋𝑚} and p = {𝑝1, 𝑝2, . . . , 𝑝𝑚}, if

𝑝1 + 𝑝2 + ⋅ ⋅ ⋅ + 𝑝𝑚 + 𝑚 ≤ 𝑛𝑑 (8)

then the Hermite interpolation of type total degree is singular.

This theorem implies that there exists a vanishing poly-
nomial of degree no more than 𝑛 with respect to p and X if
(8) holds.

Lemma 4. GivenX = {𝑋1, 𝑋2, . . . , 𝑋𝑚} and p = {𝑝1, 𝑝2, . . . ,
𝑝𝑚}, if 𝑝𝑘 = 𝑝𝑘+1 = ⋅ ⋅ ⋅ = 𝑝𝑚−1 and 𝑝𝑘−1 + 2 ≤ 𝑝𝑚, then p is
singular.

Proof. Let𝑃1 = 𝑄𝑝𝑘−1+1.Then𝑃1 together with all of its partial
derivatives of order up to 𝑝𝑘−1 vanishes at the 𝑚 points. For
𝑑 + 1 points𝑋𝑘, 𝑋𝑘+1, . . . , 𝑋𝑘+𝑑, since

(𝑝𝑘 − 𝑝𝑘−1 − 1) + (𝑝𝑘+1 − 𝑝𝑘−1 − 1) + ⋅ ⋅ ⋅

+ (𝑝𝑚 − 𝑝𝑘−1 − 1) + (𝑑 + 1) = 𝑑𝑝𝑚−1 + 𝑝𝑚

− (𝑑 + 1) 𝑝𝑘−1 = 𝑑𝑝𝑚−1 + 𝑝𝑚 + (𝑑 − 1) 𝑝𝑘−1

− 2𝑑𝑝𝑘−1 ≤ 𝑑𝑝𝑚−1 + 𝑝𝑚 + (𝑑 − 1) (𝑝𝑚 − 2)

− 2𝑑𝑝𝑘−1 ≤ 𝑑 (𝑝𝑚−1 + 𝑝𝑚 − 2𝑝𝑘−1 − 1) ,

(9)

it follows from Theorem 3 that there exists a polynomial 𝑃2
with deg (𝑃2) ≤ 𝑝𝑚−1 + 𝑝𝑚 − 2𝑝𝑘−1 − 1, together with all of
its partial derivatives of order up to 𝑝𝑖 − 𝑝𝑘−1 − 1 vanishing
at 𝑋𝑖 for 𝑖 = 𝑘, 𝑘 + 1, . . . , 𝑚. Let 𝑓 = 𝑃1𝑃2. Then, 𝑓 and all
of its partial derivatives of order up to 𝑝𝑖 vanish at 𝑋𝑖 for 𝑖 =
1, 2, . . . , 𝑚, and

deg (𝑓) = 2 (𝑝𝑘−1 + 1) + 𝑝𝑚−1 + 𝑝𝑚 − 2𝑝𝑘−1 − 1

≤ 𝑝𝑚 + 𝑝𝑚−1 + 1 ≤ 𝑛.

(10)

Thus, the interpolation is singular.

In what follows, we only need to consider 𝑝𝑘 = 𝑝𝑘+1 =

⋅ ⋅ ⋅ = 𝑝𝑚−1 and 𝑝𝑘−1 + 1 ≥ 𝑝𝑚, which includes

𝑝𝑘−1 + 1 = 𝑝𝑘 = ⋅ ⋅ ⋅ = 𝑝𝑚, 𝑛 = 2𝑝𝑚 + 1, (11)

𝑝𝑘−1 = ⋅ ⋅ ⋅ = 𝑝𝑚−1 = 𝑝𝑚 − 1, 𝑛 = 2𝑝𝑚, (12)

𝑝𝑘−1 = 𝑝𝑘 = ⋅ ⋅ ⋅ = 𝑝𝑚, 𝑛 = 2𝑝𝑚 + 1. (13)
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Lemma 5. GivenX = {𝑋1, 𝑋2, . . . , 𝑋𝑚} and p = {𝑝1, 𝑝2, . . . ,
𝑝𝑚}, suppose that (11) is satisfied; then Hermite interpolation of
type total degree is almost regular if and only if 𝑑 = 3, 𝑘 = 5

and

{𝑝1, 𝑝2, . . . , 𝑝8}

= {𝑝 − 1, 𝑝 − 1, 𝑝 − 1, 𝑝 − 1, 𝑝, 𝑝, 𝑝, 𝑝} .

(14)

Proof. Set 𝑝𝑘 = ⋅ ⋅ ⋅ = 𝑝𝑚 = 𝑝 (𝑝 ≥ 1); then 𝑝𝑘−1 = 𝑝 − 1 and
𝑛 = 2𝑝 + 1. We first check (2). Let

𝐺𝑘 (𝑑, 𝑝) =

𝑚

∑

𝑗=1

(

𝑝𝑖 + 𝑑

𝑑

) − (

𝑛 + 𝑑

𝑑

)

=

1

𝑑!

(

𝑘−2

∑

𝑗=1

𝑑

∏

𝑖=1

(𝑝𝑗 + 𝑖) +

𝑑

∏

𝑖=1

(𝑝 + 𝑖 − 1)

+ (𝑑 + 1)

𝑑

∏

𝑖=1

(𝑝 + 𝑖) −

𝑑

∏

𝑖=1

(2𝑝 + 1 + 𝑖)) .

(15)

Since 𝑝𝑗 ≤ 𝑝𝑘−1 for 𝑗 = 1, 2, . . . , 𝑘 − 2 and 𝑑 + 𝑘 ≤ 𝑑(𝑑 + 3)/2,
then

𝐺𝑘 (𝑑, 𝑝) ⋅ 𝑑! ≤ (𝑘 − 1)

𝑑

∏

𝑖=1

(𝑝 + 𝑖 − 1)

+ (𝑑 + 1)

𝑑

∏

𝑖=1

(𝑝 + 𝑖)

−

𝑑

∏

𝑖=1

(2𝑝 + 1 + 𝑖)

≤

1

2

(𝑑 + 2) (𝑑 − 1)

𝑑

∏

𝑖=1

(𝑝 + 𝑖 − 1)

+ (𝑑 + 1)

𝑑

∏

𝑖=1

(𝑝 + 𝑖)

−

𝑑

∏

𝑖=1

(2𝑝 + 1 + 𝑖) fl 𝐹 (𝑑, 𝑝) .

(16)

We will show that 𝐹(𝑑, 𝑝) < 0 implies 𝐹(𝑑 + 1, 𝑝) < 0. Note
that

𝑑

∏

𝑖=1

(𝑝 + 𝑖 − 1) =

𝑝

𝑝 + 𝑑

𝑑

∏

𝑖=1

(𝑝 + 𝑖) . (17)

Thus if 𝐹(𝑑, 𝑝) < 0, then

𝑑

∏

𝑖=1

(𝑝 + 𝑖)

<

(𝑝 + 𝑑)∏
𝑑

𝑖=1
(2𝑝 + 1 + 𝑖)

(1/2) (𝑑 + 2) (𝑑 − 1) 𝑝 + (𝑑 + 1) (𝑑 + 𝑝)

.

