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Support vector machine (SVM) is a popular machine learning method for its high generalizaiton ability. How to find the adaptive
kernel function is a key problem to SVM from theory to practical applications. This paper proposes a support vector classifer based
on vague sigmoid kernel and its similarity measure. The proposed method uses the characteristic of vague set, and replaces the
traditional inner product with vague similarity measure between training samples. The experimental results show that the proposed

method can reduce the CPU time and maintain the classification accuracy.

1. Introduction

Support vector machine (SVM) constructs a hyperplane or
set of hyperplanes in a high-dimensional feature space, which
can be used for classification, regression, or other tasks.
It was first introduced by Vapnik [1] for classification and
has been applied to many application fields successfully.
SVM is based on the structural risk minimization principle,
which incorporates capacity control to prevent overfitting
and thus is a partial solution to the bias-variance trade-off
dilemma. The basic idea of SVM classification is to find such a
separating hyperplane that corresponds to the largest possible
margin between points of different classes.

How to find the adaptive kernel function is a key problem
to SVM from theory to practical applications. There are
several kernel functions, for example, the linear kernel,
the polynomial kernel, and the RBF kernel. These kernel
functions are positive semidefinite (PSD). However, some
non-PSD matrices are used in practice. An important one
is the sigmoid kernel K(x;,x;) = tanh(axiij + r), which
is related to neural networks. It was first pointed out by
Vapnik [1] that sigmoid kernel matrix might not be PSD
for the certain values of parameters, a and r. However, the
sigmoid kernel matrix is conditionally positive definite in
certain parameters and thus it is valid kernel.

Meanwhile, datasets in real life are usually noisy, and a
classifier which is obtained by training with noisy data cannot
classify some data samples correctly. So, fuzzy theory is

introduced in support vector machines by many researchers
in order to solve the above problem. There exist two cases.
The first one is fuzzy support vector machine (FSVM) [2-
4]. FSVM takes into account the noisy in the training set and
associates a fuzzy membership with every sample which will
account for the uncertainty in the class to which it belongs.
It uses the membership function to express the membership
grade of a sample belonging to positive class or negative
class. The second one is to combine fuzzy theory to kernel
functions of SVM and propose a fuzzy kernel-based SVM.
Fuzzy kernel is apt to construct a robust classifier and process
classification and regression of uncertain or fuzzy data. Soria-
Olivas et al. [5] propose a fuzzy-based activation function for
artificial neural networks. Camps-Valls et al. [6] extend the
fuzzy-based activation function and propose a support vector
classifier based on fuzzy sigmoid kernel. The fuzzy sigmoid
function allows lower computational cost and higher rate of
positive eigenvalues of the kernel matrix than those from the
standard sigmoid kernel [6]. Yang et al. [7] develop a kernel
fuzzy c-means clustering-based fuzzy SVM algorithm to deal
with the classification problems with outliers or noises.

In fuzzy theories, the vague set theory [8] is one of
the methods used to deal with uncertain information and
has gradually become more and more popular for handling
decision-making problems. Since vague sets can provide
more information than fuzzy sets, they are considered supe-
rior in mathematical analysis of uncertain information. This
paper combines vague sets with sigmoid kernel and proposes



a novel support vector classifier based on vague sigmoid
kernel.

The rest of this paper is organized as follows: Section 2
reviews the related research and briefly describes the vague
set theory and support vector machine. We present a novel
support vector classifier based on vague sigmoid kernel
and its similarity measure in Section 3. Section 4 presents
the experimental results obtained on benchmark data sets
and analyzes the performance of the proposed algorithm.
Section 5 concludes the paper with some final remarks.

2. Vague Set and Support Vector Machine

2.1. The Conception of Vague Set. Fuzzy set theory was first
proposed by Zadeh [9]. It is an important mathematical
approach to uncertain and fuzzy data analysis and has
successfully been applied in the areas of fuzzy control, fuzzy
decision making, and so on.

