
Research Article
Prediction Model for Object Oriented Software
Development Effort Estimation Using One Hidden Layer Feed
Forward Neural Network with Genetic Algorithm

Chandra Shekhar Yadav1 and Raghuraj Singh2

1 Department of Computer Science & Engineering, Noida Institute of Engineering & Technology, Greater Noida 201306, India
2Department of Computer Science & Engineering, Harcourt Butler Technological Institute, Kanpur 208002, India

Correspondence should be addressed to Chandra Shekhar Yadav; csyadav@yahoo.com

Received 3 February 2014; Revised 6 May 2014; Accepted 13 May 2014; Published 3 June 2014

Academic Editor: Robert J. Walker

Copyright © 2014 C. S. Yadav and R. Singh. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The budget computation for software development is affected by the prediction of software development effort and schedule.
Software development effort and schedule can be predicted precisely on the basis of past software project data sets. In this paper, a
model for object-oriented software development effort estimation using one hidden layer feed forward neural network (OHFNN)
has been developed.Themodel has been further optimizedwith the help of genetic algorithmby takingweight vector obtained from
OHFNN as initial population for the genetic algorithm. Convergence has been obtained by minimizing the sum of squared errors
of each input vector and optimal weight vector has been determined to predict the software development effort. The model has
been empirically validated on the PROMISE software engineering repository dataset. Performance of the model is more accurate
than the well-established constructive cost model (COCOMO).

1. Introduction

TheCOCOMOmodel is themost popularmodel for software
effort estimation. This model has been validated on large
data set of projects at consulting firm, Teen Red Week
(TRW) software production system (SPS) in California, USA.
The structure of the model has been classified on the basis
of type of projects to be handled. Types of projects are
organic, semidetached, and embedded. The model structure
is represented as follows:

Effort = 𝑎 ∗ (KLOC)𝑏. (1)
Here, 𝑎 and 𝑏 are domain specific parameters. For pre-

dicting the software development effort, parameters 𝑎 and 𝑏
have been adjusted on the past data set of various projects.
Five scale factors have been used to generalize and replace the
effects of the development mode in COCOMO II. There are
fifteen parameters which affect the effort of software devel-
opment. These parameters are analyst capability (𝑎𝑐𝑎𝑝), pro-
grammer’s capability (𝑝𝑐𝑎𝑏), application experience (𝑎𝑒𝑥𝑝),

modern programming practices (𝑚𝑜𝑑𝑝), use of software
tools (𝑡𝑜𝑜𝑙), virtual memory experience (V𝑒𝑥𝑝), language
experience (𝑙𝑒𝑥𝑝), schedule constraint (𝑠𝑐𝑒𝑑), main memory
constraint (𝑠𝑡𝑜𝑟), database size (𝑑𝑎𝑡𝑎), time constraint for
CPU (𝑡𝑖𝑚𝑒), turnaround time (𝑡𝑢𝑟𝑛), machine volatility
(V𝑖𝑟𝑡), process complexity (𝑐𝑝𝑙𝑥), and required software
reliability (𝑟𝑒𝑙𝑦):

Effort = 𝑎 ∗ (KLOC)𝑏 ∗ 𝑐. (2)

KLOC is estimated directly or computed from a function
point analysis and 𝑐 is the product of fifteen effort multipliers:

Effort (Months)

= 𝑎 ∗ (KLOC)𝑏 ∗ (EM1 ∗ EM2 ∗ ⋅ ⋅ ⋅ ∗ EM15) .
(3)

Proposed prediction model of software development
effort estimation has been used to predict software develop-
ment effort by using sixteen independent parameters such

Hindawi Publishing Corporation
Advances in Soware Engineering
Volume 2014, Article ID 284531, 6 pages
http://dx.doi.org/10.1155/2014/284531