(18)

Hence

𝐹 (𝑑 + 1, 𝑝) =

1

2

(𝑑 + 3) 𝑑

𝑑+1

∏

𝑖=1

(𝑝 + 𝑖 − 1) + (𝑑 + 2)

𝑑+1

∏

𝑖=1

(𝑝 + 𝑖) −

𝑑+1

∏

𝑖=1

(2𝑝 + 1 + 𝑖)

=

1

2

(𝑑 + 3) 𝑑

𝑑

∏

𝑖=0

(𝑝 + 𝑖) + (𝑑 + 2)

𝑑+1

∏

𝑖=1

(𝑝 + 𝑖) −

𝑑+1

∏

𝑖=1

(2𝑝 + 1 + 𝑖)

= (

1

2

(𝑑 + 3) 𝑑𝑝 + (𝑑 + 2) (𝑝 + 𝑑 + 1))

𝑑

∏

𝑖=1

(𝑝 + 𝑖) −

𝑑+1

∏

𝑖=1

(2𝑝 + 1 + 𝑖)

<

((1/2) (𝑑 + 3) 𝑑𝑝 + (𝑑 + 2) (𝑝 + 𝑑 + 1)) (𝑝 + 𝑑)∏
𝑑

𝑖=1
(2𝑝 + 1 + 𝑖)

(1/2) (𝑑 + 2) (𝑑 − 1) 𝑝 + (𝑑 + 1) (𝑑 + 𝑝)

−

𝑑+1

∏

𝑖=1

(2𝑝 + 1 + 𝑖)

=

∏
𝑑

𝑖=1
(2𝑝 + 1 + 𝑖)

(1/2) (𝑑 + 2) (𝑑 − 1) 𝑝 + (𝑑 + 1) (𝑑 + 𝑝)

⋅ 𝐻 (𝑑, 𝑝) ,

(19)

where

𝐻(𝑑, 𝑝) = (

1

2

(𝑑 + 3) 𝑑𝑝 + (𝑑 + 2) (𝑝 + 𝑑 + 1))

⋅ (𝑝 + 𝑑) − (2𝑝 + 𝑑 + 2)

⋅ (

1

2

(𝑑 + 2) (𝑑 − 1) 𝑝 + (𝑑 + 1) (𝑑 + 𝑝))

= −

𝑝

2

(𝑑
2
𝑝 + 2𝑑

2
+ 𝑑𝑝 − 4𝑝 − 4) .

(20)

Since 𝜕𝐻/𝜕𝑑 = −(𝑝/2)(2𝑑𝑝 + 4𝑑 + 𝑝) < 0 for 𝑑 ≥ 2,
𝐻(𝑑, 𝑝) ismonotonically decreasing about 𝑑.Thus,𝐻(𝑑, 𝑝) <
0 for 𝑑 ≥ 2 due to𝐻(2, 𝑝) = −𝑝(𝑝 + 2) < 0 and 𝐹(𝑑 + 1, 𝑝) <
0.
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Since 𝐹(4, 𝑝) = −2𝑝(𝑝 + 1)2(𝑝 + 2) < 0, then 𝐺𝑘(𝑑, 𝑝) ≤
𝐹(𝑑, 𝑝) < 0 for 𝑑 ≥ 4, which means that (2) does not hold for
𝑑 ≥ 4. Thus we only need to consider 𝑑 = 3. In this case

6𝐺𝑘 (3, 𝑝) ≤ (𝑘 − 1)

3

∏

𝑖=1

(𝑝 + 𝑖 − 1) + 4

3

∏

𝑖=1

(𝑝 + 𝑖)

−

3

∏

𝑖=1

(2𝑝 + 1 + 𝑖)

= 𝑘𝑝
3
+ 3𝑘𝑝

2
− 5𝑝
3
+ 2𝑘𝑝 − 15𝑝

2
− 10𝑝

=

{
{
{
{

{
{
{
{

{

−𝑝
3
− 3𝑝
2
− 2𝑝 < 0, 𝑘 = 4;

0, 𝑘 = 5;

𝑝
3
+ 3𝑝
2
+ 2𝑝, 𝑘 = 6.

(21)

Hence, for 𝑑 = 3, (2) does not hold for 𝑘 = 4 and holds for 𝑘 =
5 only if (14) holds. We will show that it is almost regular in
next section. For 𝑑 = 3 and 𝑘 = 6, (2) holds only in the case of
𝑝2 ≤ 𝑝−2 since (2) holds for {𝑝−1, 𝑝−1, 𝑝−1, 𝑝−1, 𝑝, 𝑝, 𝑝, 𝑝}.
We can show that p is singular if 𝑝2 ≤ 𝑝 − 2. In fact, we can
take 𝑓 = 𝑄

𝑝−1
⋅ (
3

3
[𝑓]

p̃
X
) with p̃ = {−1, −1, 0, 0, 0, 1, 1, 1, 1} as

the vanishing polynomial. Obviously deg (𝑓) = 2(𝑝−1)+3 =
2𝑝 + 1. The proof is completed.

Lemma 6. GivenX = {𝑋1, 𝑋2, . . . , 𝑋𝑚} and p = {𝑝1, 𝑝2, . . . ,
𝑝𝑚}. Suppose that (12) is satisfied and that𝑝𝑘−1 = ⋅ ⋅ ⋅ = 𝑝𝑚−1 =
𝑝 ≥ 0. Then

(i) for 𝑝 = 0, (2) holds only for one form {0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(1/2)𝑑(𝑑+1)

, 1}

andHermite interpolation of type total degree is almost
regular for 𝑑 ≥ 2;

(ii) for 𝑝 = 1, if 𝑑 ≥ 7, it is singular; if 3 ≤ 𝑑 ≤ 6, (2)
has three positive integer solutions and corresponding
interpolation schemes are almost regular;

(iii) for 𝑝 ≥ 2,

(a) if 𝑑 ≥ 5, it is singular;

(b) if 𝑑 = 4 and 𝑝 > 6, it is also singular;
(c) if 𝑑 = 4 and 2 ≤ 𝑝 ≤ 6, (2) has four positive

integer solutions and in these cases p are almost
regular;

(d) if 𝑑 = 3, 𝑘 = 4, 6, it is singular;
(e) if 𝑑 = 3, 𝑘 = 5, (2) holds only for one form (𝑝 −

1, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝 + 1) and it is almost regular.

Proof. Set 𝑝𝑘−1 = ⋅ ⋅ ⋅ = 𝑝𝑚−1 = 𝑝 (𝑝 ≥ 0) and 𝑝𝑚 = 𝑝 + 1;
then 𝑛 = 2𝑝 + 2. If 𝑝 = 0, it is easy to check that (2) holds
if and only if 𝑚 = 𝑑(𝑑 + 1)/2 + 1 and 𝑝𝑚 = 1, 𝑝𝑖 = 0, 𝑖 =

1, 2, . . . , 𝑑(𝑑 + 1)/2. This scheme is almost regular, which will
be proved inTheorem 15 of the next section.

For 𝑝 ≥ 1, we first check (2). Let

𝐺𝑘 (𝑑, 𝑝) =

𝑚

∑

𝑗=1

(

𝑝𝑖 + 𝑑

𝑑

) − (

𝑛 + 𝑑

𝑑

)

=

1

𝑑!

(

𝑘−2

∑

𝑗=1

𝑑

∏

𝑖=1

(𝑝𝑗 + 𝑖) + (𝑑 + 1)

𝑑

∏

𝑖=1

(𝑝 + 𝑖)

+

𝑑

∏

𝑖=1

(𝑝 + 1 + 𝑖) −

𝑑

∏

𝑖=1

(2𝑝 + 2 + 𝑖)) .