Introduced by Gau and Buehrer [8], vague set is a
generalization of the concept of a fuzzy set. Note that the
vague set is the same with the intuitionistic fuzzy set in
essence according to some research work [10]. The major
advantage of vague set over fuzzy set is that the former makes
descriptions of the objective world more realistic, practical,
and accurate. Presently, many scholars have been interested
in the theory and already made further studies. They have
been widely applied in medical diagnosis, decision making,
pattern recognition, uncertain knowledge acquisition, and so
forth [11-14].

Definition 1 (vague sets [8]). Let X be the universe of
discourse, X = {x;,x,,...,X,_;,X,}, with a generic element
of X denoted by x;. A vague set A in X is characterized
by a truth-membership function ¢, and a false-membership
function f,,

ty: X —[0,1], fa: X —10,1], 1)

where £, (x;) is a lower bound on the grade of membership
of x; derived from the evidence for x;, f,(x;) is a lower
bound on the negation of x; derived from the evidence against
x; and t,4(x;) + fa(x;) < 1. It is clear that the grade of
membership of x; in the vague set A has been restricted in
a subinterval [f,(x;), 1 — fa(x;)] of [0, 1]. The subinterval
[£a(x;), 1 — fa(x;)] is called vague value of x; in vague set
A.

The vague value [ ,(x;), 1- f 4 (x;)] indicates that the exact
grade of membership p,(x;) of x; may be unknown but is
bounded by £, (x;) < pu(x;) <1 - fulx;).

When the universe of discourse X is continuous, a vague
set A can be written as

A J [ta(x:), 1= fa(x:)]

Xi

. (2)
When the universe of discourse X is discrete, a vague set
A can be written as

A= i [ta(x;), 1= fa(x;)]

X

. (3)

i i
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Let m,(x;) be an uncertain degree of x; in vague set
A, myu(x;) = 1 = ta(x;) — falx;). ma(x;) characterizes the
precision of our knowledge about x;. If 7, (x;) is small, our
knowledge about x; is relatively precise; if it is large, we know
correspondingly little. If 1 — f,(x;) is equal to t,(x;), our
knowledge about x; is exact, and the theory reverts back to
that of fuzzy sets. If both 1 — f,(x;) and t,(x;) are equal to
1 or 0, our knowledge about x; is very exact, and the theory
reverts back to that of ordinary sets.

For example, let A be a vague set with truth-membership
function ¢, and false-membership function f,, respectively.
If a vague value is [0.5, 0.8], then according to Definition 1
we can see that f,(x;) = 0.5 fy(x;) = 1 -0.8 = 0.2,
and my(x;) = 1 -0.5-0.2 = 0.3. It can be interpreted as
“assume that the total number of the votes is 10, the votes
for a resolution is 5 in favor, 2 against, and 3 abstentions.”
Obviously, fuzzy set cannot exactly denote and process the
type of obscure information.

Many similarity measures have been proposed in the
literature for measuring the degree of similarity between
vague sets. Chen [15, 16] proposed the concept of similarity
measures between vague sets and defined its expression
M(X,Y) as follows: M(X,Y) = 1-|(S(X)-S(Y))/2|, where
X and Y are two vague values, S(X) = ty — fx, and S(Y) =
ty — fy. It is obvious that the larger the value of M(X,Y),
the more the similarity between the vague values X and Y.
Hung and Yang [11] presented three new similarity measures
between intuitionistic fuzzy sets based on Hausdorff distance.
Li et al. [17] analyzed and summarized several similarity
measures between vague sets. Dou et al. [18] developed a new
similarity measure of vague sets and defined the new relative
degree of similarity measures to solve the fuzzy shortest path
problem.