(22)

Since 𝑝𝑗 ≤ 𝑝𝑘−1 for 𝑗 = 1, 2, . . . , 𝑘 − 2 and 𝑑 + 𝑘 ≤ 𝑑(𝑑 + 3)/2,
then

𝐺𝑘 (𝑑, 𝑝) ⋅ 𝑑! ≤ (

𝑑 (𝑑 + 3)

2

− 1)

𝑑

∏

𝑖=1

(𝑝 + 𝑖)

+

𝑑

∏

𝑖=1

(𝑝 + 1 + 𝑖) −

𝑑

∏

𝑖=1

(2𝑝 + 2 + 𝑖)

fl 𝐹 (𝑑, 𝑝) .

(23)

By the same argument with Lemma 5, one can show that
𝐹(𝑑, 𝑝) < 0 implies that 𝐹(𝑑 + 1, 𝑝) < 0. The following facts
can be checked easily:

𝐹 (𝑑, 𝑝) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

−3 (𝑝 + 4) (𝑝 + 3) (𝑝 + 2) (𝑝 + 1) (31𝑝
3
+ 257𝑝

2
+ 440𝑝 − 420) , 𝑑 = 7

− (𝑝 − 1) (37𝑝 + 150) (𝑝 + 4) (𝑝 + 3) (𝑝 + 2) (𝑝 + 1) , 𝑑 = 6

− (𝑝 + 1) (𝑝 + 2) (𝑝 + 3) (12𝑝
2
+ 23𝑝 − 80) , 𝑑 = 5

−2 (𝑝 − 6) (𝑝 + 3) (𝑝 + 2) (𝑝 + 1) , 𝑑 = 4.

(24)

Since 𝐹(7, 𝑝) < 0 for 𝑝 ≥ 1, (2) does not hold for 𝑑 ≥ 7.
For 𝑝 = 1 and 3 ≤ 𝑑 ≤ 6, (2) has three positive

integer solutions {0, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

6

, 2}(𝑑 = 3), {1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

11

, 2}(𝑑 = 4)

and {1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

26

, 2}(𝑑 = 6). These three schemes are almost

regular, which can be verified by numerical method; see
Remark 7.

Since 𝐹(5, 𝑝) < 0 for 𝑝 ≥ 2, (2) does not hold for 𝑑 ≥ 5

and 𝑝 ≥ 2. Similarly, 𝐹(4, 𝑝) < 0 for 𝑝 > 6 means that (2)
does not hold for 𝑑 = 4 and 𝑝 > 6.
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For 𝑑 = 4 and 2 ≤ 𝑝 ≤ 6, (2) has four positive integer
solutions

{1, 1, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

11

, 3} , {1, 3, . . . , 3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

12

, 4} , {3, 4, . . . , 4⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

12

, 5} ,

{6, . . . , 6⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

13

, 7} ,

(25)

which are shown to be almost regular by numerical method
presented in Remark 7.

Let us consider the case of 𝑑 = 3.
From the definition of 𝐺𝑘(𝑑, 𝑝), we obtain

3! ⋅ 𝐺4 (3, 𝑝) =

2

∑

𝑗=1

3

∏

𝑖=1

(𝑝𝑗 + 𝑖) + 4

3

∏

𝑖=1

(𝑝 + 𝑖)

+

3

∏

𝑖=1

(𝑝 + 𝑖 + 1) −

3

∏

𝑖=1

(2𝑝 + 2 + 𝑖)

≤ 6

3

∏

𝑖=1

(𝑝 + 𝑖) +

3

∏

𝑖=1

(𝑝 + 1 + 𝑖)

−

3

∏

𝑖=1

(2𝑝 + 2 + 𝑖)

= −𝑝 (𝑝 + 1) (𝑝 + 2) < 0.

(26)

Then, (2) does not hold for 𝑑 = 3, 𝑘 = 4.
For 𝑑 = 3, 𝑘 = 5, (2) holds for the form

{𝑝 − 1, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝 + 1} . (27)

Indeed, this form is the only one since 𝑝1 ≤ 𝑝2 = 𝑝3 = 𝑝.
This scheme is almost regular, which will be proved in the
next section.

Finally, we consider the case of 𝑑 = 3, 𝑘 = 6. We can
show that p is singular by taking 𝑄𝑝 ⋅ (3

2
[𝑓]

p
1

X
) with p1 =

{−1, −1, −1, 0, 0, 0, 0, 0, 1} for 𝑝3 < 𝑝 and 𝑄
𝑝−1

⋅ (
3

4
[𝑓]

p
2

X
)

with p2 = {−1, −1, 1, 1, 1, 1, 1, 1, 2} for 𝑝3 = 𝑝 as vanishing
polynomial with respect to X and p. Here we use the fact
that 𝑝2 < 𝑝 − 1 if 𝑝3 = 𝑝 which can be obtained by a simple
calculation.

The proof is completed.

Remark 7. Generally speaking, it is difficult to judge the regu-
larity of the interpolation schemes theoretically. For a given p,
one possible way to decide the regularity is based on numeri-
calmethod: calculating the vanishing ideal (see [5] for details)
or the corresponding Vandermondematrix, where the points
can be selected randomly.However, the formermethod needs
to do symbolic calculation which is little useful for big 𝑑,𝑚,
and 𝑝. The latter one needs to judge the singularity of the
matrix, which is also difficult if the order is very big. Although
so, it is a good way for moderate 𝑑, 𝑚, and 𝑝, which is
employed in this paper for some simple cases.

Lemma 8. GivenX = {𝑋1, 𝑋2, . . . , 𝑋𝑚} and p = {𝑝1, 𝑝2, . . . ,
𝑝𝑚}, suppose that (13) is satisfied and that 𝑝𝑘−1 = ⋅ ⋅ ⋅ = 𝑝𝑚 =

𝑝 ≥ 2. Then

(i) if 𝑑 ≥ 21, (2) never holds;
(ii) if 4 ≤ 𝑑 ≤ 20, (2) has finite positive integer solutions

listed in Table 2.

Proof. We first check (2). Let

𝐺𝑘 (𝑑, 𝑝) =

𝑚

∑

𝑗=1

(

𝑝𝑖 + 𝑑

𝑑

) − (

𝑛 + 𝑑

𝑑

)

=

1

𝑑!

(

𝑘−2

∑

𝑗=1

𝑑

∏

𝑖=1

(𝑝𝑗 + 𝑖) + (𝑑 + 2)

𝑑

∏

𝑖=1

(𝑝 + 𝑖)

−

𝑑

∏

𝑖=1

(2𝑝 + 1 + 𝑖)) .

(28)

Since 𝑝𝑗 ≤ 𝑝𝑘−1 for 𝑗 = 1, 2, . . . , 𝑘 − 2 and 𝑑 + 𝑘 ≤ 𝑑(𝑑 + 3)/2,
then

𝐺𝑘 (𝑑, 𝑝) ⋅ 𝑑! ≤

𝑑 (𝑑 + 3)

2

𝑑

∏

𝑖=1

(𝑝 + 𝑖)

−

𝑑

∏

𝑖=1

(2𝑝 + 1 + 𝑖) fl 𝐹 (𝑑, 𝑝) .