2.2. Support Vector Machine and Its Kernel. In this sec-
tion, we briefly review the learning algorithm of support
vector machine (SVM) initially proposed in [1]. Given
a binary classification problem represented by a dataset
{(x1, 1), (%35 ¥3)5 ..o (x5, ¥}, where x; ¢ R” represents an
n-dimensional data sample and y; € {+1, -1} represents the
class of that data sample, for i = 1,...,/, the goal of the
SVM learning algorithm is to find an optimal hyperplane
that separates these data samples into two classes. In order
to find a better separation of classes, the data are first
transformed into a higher-dimensional feature space by a
mapping function ¢. Then, a possible separating hyperplane,
which resides in the higher-dimensional feature space, can be
represented by

w-¢(x)+b=0. (4)

The support vector technique requires the solution of the
following optimization problem:

1o %
min— +C) &
min Wl +C )& (5)

subject to the constraints

yi(w-¢(x)+b)+&-120 &20,i=1,...,n (6)
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where the training vectors x; are mapped into a higher-
dimensional space by the function ¢ parameter C is a
user-specified positive parameter that controls the trade-off
between maximizing the margin and minimizing the training
error term. The slack variables & > 0 hold for misclassified

samples, and therefore, 25:1 &; can be thought of as a measure
of the amount of misclassifications. This quadratic optimiza-
tion problem can be solved by constructing a Lagrangian
representation and transforming it into the following dual
problem:

maxW(A) Zl:/\ %;z i ]}’z)’]xz Xj
e )
=Z;/\z 52121 irjyiyiK ( 1)
i= i=1 j=
subject to the constraints
i/\iyi=0, 0<A; <G, i=1,...,n (8)
i=1

where A; is the Lagrangian parameter. Note that the kernel
trick K(x;, x;) = ¢(x;) - ¢(x;) is used in the last equality in
(7). The Karush-Kuhn-Tucker conditions of SVM are defined
by

Ailyi(w-¢(x)+b)-1+&] =
(C_)‘i)fi:()

The sample x; with the corresponding nonzero A; is called
a support vector. The optimal value of weight vector wj is
obtained by wy = Y7, A, yp(x;) = Y%, A yih(x;), where ng
is the number of support vectors. The optimal value of bias b,
can be computed from the Karush-Kuhn-Tucker conditions
(9); namely, b, = y; — w, - $(x;), for a random support vector
sample x;. Once the optimal pair (w,, b,) is determined, the
SVM decision function is then given by

i=1,...,n

)

i=1,...,n.

f (x) = sign (Z AiyK (%, x;) + b) , (10)
i=1
where K(x;, x;) is called the kernel function as follows:

K (%) = ¢(x) ¢ (x;) (11)

Several typical kernel functions are the linear kernel
K(x,»,xj) = x,»-xj,the polynomial kernel K(x,-,xj) = (axiij+
r)d, and the RBF kernel K(x;, x]-) = exp(—ylx; - lelz).

The kernel functions above must satisfy Mercer condi-
tion. Namely, the kernel function matrix is a symmetric and
positive semidefinite (PSD) matrix. Nevertheless, some non-
PSD matrices are used in SVM in practice [19]. The sigmoid
kernel K (xi,xj) = tanh(axiij + r) is an available non-PSD
kernel function. The sigmoid kernel is also known as the
hyperbolic tangent kernel and as the multilayer perceptron
(MLP) kernel, which comes from the neural networks field.

It was first pointed out by Vapnik [1] that its kernel matrix
might be non-PSD for certain values of the paramenters «
and r. When the kernel function is non-PSD, (11) cannot be
satisfied. H. T. Lin and C. J. Lin [19] also study non-PSD kernel
function and its applications to SVM and testify the sigmoid
kernel matrix is conditionally positive definite (CPD). When
parameters a > 0 and r < 0, the sigmoid kernel is suitable for
a valid kernel. The sigmoid kernel has been used in several
practical cases, such as support vector machine classification
[6,19], decision rules extraction [20], and chaotic time series
prediction [21].

3. The Proposed Support Vector Classifier
Based on Vague Similarity Measure

This section presents the proposed method for vague sigmoid
kernel-based support vector classifier. It first gives a brief
introduction to fuzzy kernel and then focuses on a proposed
algorithm.