(29)

In the samewaywith Lemma 5, one can show that𝐹(𝑑, 𝑝) < 0
implies that 𝐹(𝑑 + 1, 𝑝) < 0 and 𝐹(𝑑, 𝑝 + 1) < 0. By a simple
calculation, we have

𝐹 (21, 2) < 0,

𝐹 (10, 3) < 0,

𝐹 (8, 4) < 0,

𝐹 (7, 5) < 0,

𝐹 (6, 6) < 0,

𝐹 (5, 8) < 0,

𝐹 (4, 20) < 0,

𝐹 (20, 2) = 0,

𝐹 (19, 2) > 0,

𝐹 (9, 3) > 0,

𝐹 (7, 4) > 0,

𝐹 (6, 5) > 0,

𝐹 (5, 6) > 0,

𝐹 (4, 8) > 0,

𝐹 (4, 19) > 0.

(30)
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Figure 1: The possible pairs (𝑑, 𝑝) satisfying (2) in the case of 𝑑 > 3
and 𝑝 ≥ 2.

𝐹(𝑑, 𝑝) > 0 implies that 𝐹(̃𝑑, 𝑝) > 0 holds for all ̃𝑑 < 𝑑. Thus
we must take 𝑝1 ≤ 𝑝 − 1 to ensure (2) if 𝐹(𝑑, 𝑝) > 0. Hence,
let

𝐹̃ (𝑑, 𝑝) =

𝑑

∏

𝑖=1

(𝑝 − 1 + 𝑖) +

𝑑 (𝑑 + 3) − 2

2

𝑑

∏

𝑖=1

(𝑝 + 𝑖)

−

𝑑

∏

𝑖=1

(2𝑝 + 1 + 𝑖)

(31)

and we again have 𝐹̃(𝑑, 𝑝) < 0 implying 𝐹̃(𝑑 + 1, 𝑝) < 0 and
𝐹̃(𝑑, 𝑝 + 1) < 0. It is easy to get

𝐹̃ (20, 2) < 0,

𝐹̃ (10, 3) < 0,

𝐹̃ (7, 4) < 0,

𝐹̃ (6, 5) < 0,

𝐹̃ (4, 18) < 0.

(32)

Thus we can obtain the possible pairs (𝑑, 𝑝) satisfying (2); see
Figure 1.

By detailed analysis and computation, the solution of (2)
can be obtained and is listed in Table 2; see Appendix.

Lemma 9. Let 𝑑 = 3. Given X = {𝑋1, 𝑋2, . . . , 𝑋𝑚} and p =

{𝑝1, 𝑝2, . . . , 𝑝𝑚}, suppose that (13) is satisfied and that 𝑝𝑘−1 =
⋅ ⋅ ⋅ = 𝑝𝑚 = 𝑝 ≥ 2. Then

(i) for 𝑘 = 4, (2) has four positive integer solutions and the
corresponding interpolation schemes are singular;

(ii) for 𝑘 = 5, (2) has only one positive integer solution and
the corresponding interpolation scheme is almost regu-
lar;

(iii) for 𝑘 = 6 and 𝑝 < 10, (2) has finite positive integer
solutions and all of them are singular.

Proof. (i) 𝑑 = 3 and 𝑘 = 4.
According to the definition of 𝐺𝑘(𝑑, 𝑝) in Lemma 8, we

obtain

𝐺4 (3, 𝑝) ≤ −

1

6

(𝑝 + 1) (𝑝 + 2) (𝑝 − 9) . (33)

So, (2) never holds if 𝑝 > 9. If 𝑝 ≤ 9, (2) has four positive
integer solutions {2, 2, 3, 3, 3, 3, 3}, {2, 4, 4, 4, 4, 4, 4}, {5, 6, 6, 6,
6, 6, 6}, and {9, 9, 9, 9, 9, 9, 9}. We claim that they are all
singular. To show this we can take

𝑓1 = (
3

4
[𝑓]

p
1

X
) ⋅ (
3

3
[𝑓]

p
2

X
) ,

𝑓2 = (
3

3
[𝑓]

p
2

X
) ⋅ (
3

3
[𝑓]

p
3

X
) ⋅ (
3

3
[𝑓]

p
4

X
) ,

𝑓3 = (
3

4
[𝑓]

p
1

X
) ⋅ (
3

4
[𝑓]

p
5

X
) ⋅ (
3

4
[𝑓]

p
7

X
) ⋅ 𝐿,

𝑓4 = (
3

4
[𝑓]

p
1

X
) ⋅ (
3

4
[𝑓]

p
5

X
) ⋅ (
3

4
[𝑓]

p
6

X
) ⋅ (
3

4
[𝑓]

p
7

X
)

⋅ (
3

3
[𝑓]

p
2

X
)

(34)

as vanishing polynomials with respect to these four solutions,
respectively, where

p1 = {1, 1, 2, 1, 1, 1, 1} ,

p2 = {0, 0, 0, 1, 1, 1, 1} ,

p3 = {0, 1, 1, 1, 1, 0, 0} ,

p4 = {0, 1, 1, 0, 0, 1, 1} ,

p5 = {1, 2, 1, 1, 1, 1, 1} ,

p6 = {1, 1, 1, 2, 1, 1, 1} ,

p7 = {2, 1, 1, 1, 1, 1, 1} .

(35)

(ii) 𝑑 = 3 and 𝑘 = 5.
Equation (2) has only one positive integer solution

{0, 0, 1, 2, 2, 2, 2, 2}which is almost regular.The regularity can
be checked by numerical method mentioned in Remark 7.

(iii) 𝑑 = 3, 𝑘 = 6, and 𝑝5 = ⋅ ⋅ ⋅ = 𝑝9 = 𝑝 < 10.
We will show that all the schemes in this case are singular.

The proof is based on the following three cases.

Case 1. Consider the following: 𝑝4 < 𝑝.

(1) 𝑝4 ≤ 𝑝 − 2. If (2) holds, then p is singular. In fact we
can check that

𝑄
𝑝−2

⋅ (
3

5
[𝑓]

p
8

X
) , p8 = {0, 0, 0, 0, 2, 2, 2, 2, 2} (36)

is the desired vanishing polynomial.
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(2) 𝑝4 = 𝑝 − 1. We consider the case of 𝑝3 < 𝑝4 firstly. In
this case, (2) holds only if 𝑝1 ≤ 𝑝3 −1 = 𝑝−3 because

(

𝑝 + 3

3

) ⋅ 5 + (

𝑝 − 1 + 3

3

) + (

𝑝 − 2 + 3

3

) ⋅ 3

− (

2𝑝 + 1 + 3

3

) =

1

6

(𝑝 + 1) (𝑝
2
− 4𝑝 + 6) ,

(37)

and we can check that p is singular if 𝑝1 ≤ 𝑝 − 4. In fact, we
can take

𝑄
𝑝−3

⋅ (
3

7
[𝑓]

p
9

X
) , p9 = {0, 1, 1, 2, 3, 3, 3, 3, 3} (38)

as the vanishing polynomial of p.
We next consider the case of 𝑝3 = 𝑝4. In this case, 𝑝2 ≤

𝑝3 − 2 must hold; otherwise (2) never holds. If 𝑝2 = 𝑝3 −

2, (2) has two solutions: {0, 1, 3, 3, 4, 4, . . . , 4} and {1, 2, 4, 4,
5, . . . , 5}. These two schemes are singular, which can be
checked by numerical method (see Remark 12). If𝑝2 < 𝑝3−2,
then the interpolation scheme p is singular, which can be
shown to take

𝑄
𝑝−3

⋅ (
3

7
[𝑓]

p
10

X
) , p10 = {−1, −1, 2, 2, 3, 3, 3, 3, 3} (39)

as the vanishing polynomial. Here the existence of (3
7
[𝑓]

p
10

X
)

follows from the construction of 𝑓1 in (34).

Case 2. 𝑝3 < 𝑝4 = ⋅ ⋅ ⋅ = 𝑝9 = 𝑝.
We first claim that p is singular if 𝑝3 ≤ 𝑝 − 3. Notice that

if 𝑝3 = 𝑝−3, then (2) holds only if 𝑝2 < 𝑝3, which will lead to
the singularity of p. The vanishing polynomial can be taken
as

𝑄
𝑝−3

⋅ (
3

3
[𝑓]

p
11

X
) ⋅ (
3

2
[𝑓]

p
12

X
) ⋅ (
3

2
[𝑓]

p
13

X
) , (40)

where

p11 = {−1, −1, 0, 0, 0, 1, 1, 1, 1} ,

p12 = {−1, −1, −1, 1, 0, 0, 0, 0, 0} ,

p13 = {−1, −1, −1, 0, 1, 0, 0, 0, 0} .

(41)

If 𝑝3 = 𝑝 − 2, then 𝑝2 < 𝑝3 must hold to ensure (2).
If 𝑝3 = 𝑝2 + 1 or 𝑝2 + 2, (2) has four solutions for 𝑝 <

10: {0, 3, 4, 6, . . . , 6}, {2, 5, 6, 8, . . . , 8}, {1, 1, 3, 5, . . . , 5}, and
{3, 3, 5, 7, . . . , 7}. These four schemes are singular, which can
be checked bynumericalmethod (seeRemark 12). If𝑝3 ≥ 𝑝2+
3, then p is singular by taking

𝑄
𝑝−4

⋅ (
3

3
[𝑓]

p
11

X
) ⋅ (
3

3
[𝑓]

p
14

X
) ⋅ (
3

3
[𝑓]

p
15

X
) (42)

as the vanishing polynomial, where

p14 = {−1, −1, 0, 1, 1, 1, 1, 0, 0} ,

p15 = {−1, −1, 0, 1, 1, 0, 0, 1, 1} .
(43)

If 𝑝3 = 𝑝− 1, then 𝑝2 < 𝑝3 − 2must hold to ensure (2). In
the case of 𝑝3 = 𝑝2 + 3 or 𝑝3 = 𝑝2 + 4, (2) has two solutions

for 𝑝 < 10: {2, 3, 7, 8, . . . , 8} and {3, 4, 8, 9, . . . , 9}. These two
schemes are singular, which can be checked by numerical
method (see Remark 12). In the case of 𝑝3 ≥ 𝑝2 + 5, p is
singular, which can be shown by taking

𝑄
𝑝−5

⋅ (
3

4
[𝑓]

p
16

X
) ⋅ (
3

4
[𝑓]

p
17

X
) ⋅ (
3

3
[𝑓]

p
18

X
) (44)

as the vanishing polynomial, where

p16 = {−1, −1, 1, 1, 1, 1, 1, 1, 2} ,

p17 = {−1, −1, 1, 1, 1, 1, 1, 2, 1} ,

p18 = {−1, −1, 0, 1, 1, 1, 1, 0, 0} .

(45)

Case 3. Consider the following: 𝑝3 = ⋅ ⋅ ⋅ = 𝑝9.
To ensure (2), 𝑝2 < 𝑝 − 4 must hold. Furthermore, it is

easy to check for 𝑝 ≤ 10 and 𝑝2 = 𝑝 − 5, 𝑝 − 6, and 𝑝 − 7 that
(2) has no solution. If 𝑝2 ≤ 𝑝 − 8, then p is singular and the
corresponding vanishing polynomial is taken as

𝑄
𝑝−7

⋅ (
3

4
[𝑓]

p
16

X
) ⋅ (
3

4
[𝑓]

p
17

X
) ⋅ (
3

3
[𝑓]

p
18

X
) ⋅ (
3

4
[𝑓]

p
19

X
) , (46)

where

p19 = {−1, −1, 2, 1, 1, 1, 1, 1, 1} . (47)

Thus we complete the proof.

Remark 10. The interpolation scheme {9, 9, 9, 9, 9, 9, 9} is first
mentioned in [1] and shown to be singular in [11], but one can
check that the proof in [11] is not correct. In fact, condition
(4.5) in [11] holds with equal sign; hence, its poisedness can
not be decided by the necessary condition (4.5) there. The
number of the nodes in this case is 7 not 6.

Remark 11. From the proof in Lemma 9, one can show that
the interpolation scheme 𝑑 = 3 and p = {3, 3, 3, 3, 3, 3} is
singular by taking

(
3

2
[𝑓]

p
20

X
) ⋅ (
3

2
[𝑓]

p
21

X
) ⋅ (
3

2
[𝑓]

p
22

X
) ⋅ 𝐿, (48)

where

p20 = {1, 0, 0, 0, 0, 0} ,

p21 = {0, 1, 0, 0, 0, 0} ,

p22 = {0, 0, 1, 0, 0, 0} .

(49)

This scheme was mentioned in [1, 11] and wrongly claimed to
be almost regular in [5].

Remark 12. The singularity of interpolation schemes {0, 1,
3, 3, 4, 4, . . . , 4}, {1, 2, 4, 4, 5, . . . , 5}, {0, 3, 4, 6, . . . , 6}, {2, 5, 6,
8, . . . , 8}, {1, 1, 3, 5, . . . , 5}, {3, 3, 5, 7, . . . , 7}, {1, 6, 9, 10, . . . ,
10}, {2, 3, 7, 8, . . . , 8}, and {3, 4, 8, 9, . . . , 9} can be verified by
numerical method. Here we notice that not all of them need
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Table 1: The solution of (2) in the case of 𝑝𝑘−1 = ⋅ ⋅ ⋅ = 𝑝𝑚 = 1.

𝑑 𝑘
0

𝑘
1

𝑑 𝑘
0

𝑘
1

𝑑 𝑘
0

𝑘
1

3 0 5 4 5 6 4 0 7
5 8 8 5 2 9 6 14 10
6 7 11 6 0 12 7 16 13
7 8 14 7 0 15 8 21 16
8 12 17 8 3 18 9 30 19
9 20 20 9 10 21 9 0 22
10 33 23 10 22 24 10 11 25
10 0 26

to prove independently because we have the following obser-
vation:

{0, 1, 3, 3, 4, 4, . . . , 4} is singular

󳨐⇒ {1, 2, 4, 4, 5, . . . , 5} is singular;

{0, 3, 4, 6, . . . , 6} is singular

󳨐⇒ {2, 5, 6, 8, . . . , 8} is singular;

{1, 1, 3, 5, . . . , 5} is singular

󳨐⇒ {3, 3, 5, 7, . . . , 7} is singular;

{2, 3, 7, 8, . . . , 8} is singular

󳨐⇒ {3, 4, 8, 9, . . . , 9} is singular.

(50)

Nine nodes can be selected as

𝑋𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)
𝑇
, 𝑖 = 1, 2, . . . , 5,

𝑋6 = (1, 0, 0)
𝑇
,

𝑋7 = (0, 1, 0)
𝑇
,

𝑋8 = (0, 0, 1)
𝑇
,

𝑋9 = (0, 0, 0)
𝑇
.