3.1 Fuzzy Kernel. Several researchers have studied fuzzy
kernel. Kwan [22] proposes a simple sigmoid-like nonlinear
activation function more suitable for digital hardware imple-
mentation as follows:

sign (x), [x| > L

12
X |x| +—, otherwise, 12)
L2 L

fx)=

where L is the width of the transition region.

Inspired by the work of Kwan, Soria-Olivas et al. [5]
think that the activation function of (12) can be drawn in a
more natural way by defining the classical activation function
by means of the fuzzy logic methodology and propose a
fuzzy-based activation function for artificial neural networks,
which considers triangular functions due to their simplicity.
The fuzzy-based sigmoid function models the hyperbolic
tangent function by means of linguistic variables. Camps-
Valls et al. [6] extend the fuzzy-based activation function and
propose a support vector classifier based on fuzzy sigmoid
kernel. The fuzzy sigmoid kernel allows lower computational
cost and higher rate of positive eigenvalues of the kernel
matrix, which alleviates current limitations of the sigmoid
kernel.

Although fuzzy set theory can preferably characterize
fuzziness, it has an obvious shortage due to using a single-
value membership u,(1;) € [0,1] to represent the degree
of membership. Fuzzy theory lacks consideration of some
nondeterministic factors among samples. In this case, we
propose a fuzzy sigmoid kernel support vector classifier based
on vague theory.

3.2. Vague Value Computation. The proposed algorithm con-
siders two-class classification for simplicity. We first decide
the class center of each class, namely, x, and xj in Figures
1-3, and then compute vague values of samples.



FIGURE 2: Vague value computation in class B.

For the sample x in the training set, if x belongs to class
A but does not belong to the intersection area between class
A and class B, we define vague value of x as follows:

N R | IR

Ta ra

v(x)=|1

where r, is the radius of class A. This case is shown in Figure 1.
Similarly, let 75 be the radius of class B, we get [x — xg|l /75 >1.

If x belongs to class B but does not belong to the
intersection area between class A and class B, we define vague
value of x as follows:

*

[l = x5 1-

*

||x ~Xp

vx)=|1- (14)

g g

where ry is the radius of class B. This case is shown in Figure 2.
We get [lx — x,[I/r4 >1.

If sample x belongs to the intersection area, we label m,
andmgasmy = |lx—x}|//r, and my = [[x—x|/rg and define
vague value of x as follows:

1/(X)z{[1/1114(1—1113),mB(l—mA)], if m, < mg
[mB(l—mA),mA(l—mB)], if my > my.
(15)
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FIGURE 3: Vague value computation in intersection area between
class A and class B.

This case is shown in Figure 3.

Through a detailed analysis of samples in class A and
class B, we find t,(x) = 1 - f,(x) shown in Figures 1 and
2, and vague set reverts back to fuzzy set in two cases. For
sample x in Figure 3, we reduce the classification effect of
these samples.

3.3. Similarity Measure of Vague Value and Its Kernel. For
samples x; and x;, their inner x; - x; is obtained typically by
computing Euclidean distance between two samples. In this
paper, we replace Euclidean distance with similarity measures
between vague sets after introducing vague membership.
A similarity measure is used for estimating the degree of
similarity between two sets. The main idea is described below.
We first compute vague values of samples and then represent
these vague values with points in the spatial coordinate
system. At last, we compute similarity measures between
points.

Definition 2 (see [23]). Let v(x;) be the vague value of sample
x; computed by the above method. The corresponding point
in the spatial coordinate system is represented as D;(¢(x;)(1 +
7(x;)), f(x)(1 + m(x;)), nz(xi)). We also denote a 3-tuple
D;(T(x;), F(x;), I1(x;)) for simplicity, where T'(x;) = t(x;)(1 +
(x;)), F(x;) = f(x;)(1 + 7(x;)), and II(x;) = nz(x,-).