(51)

Lemma 13. GivenX = {𝑋1, 𝑋2, . . . , 𝑋𝑚} andp = {𝑝1, 𝑝2, . . . ,
𝑝𝑚}. Suppose that (13) is satisfied and that 𝑝𝑘−1 = ⋅ ⋅ ⋅ = 𝑝𝑚 =
𝑝 = 1. Then (2) has finite positive integer solutions for any 𝑑 ≥
3 and all except one scheme are almost regular.

Proof. By setting 𝑝1 = 𝑝2 = ⋅ ⋅ ⋅ = 𝑝𝑘
0

= 0, 𝑝𝑘
0
+1 = ⋅ ⋅ ⋅ =

𝑝𝑘
0
+𝑘
1

= 1, and 𝑛 = 3 in (2), we obtain

(

3 + 𝑑

𝑑

) = 𝑘0 (

0 + 𝑑

𝑑

) + 𝑘1 (

1 + 𝑑

𝑑

) , (52)

where 𝑑 + 2 ≤ 𝑘1 ≤ 𝑑 + 𝑘, 𝑘0 + 𝑘1 = 𝑚. This equation has
finite positive integer solutions for any 𝑑 ≥ 3, which is listed
in Table 1 for 3 ≤ 𝑑 ≤ 10.

All the schemes except 𝑑 = 4, 𝑘0 = 0, 𝑘1 = 7 are almost
regular. The singularity of 𝑑 = 4, 𝑘0 = 0, and 𝑘1 = 7 can
be proved by numerical method.The 7 points can be selected
as 𝑋1 = (0, 0, 0, 0)

𝑇, 𝑋2 = (1, 0, 0, 0)
𝑇, 𝑋3 = (0, 1, 0, 0)

𝑇,

Table 2: All the solutions of (2) in Lemma 8.

𝑑 𝑘 p 𝑛 Singular/regular

4 6 (0, 1, 2, 2, . . . , 2) 5 Almost regular
(2, 3, 3, . . . , 3) 7 Almost regular

4 7 (1, 4, 4, . . . , 4) 9

4 8

(0, 1, 1, 1, 1, 2, 2, . . . , 2) 5 Almost regular
(1, 1, 1, 3, 3, . . . , 3) 7 Almost regular
(1, 2, 2, 2, 3, 3, . . . , 3) 7 Almost regular
(2, 3, 3, 4, 4, . . . , 4) 9
(3, 4, 5, 5, 5, . . . , 5) 11
(4, 6, 6, . . . , 6) 13

4 9

(1, 1, 1, 4, 4, . . . , 4) 9
(2, 3, 3, 3, 3, 4, 4 . . . , 4) 9
(3, 3, 3, 5, 5 . . . , 5) 11
(3, 3, 6, 6 . . . , 6) 13
(6, 7, 8, 8, . . . , 8) 17
(8, 8, 9, 9, 9, . . . , 9) 19

4 10

(0, 0, 0, 0, 0, 0, 2, 2, . . . , 2) 5 Almost regular
(0, 1, 1, 1, 1, 1, 1, 1, 2, 2 . . . , 2) 5 Almost regular
(1, 1, 1, 1, 2, 2, 3, 3, . . . , 3) 7 Almost regular
(2, 2, . . . , 2, 3, 3, 3, 3, 3, 3) 7 Almost regular
(1, 1, 2, 2, 2, 2, 2, 3, 3 . . . , 3) 7 Almost regular
(1, 1, 1, 3, 3, 4, 4, . . . , 4) 9

(2, 3, 3, 3, 3, 3, 3, 4, 4, . . . , 4) 9
(1, 2, 2, 2, 3, 4, 4, . . . , 4) 9
(1, 2, 2, 4, 5, 5, . . . , 5) 11
(4, 4, 4, 4, 6, 6, . . . , 6) 13

(4, 5, 5, 5, 5, 5, 6, 6, . . . , 6) 13
(0, 3, 6, 7, 7, . . . , 7) 15

(6, 7, 7, 7, 7, 8, 8, . . . , 8) 17
(7, 7, 7, 9, 9, 9, . . . , 9) 19

(8, 9, 9, 9, 10, 10, 10, . . . , 10) 21
(10, 11, 11, 12, 12, 12, . . . , 12) 25

(12, 13, 14, 14, . . . , 14) 29
(14, 16, 16, 16, . . . , 16) 33

5 7 (2, 2, . . . , 2) 5 Almost regular

5 12

(0, 0, 0, 1, 1, 1, 2, 2, . . . , 2) 5 Almost regular
(1, 1, 1, 1, 1, 1, 1, 2, 2, . . . , 2) 5 Almost regular

(0, 0, 1, 3, 3, . . . , 3) 7
(0, 2, 2, 2, 3, 3, . . . , 3) 7
(3, 3, 4, 4, . . . , 4) 9

5 14 (5, 6, 6, . . . , 6) 13
5 15 (4, 4, 6, 6, . . . , 6) 13
6 12 (1, 1, 2, 2, . . . , 2) 5 Almost regular
6 15 (1, 1, 1, 1, 1, 1, 2, 2, . . . , 2) 5 Almost regular
6 17 (0, 1, 2, 3, 3, . . . , 3) 7

6 18 (0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, . . . , 2) 5 Almost regular
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, . . . , 2) 5 Almost regular



Discrete Dynamics in Nature and Society 9

Table 2: Continued.

𝑑 𝑘 p 𝑛 Singular/regular
6 19 (0, 1, 2, 2, 2, 2, 3, 3, . . . , 3) 7

6 20 (0, 1, 1, 1, 1, 1, 3, 3, . . . , 3) 7
(1, 3, 3, 4, 4, . . . , 4) 9

6 21
(0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, . . . , 2, 4) 9

(0, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, . . . , 3) 7
(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

14

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

13

) 5 Almost regular

7 15 (2, 2, . . . , 2) 5

7 22 (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, . . . , 2) 5
(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, . . . , 2) 5

7 23 (2, 2, 3, 3, . . . , 3) 7
8 23 (1, 1, 1, 2, 2, . . . , 2) 5
8 27 (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, . . . , 2) 5

8 31
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, . . . , 2) 5

(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

13

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

26

) 5

(3, 3, . . . , 3) 7

8 35
(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

9

, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

7

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

27

) 5

(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

18

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

25

) 5

9 31 (0, 0, 1, 1, 2, 2, . . . , 2) 5

9 40
(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

7

, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

7

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

35

) 5

(0, 0, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

13

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

34

) 5

9 43 (3, 3, . . . , 3) 7
10 38 (1, 1, 1, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

45

) 5

10 43 (1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

45

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

44

) 5

10 48
(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

45

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

44

) 5

(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

15

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

43

) 5

10 53
(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

11

, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

8

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

44

) 5

(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

21

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

42

) 5

11 45 (2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

56

) 5

11 56
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

55

) 5

(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

11

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

54

) 5

12 56 (2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

68

) 5

13 79
(0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

81

) 5

(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

12

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

80

) 5

14 92 (0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

96

) 5

14 99 (0, 0, 0, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

15

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

98

) 5

15 99 (2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

114

) 5

15 114
(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

8

, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

8

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

113

) 5

(1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

17

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

112

) 5

Table 2: Continued.

𝑑 𝑘 p 𝑛 Singular/regular
16 117 (2, 2, . . . , 2) 5
16 125 (1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

9

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

132

) 5

16 133 (1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

18

, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

131

) 5

17 137 (2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

154

) 5

𝑋4 = (0, 0, 1, 0)
𝑇, 𝑋5 = (0, 0, 0, 1)

𝑇, 𝑋6 = (𝑥
(1)

1
, 𝑥
(1)

2
,

𝑥
(1)

3
, 𝑥
(1)

4
)
𝑇, and 𝑋7 = (𝑥

(2)

1
, 𝑥
(2)

2
, 𝑥
(2)

3
, 𝑥
(2)

4
)
𝑇. Then the Van-

dermonde matrix is singular by symbolical computation,
implying (1, 1, 1, 1, 1, 1, 1) is singular.

Remark 14. In [2], Lorentz presented a conjecture (Con-
jecture 8) which gives a necessary and sufficient condition
about the singularity of multivariate Hermite interpolation.
Although the scheme 𝑑 = 4, 𝑘0 = 0, 𝑘1 = 7, 𝑛 = 3 is singu-
lar, it can not be checked by the conjecture from [2]. Hence
Conjecture 8 in [2] is not correct.

3. The Proof of Regularity of
Some Interpolation Schemes

In this section, we will prove that {0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑑(𝑑+1)/2

, 1} is almost 𝑑-

regular and {𝑝 − 1, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝 + 1} and {𝑝 − 1, 𝑝 − 1, 𝑝 −
1, 𝑝 − 1, 𝑝, 𝑝, 𝑝, 𝑝} are both almost 3-regular. To this end, we
need to choose X carefully and then prove the regularity of
p.

Theorem 15. Given X = {𝑋1, 𝑋2, . . . , 𝑋𝑚} and p =

{0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑑(𝑑+1)/2

, 1}, then p is almost 𝑑-regular.

Proof. Let 𝑒𝑖 = (0, 0, . . . , 0,

𝑖

1, 0, . . . , 0)
𝑇
∈ R𝑑 and define

𝑋𝑖,𝑖 = 𝑒𝑖, 𝑋𝑖,𝑗 = 𝑒𝑖 + 𝑒𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑑. Finally, let
𝑋𝑚 = (0, 0, . . . , 0)

𝑇 and X = {𝑋𝑖,𝑗, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑑, 𝑋𝑚}. We
will show the regularity ofp. To this end, we assume that𝑓(𝑋)
is a polynomial of degree 2 and satisfies all the homogenous
interpolation conditions. It only needs to show 𝑓 ≡ 0.

Due to𝐷𝛼𝑓(𝑋𝑚) = 0 for |𝛼| ≤ 1, 𝑓(𝑋) is of form

𝑓 (𝑋) = 𝑋
𝑇
𝐴𝑋, 𝐴 = (𝑎𝑖𝑗)𝑑×𝑑

, 𝑎𝑖𝑗 = 𝑎𝑗𝑖. (53)

Thus we have

𝑓 (𝑋𝑖,𝑖) = 𝑒
𝑇

𝑖
𝐴𝑒𝑖 = 𝑎𝑖𝑖 = 0 (𝑖 = 1, 2, . . . , 𝑑) ,

𝑓 (𝑋𝑖,𝑗) = (𝑒𝑖 + 𝑒𝑗)

𝑇

𝐴(𝑒𝑖 + 𝑒𝑗) = 𝑎𝑖𝑖 + 2𝑎𝑖𝑗 + 𝑎𝑗𝑗

= 0,

(54)

which lead to 𝑎𝑖𝑗 = 0 for 1 ≤ 𝑖, 𝑗 ≤ 𝑑. Then 𝑓 should be a zero
polynomial, which completes the proof.

To prove the regularity of {𝑝−1, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝+1} and
{𝑝 − 1, 𝑝 − 1, 𝑝 − 1, 𝑝 − 1, 𝑝, 𝑝, 𝑝, 𝑝}, we need the following
lemma.
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Lemma 16 (see [1, 4]). Let 𝑑 = 2; then interpolating the value
of a function and all of its partial derivatives of order up to 𝑝
at each of the three vertices of a triangle as well as the value of
the function and all of its derivatives of order up to 𝑝+ 1/𝑝 − 1
at a fourth point lying anywhere in the interior of the triangle
by polynomials from Π

2

2𝑝+2
/Π
2

2𝑝+1
, is regular.

In fact the fourth point can lie anywhere except on the
three edges of the triangle.

Theorem 17. Let X = {𝑋1 = (1, 1, 1)
𝑇
, 𝑋2 = (1, 0, 0)

𝑇
,

𝑋3 = (0, 1, 0)
𝑇
, 𝑋4 = (0, 0, 1)

𝑇
, 𝑋5 = (1, 1, 0)

𝑇
, 𝑋6 =

(1, 0, 1)
𝑇
, 𝑋7 = (0, 1, 1)

𝑇
, 𝑋8 = (0, 0, 0)

𝑇
}, and p = {𝑝 −

1, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝 + 1} (𝑝 ≥ 1); then (p,X) is regular.

Proof. Suppose that𝑓 is a polynomial of degree nomore than
2𝑝 + 2 such that

𝐷
𝛼
𝑓 (𝑋1) = 0, |𝛼| ≤ 𝑝 − 1,

𝐷
𝛾
𝑓 (𝑋8) = 0,

󵄨
󵄨
󵄨
󵄨
𝛾
󵄨
󵄨
󵄨
󵄨
≤ 𝑝 + 1,

𝐷
𝛽
𝑓 (𝑋𝑖) = 0,

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
≤ 𝑝, 𝑖 = 2, 3, . . . , 7.

(55)

That is,𝑓 satisfies the homogeneous interpolation conditions.
To prove this theorem, we only need to show 𝑓 ≡ 0.

Consider the value of 𝑓 on the plane 𝑥3 = 0. It follows
from (55) that

𝐷
𝛾
𝑓 (𝑋8) = 0,

󵄨
󵄨
󵄨
󵄨
𝛾
󵄨
󵄨
󵄨
󵄨
≤ 𝑝 + 1,

𝐷
𝛽
𝑓 (𝑋𝑖) = 0,

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
≤ 𝑝, 𝑖 = 2, 3, 5.

(56)

According to Lemma 16, 𝑓 vanishes on the plane 𝑥3 = 0,
which implies that 𝑓 can be divided by 𝑥3. Similarly, 𝑓 can
be divided by 𝑥1 and 𝑥2, respectively. Hence 𝑓 can be written
as 𝑓 = 𝑥1𝑥2𝑥3𝑓1 with deg𝑓1 = 2𝑝 − 1.

If 𝑝 = 1, by taking 𝑓 = 𝑥1𝑥2𝑥3𝑓1 into (55) we obtain

𝑓1 (𝑋𝑖) = 0, 𝑖 = 1, 5, 6, 7. (57)

Thus 𝑓1 = 0 and hence 𝑓 = 0, which will prove the theorem
for 𝑝 = 1.