As shown in Definition 2, D; in the spatial coordinate
system includes three parts, t(x;), f(x;),and 7(x;), respec-
tively. The meanings of t(x;), f(x;), and 7(x;) are shown in
Definitions 1 and 2. Analyzing from the vote model, we
consider that some abstentions are likely prone to be in
favor, others are likely prone to be against, and others are
likely to be abstention. So, we further divide abstention part
into three parts: t(x;)m(x;), f(x;)m(x;), and nz(xi), which
represent the cases of being in favor, against, and abstention
in all abstentions, respectively. We can use a point in three-
dimensional space to depict a membership degree of a
training sample.

Obviously, t(x;)+ f (x;)+7(x;) = 1. Using Definition 3, we
can get a point in three-dimensional space D;. For three parts
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TABLE 1: Characteristics of experimental data sets.

Dataset No. of No. of No. of
samples attributes classes
Ionosphere 351 34 2
Sonar 208 60 2
Pima-diabetes 768 8 2
Wdbc 569 30 2
Iris 150 43 3
Vehicle 846 18 4

in D;, t(x;)(1 + 7(x;)) + f(x)(1 + 7w(x;)) + nz(xi) = (t(x;) +
Fle))A+m(x;)) + ﬂz(xi) = (1-7(x;)) (1 +7(x;)) + ﬂz(xi) =1.

Definition 3. Let D; and D; be two points defined as
Definition 2; then their similarity measures can be defined as
follows:

(16)

Based on vague value and similarity measure above, we
give a computation method of vague sigmoid kernel function.
Expression (12) can be readily rewritten as a function of a and
r as follows:

1
sign (M), M| = -
a

17)
2aM — o®M - M|, otherwise,

K (x,x;) =

where M = T(D;, D)) +r/a.

3.4. The Proposed Vague Sigmoid-Based Support Vector Clas-
sifier. In order to compute vague values of training samples,
we first decide the class center of each class. In this paper, we
select fuzzy c-means (FCM) method [24, 25] to do it. In fuzzy
clustering, FCM method has become one of the most popular
techniques.

FCM algorithm starts with an initial guess for the cluster
centers, which intends to mark the mean location of each
cluster [24, 25]. The initial guess for these cluster centers is
most likely incorrect. Additionally, FCM assigns every data
point a membership grade for each cluster. By iteratively
updating the cluster centers and the membership grades for
each data point, FCM iteratively moves the cluster centers to
the “right” location within a data set. This iteration is based on
minimizing an objective function that represents the distance

from any given data point to a cluster center weighted by that
data point’s membership grade. Namely,

c 1
min  J(U,V) = Z Z uyd (x5 ;) 5 (18)

i=1 k=1

0<uy <1, (19)

where c is the number of clusters and selected as a specified
value in this paper, [ is the number of data points, u; €
[0,1] denotes the degree to which the sample x; belongs
to the ith cluster, m is the fuzzy parameter controlling the
speed and achievement of clustering, d(x;,v;) = [x; — v;||*
denotes the distance between point x; and the cluster center
v;, and V is the set of cluster centers or prototypes (v; € RF).
When the objects change clusters, the membership values are
recalculated according to the following formula:

1
Ui = 1) 20
S (d (o p) fd (o)) B0

Each cluster center is then calculated by

I
_ Zk:l (uik)mxk

Zi:l (”ik)m

After getting the cluster centers, the algorithm can
compute vague values of training sample and measure the
similarity of vague values.

According to analysis above, we propose a novel
vague sigmoid-based support vector classifier. The algorithm
description is as follows.

(21)

i

Step 1. Preprocess data set and classify training data set and
testing data set.

Step 2. Use FCM algorithm to compute the membership u;;,
of each training sample x; to each class k and to obtain the
cluster centers.

Substep 2.1. Select the number of clusters ¢, the maximal
iterative count N, ., fuzziness parameter m (let m = 2) and

converge error € > 0.