If 𝑝 > 1, taking 𝑓 = 𝑥1𝑥2𝑥3𝑓1 into (55) will give

𝐷
𝛼
𝑓1 (𝑋1) = 0, |𝛼| ≤ 𝑝 − 1,

𝐷
𝛾
𝑓1 (𝑋8) = 0,

󵄨
󵄨
󵄨
󵄨
𝛾
󵄨
󵄨
󵄨
󵄨
≤ 𝑝 − 2,

𝐷
𝛽
𝑓1 (𝑋𝑖) = 0,

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
≤ 𝑝 − 2, 𝑖 = 2, 3, 4,

𝐷
𝜇
𝑓1 (𝑋𝑖) = 0,

󵄨
󵄨
󵄨
󵄨
𝜇
󵄨
󵄨
󵄨
󵄨
≤ 𝑝 − 1, 𝑖 = 5, 6, 7.

(58)

Then consider the plane 𝑥3 − 1 = 0. It follows from
Lemma 16 and the equations

𝐷
𝛾
𝑓1 (𝑋4) = 0,

󵄨
󵄨
󵄨
󵄨
𝛾
󵄨
󵄨
󵄨
󵄨
≤ 𝑝 − 2,

𝐷
𝛽
𝑓1 (𝑋𝑖) = 0,

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
≤ 𝑝 − 1, 𝑖 = 1, 6, 7,

(59)

that 𝑓1 can be divided by 𝑥3 − 1. Similarly, 𝑓1 can be also
divided by 𝑥1 − 1 and 𝑥2 − 1, respectively. Thus 𝑓1 can be
written as𝑓1 = (𝑥1−1)(𝑥2−1)(𝑥3−1)𝑓2 with deg𝑓2 = 2𝑝−4.

By collecting the above results, we have 𝑓 = 𝑥1𝑥2𝑥3(𝑥1 −
1)(𝑥2 − 1)(𝑥3 − 1)𝑓2 with deg𝑓2 = 2𝑝 − 4. If 𝑝 = 2, then
𝑓2 satisfies 𝑓2(𝑋8) = 0, which implies that 𝑓2 = 0 and the
theorem will be proved for 𝑝 = 2. Otherwise, for 𝑝 > 2, 𝑓2
satisfies

𝐷
𝛼
𝑓2 (𝑋1) = 0, |𝛼| ≤ 𝑝 − 4,

𝐷
𝛾
𝑓2 (𝑋8) = 0,

󵄨
󵄨
󵄨
󵄨
𝛾
󵄨
󵄨
󵄨
󵄨
≤ 𝑝 − 2,

𝐷
𝛽
𝑓2 (𝑋𝑖) = 0,

󵄨
󵄨
󵄨
󵄨
𝛽
󵄨
󵄨
󵄨
󵄨
≤ 𝑝 − 3, 𝑖 = 2, 3, . . . , 7,

(60)

by taking 𝑓 into (55).
Clearly, (60) is the same interpolation problemas (55), but

with a smaller 𝑝. Thus we can end the proof by repeating the
above process or by induction.

By similar proof, we can get the following theorem and
the proof is omitted.

Theorem 18. Let X = {𝑋1 = (1, 1, 1)
𝑇
, 𝑋2 = (1, 0, 0)

𝑇
,

𝑋3 = (0, 1, 0)
𝑇
, 𝑋4 = (0, 0, 1)

𝑇
, 𝑋5 = (1, 1, 0)

𝑇
, 𝑋6 =

(1, 0, 1)
𝑇
, 𝑋7 = (0, 1, 1)

𝑇
, 𝑋8 = (0, 0, 0)

𝑇
}, and p = {𝑝 −

1, 𝑝 − 1, 𝑝 − 1, 𝑝 − 1, 𝑝, 𝑝, 𝑝, 𝑝} (𝑝 ≥ 1); then (p,X) is regular.

Theorems 17 and 18 imply that {𝑝−1, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝+1}
and {𝑝 − 1, 𝑝 − 1, 𝑝 − 1, 𝑝 − 1, 𝑝, 𝑝, 𝑝, 𝑝} are both almost 3-
regular.

4. Conclusion

In this paper, we consider the singular problem of multivari-
ate Hermite interpolation of total degree. Wemake a detailed
investigation for Hermite interpolation problem of type total
degree on𝑚 = 𝑑 + 𝑘 ≤ (1/2)𝑑(𝑑 + 3) nodes in R𝑑.

Given p = {𝑝1, 𝑝2, . . . , 𝑝𝑚}with𝑚 = 𝑑+𝑘 ≤ (1/2)𝑑(𝑑+3)

and 𝑝1 ≤ 𝑝2 ≤ ⋅ ⋅ ⋅ ≤ 𝑝𝑚, the following results are derived in
this paper:

(1) If 𝑝𝑘 + 1 ≤ 𝑝𝑚−1, then p is singular or (2) does not
hold (see Lemma 2).

(2) Suppose 𝑝𝑘 = 𝑝𝑘+1 = ⋅ ⋅ ⋅ = 𝑝𝑚−1, then

(a) p is singular if 𝑝𝑘−1 + 2 ≤ 𝑝𝑚; see Lemma 4;
(b) for 𝑝𝑘−1 + 1 = 𝑝𝑘 = ⋅ ⋅ ⋅ = 𝑝𝑚, 𝑛 = 2𝑝𝑚 + 1,

p is almost regular if and only if 𝑑 = 3, 𝑘 = 5,
and p = {𝑝 − 1, 𝑝 − 1, 𝑝 − 1, 𝑝 − 1, 𝑝, 𝑝, 𝑝, 𝑝}; see
Lemma 5; the regularity is given inTheorem 18;

(c) if 𝑝𝑘 = 𝑝𝑘−1 = ⋅ ⋅ ⋅ = 𝑝𝑚−1 = 𝑝𝑚 − 1 = 𝑝 − 1, the
following 9 interpolation schemes are almost
regular (see Lemma 6):

{0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(1/2)𝑑(𝑑+1)

, 1} ,

{0, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

6

, 2} ,

(𝑑 = 3) ,
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{1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

11

, 2} (𝑑 = 4) ,

{1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

26

, 2} (𝑑 = 6) ,

{1, 1, 2, . . . , 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

11

, 3} (𝑑 = 4) ,

{1, 3, . . . , 3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

12

, 4} (𝑑 = 4) ,

{3, 4, . . . , 4⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

12

, 5} (𝑑 = 4) ,

{6, . . . , 6⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

13

, 7} (𝑑 = 4) ,

{𝑝 − 1, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝 + 1} (𝑑 = 3) ;

(61)

other interpolation schemes are singular;
(d) 𝑝𝑘 = 𝑝𝑘−1 = ⋅ ⋅ ⋅ = 𝑝𝑚−1 = 𝑝𝑚 = 𝑝.

(i) If𝑝 ≥ 2, then (2) never holds for𝑑 ≥ 21 and
has finite solutions for 4 ≤ 𝑑 ≤ 20 listed in
Table 2.

(ii) If 𝑝 ≥ 2, 𝑑 = 3, and 𝑘 = 4, 5, only one
interpolation scheme {0, 0, 1, 2, 2, 2, 2, 2} is
almost regular and other schemes are sin-
gular. If 𝑝 ≥ 2, 𝑑 = 3, and 𝑘 = 6, (2) has
finite solutions for 𝑝 < 10 and all of them
are singular; see Lemma 9.

(iii) If 𝑝 = 1, then (2) has finite solutions listed
in Table 1. All except one scheme are almost
regular. See Lemma 13 for this case.

Given p, how to decide the regularity theoretically
remains difficult and will be our future research project.

Appendix

Solutions of (2) in Lemma 8

Table 2 presents all the solutions of (2) in Lemma 8. A small
quotient of them is decided by numerical method, but most
of them are left open.
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