Substep 2.2. Initialize the membership matrix U = {ugj)}
satisfied with constraint conditions

C
Zuik =1

0<uy <L (22)
i=1
Substep 2.3.Fort =1,..., N .o
calculate the membership matrix uY = {ugc)}
according to (20);
calculate the cluster centers vl@ (i=1,...,c) accord-
ing to (21);

calculate the objective function J ® (U, V) according
to (18);
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TABLE 2: Accuracy (%) and time (s) comparison of different methods.
Dataset Sigmoid Fuzzy sigmoid Vague sigmoid
Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s)
Ionosphere 94.8 22.30 93.4 20.52 94.3 21.83
Sonar 88.2 31.85 88.1 24.87 87.9 28.32
Pima-diabetes 70.9 17.56 72.8 12.38 73.5 14.54
Wdbc 97.3 21.12 97.9 18.04 97.9 19.28
Iris 97.4 4.35 93.8 3.87 96.1 4.21
Vehicle 71.2 36.74 65.3 23.47 70.8 30.42

when [JPWU, V) - J*Y(U, V)| < eort = N, stop

iteration and return the membership matrix U and the
()

cluster centers v,

Step 3. Compute vague values of training samples using (13)-
(15).

Step 4. Use SVM based on vague sigmoid kernel to train
samples with vague values.

The key steps of the proposed algorithm are to com-
pute vague values and to compute vague sigmoid kernel

K(x;, x;) = tanh(ax] x; + ).

4. Experimental Analysis

Six data sets from the University of California at Irvine
(UCI) machine learning repository [26] are used in our
experiments. The data sets include Ionosphere, Sonar, Pima-
diabetes, Wdbc, Iris and Vehicle. Iris, and Vehicle data are
multiclass problems. The other data are binary classification
problems. The characteristics of these data sets are shown in
Table 1. We tested the proposed vague sigmoid kernel method
and compared it to sigmoid-based SVM and fuzzy sigmoid-
based SVM. The results of these methods depend on the
values of the kernel parameters a and r and penalization
parameter C.

In order to test the proposed methods, SVM models
were trained by using LIBSVM [27]. Parameter a was fixed
to 1/A, where A is the input dimension of data set, and
other parameters of all methods were optimized using grid-
based 5-fold cross-validation method. For all the datasets
each training set and each testing set were the same for
all methods. For all the datasets, we used the 5-fold cross-
validation method to estimate the accuracy of the classifiers.
We compare classification accuracy and CPU time (s) for
the sigmoid, the fuzzy-based sigmoid, and the vague-based
sigmoid kernels. Experimental results are shown in Table 2.

From Table 2, we can find that the sigmoid-based method
achieves the better accuracy than the fuzzy sigmoid method
and the vague sigmoid method on Ionosphere, Sonar, Iris, and
Vehicle data sets. As we can see, the accuracy of the fuzzy
sigmoid method and the vague sigmoid method is better
than that of the sigmoid-based method on Pima-diabetes and
Wdbc data sets. However, the sigmoid-based method has also
more CPU times than the other methods. Notice that the

vague sigmoid method achieves the same or slightly better
accuracy than the fuzzy sigmoid method.

If we consider the cost of accuracy and CPU time, we may
prefer the solution found with the vague sigmoid method. We
can find that the average CPU time in the all 6 data sets is
22.32s in the sigmoid method, while there is 19.77 s in the
vague sigmoid method; in the meantime, the classification
accuracy does not decrease remarkably.

5. Conclusions

Support vector machine is a novel machine learning method
which has been applied to many application fields success-
fully. The sigmoid kernel was quite popular for support
vector machines due to its origin from neural networks.
In this paper, we propose a vague sigmoid kernel-based
support vector classifier. The proposed method is combined
with vague set methodology, which makes the computation
of SVM simple. In vague sigmoid kernel, we replace the
inner product computation using Euclidean distance between
two samples with similarity measures. The experiment is
conducted by using 6 data sets from the UCI machine
learning repository. The results of classification are evaluated
and compared in terms of the performance using accuracy
and time. The results obtained from the experiment indicated
that the proposed method can reduce the CPU time and
maintain the classification accuracy.
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