2 Advances in Software Engineering

as 𝑟𝑒𝑙𝑦, 𝑑𝑎𝑡𝑎, 𝑐𝑝𝑙𝑥, 𝑡𝑖𝑚𝑒, 𝑠𝑡𝑜𝑟, V𝑖𝑟𝑡, 𝑡𝑢𝑟𝑛, 𝑎𝑐𝑎𝑝, 𝑎𝑒𝑥𝑝, 𝑝𝑐𝑎𝑏,
V𝑒𝑥𝑝, 𝑙𝑒𝑥𝑝, 𝑚𝑜𝑑𝑝, 𝑡𝑜𝑜𝑙, 𝑠𝑐𝑒𝑑, and 𝑘𝑙𝑜𝑐. The past dataset has
been obtained from the PROMISE site. All these sixteen
parameters are used as input vector in one hidden layer
feed forward neural network.Through back propagationwith
gradient descent training, mapping between input vectors
and output vectors has been established by minimizing the
sum of squared error at output layer. The optimal weight
vector has been obtained through this network to predict the
software development effort of another dataset of PROMISE
software projects. The optimal weight vector obtained from
neural network is being used as initial population in GA tool
to optimize the root mean square error.

The remaining part of the paper is organized as follows.
In Section 2, related works have been explained. In Section 3,
mathematical model of neural network approach to effort
prediction has been represented. Section 4 gives the idea of
genetic algorithm in brief. Section 5 gives implementation
details of prediction model. Section 6 presents result and
discussion. Section 7 gives the conclusion drawn from results
and future scope of the research work.

2. Related Work

Yadav and Singh obtained OHFNN 16-19-1 optimal structure
for prediction of software development effort with best
root mean square as 0.00149074 at the learning rate 1.01
and momentum 0.7 in one million epochs [1]. Yadav and
Singh modified COCOMO II by introducing some more
parameters for predicting the software development effort
[2]. Kumar et al. considered mean of square distributed
error as fitness function for measuring the performance of
multilayer feed forward neural network in terms of accuracy,
and epochs [3]. Kumar et al. proposed a model using particle
swarm optimization (PSO) for tuning the parameters of basic
COCOMOmodel to predict the software development effort
accurately considering only KLOC parameter [4]. Praynlin
andLatha confirmed that back propagation algorithm ismore
efficient than a recurrent type neural network [5]. Kumar et
al. used real coded genetic algorithms and fuzzy lambda tau
methodology for reliability analysis of waste clean-upmanip-
ulator [6]. Shrivastava and Singh evaluated performance of
feed forward neural networkwith the help of three algorithms
such as back propagation, evolutionary algorithm, and hybrid
evolutionary algorithm for hand written English alphabets
[7]. Sheta and Al-Afeef developed genetic programming
model utilizing line of code and methodology to predict
the software development effort precisely compared to other
models [8]. Sheta proposed modified version of COCOMO
model using genetic algorithms (GAs) to explore the effect
of the software development adopted methodology in effort
computation [9].

Reddy and Raju used single layer feed forward neural
network with back propagation learning algorithm and
resilient back propagation algorithm for predicting the soft-
ware development effort accurately [10]. Reddy and Raju
proposed multilayer feed forward neural network with back
propagation learning algorithm by iteratively processing a set
of training samples and comparing the network’s prediction

with the actual effort [11]. Singh and Dhaka analyzed the
performance of back propagation algorithm with changing
training patterns and the momentum term in the feed
forward neural networks [12]. Tian and Noore used genetic
algorithm to globally optimize the number of the delayed
input neurons and the number of neurons in the hidden layer
of the neural network architecture [13]. Jun and Lee used qua-
sioptimal case-selective neural network for software devel-
opment effort estimation and adopted the beam searched
technique and devised the case-set selection algorithm to
find the quasioptimal model from the hierarchy of reduced
neural network models [14]. Burgess and Lefley evaluated
the potential of genetic programming (GP) in software effort
estimation when compared with existing approaches, in
terms of accuracy and ease of use [15]. Shukla presented a
new genetically trained neural network model for predicting
the software development effort [16]. Khoshgoftaar et al. used
neural network as tool for predicting the number of software
development faults [17].Here principal components are linear
combinations of sixteen independent parameters𝑋1,𝑋2,𝑋3,
𝑋4,𝑋5,𝑋6,𝑋7,𝑋8,𝑋9,𝑋10,𝑋11,𝑋12,𝑋13,𝑋14,𝑋15, and𝑋16:

𝑃1 = 𝑤11 × 𝑋1 + 𝑤12 × 𝑋2 + ⋅ ⋅ ⋅ + 𝑤1 16 × 𝑋16,

𝑃2 = 𝑤21 × 𝑋1 + 𝑤22 × 𝑋2 + ⋅ ⋅ ⋅ + 𝑤2 16 × 𝑋16,

...

𝑃𝑘 = 𝑤𝑘1 × 𝑋1 + 𝑤𝑘2 × 𝑋2 + ⋅ ⋅ ⋅ + 𝑤𝑘 16 × 𝑋16.

(4)

In principal component analysis, preprocessing of the
dataset has been done. These sixteen attributes of project
such as 𝑟𝑒𝑙𝑦, 𝑑𝑎𝑡𝑎, 𝑐𝑝𝑙𝑥, 𝑡𝑖𝑚𝑒, 𝑠𝑡𝑜𝑟, V𝑖𝑟𝑡, 𝑡𝑢𝑟𝑛, 𝑎𝑐𝑎𝑝, 𝑎𝑒𝑥𝑝,
𝑝𝑐𝑎𝑏, V𝑒𝑥𝑝, 𝑙𝑒𝑥𝑝, 𝑚𝑜𝑑𝑝, 𝑡𝑜𝑜𝑙, 𝑠𝑐𝑒𝑑, and 𝑘𝑙𝑜𝑐 are correlated
with the development effort. For minimizing the difference
between desired output and actual output, weights have been
adjusted repetitively by using ANN. The sum of squared
errors on the training data set has been minimized by
finding a vector of connection weights that is called network
learning.The different network architecture has been trained
by the standard error back propagation algorithm at different
learning rate and at different momentum, having minimum
sum of squared errors. Having minimum sum of squared
errors is a training stopping criterion.

Multilayer networks are more powerful than single-layer
networks for adjusting the weights. First appropriate transfer
function is chosen by the designer after that parameters
weight 𝑤 and bias value 𝑏 will be adjusted by some learning
rule for minimizing the difference between desired output
and actual output. Log-sigmoid function takes the input
between plus and minus infinity and output varies into the
range 0 to 1. Expression of log-sigmoid function is given as
follows:

𝑎 =

1

1 + 𝑒

−𝑛
. (5)

The log-sigmoid transfer function is commonly used in mul-
tilayer networks which are trained using back propagation
algorithm due to its differentiable nature.

Advances in Software Engineering 3

3. Effort Prediction Model Using One
Hidden Layer Feed Forward Neural
Network (OHFNN)

OHFNN with gradient descent back propagation learning
method has been used in this model for estimating the object
oriented software development effort. Let us consider input
vector 𝑋𝑇

𝑘
= (𝑥1; 𝑥2; . . . 𝑥𝑛) where 𝑛 = 16 and output vector

𝐷

𝑇

𝑘
= (𝑑1; 𝑑2; . . . 𝑑𝑝). The neural network can be trained by

using the input and output vector mapping. 𝑃 is set of 𝑄
training vector pairs:

𝑃 = {𝑋𝑘, 𝐷𝑘}
𝑄

𝑘=1
, (6)

𝑋𝑘 ∈ 𝑅
𝑛,𝐷𝑘 ∈ 𝑅

𝑝, where 𝑛 = 16, 𝑝 = 1, and 𝑄 = 40.
Here net𝑘 generates an output signal vector𝑓(𝑌𝑘) and 𝑌𝑘

is vector of activations of output layer neuron.
Error at 𝑘th training pair (𝑋𝑘, 𝐷𝑘) is as follows:

𝐸𝑘 = 𝐷𝑘 − 𝑓 (𝑌𝑘) , (7)

where

𝐸𝑘 = (𝑒
𝑘

1
, . . . 𝑒

𝑘

𝑝
)

𝑇

= (𝑑

𝑘

1
− 𝑓 (𝑦

𝑘

1
) , . . . , 𝑑

𝑘

𝑝
− 𝑓 (𝑦

𝑘

𝑝
))

𝑇

. (8)

Squared error is sum of squares of each individual output
error 𝑒𝑘

𝑗
; that is,

𝜉𝑘 =

1

2

𝑝

∑

𝑗=1

(𝑑

𝑘

𝑗
− 𝑓 (𝑦

𝑘

𝑗
))

2

=

1

2

𝐸

𝑇

𝑘
𝐸𝑘. (9)

The mean square error (mse) is computed over the entire
training set 𝑃:

mse = 1

𝑄

𝑄

∑

𝑘=1

𝜉𝑘. (10)

The weights between hidden and output layer are updated as

𝑤

𝑘+1

ℎ𝑗
= 𝑤

𝑘

ℎ𝑗
+ Δ𝑤

𝑘

ℎ𝑗
. (11)

and the weights between input and hidden layer are updated
as

𝑤

𝑘+1

𝑖ℎ
= 𝑤

𝑘

𝑖ℎ
+ Δ𝑤

𝑘

𝑖ℎ
, (12)

where Δ𝑤

𝑘

ℎ𝑗
and Δ𝑤

𝑘

𝑖ℎ
are weight changes computed in

previous step.
Now the weights have been updated in output and hidden

layers by the following equations:

Δ𝑤

𝑘+1

ℎ𝑗
= Δ𝑤

𝑘

ℎ𝑗
+ 𝜂𝛿

𝑘

𝑋
𝑓 (𝑧

𝑘

ℎ
) ,

Δ𝑤

𝑘+1

𝑖ℎ
= Δ𝑤

𝑘

𝑖ℎ
+ 𝜂𝛿

𝑘

𝑋
𝑥

𝑘

𝑖
.

(13)

We can introduce themomentum into back propagationwith
the help of the following equations:

Δ𝑤

𝑘

ℎ𝑗
= 𝜂𝛿

𝑘

𝑗
𝑓 (𝑧

𝑘

ℎ
) + 𝛼Δ𝑤

𝑘−1

ℎ𝑗
, Δ𝑤

𝑘

𝑖ℎ
= 𝜂𝛿

𝑘

ℎ
𝑥

𝑘

𝑖
+ 𝛼Δ𝑤

𝑘−1

𝑖ℎ
.

(14)

Back propagation propagates changes back because it
can do substantial good thing. The change in 𝑂𝑗 should be
proportional to𝑂𝑘(1−𝑂𝑘) the slope of the threshold function,
at node 𝑘. The change to 𝑂𝑗 should also be proportional to
𝑊𝑗𝑘 the weight on the link connecting node 𝑗 to node 𝑘.
Summing over all nodes in layer 𝑘, 𝛽𝑘 = ∑𝑘 𝑤𝑗𝑘𝑂𝑘(1−𝑂𝑘)𝛽𝑘.
At the output layer, the benefit has been given by the error
at the output node. The output layer 𝑧 will be benefited as
𝛽𝑧 = 𝑑𝑧 −𝑜𝑧. Here a rate parameter 𝑟 has been introduced for
controlling the learning rate. So change in𝑤𝑖𝑗 is proportional
to 𝑟; that is, Δ𝑤𝑖𝑗 = 𝑟𝑂𝑖𝑂𝑗(1 − 𝑂𝑗)𝛽𝑗 and 𝛽𝑗 = ∑𝑘𝑊𝑗𝑘𝑂𝑘(1 −
𝑂𝑘)𝛽𝑘 for nodes in hidden layers and 𝛽𝑧 = 𝑑𝑧 − 𝑜𝑧 for nodes
in the output layer. The output of the network is compared
with desired output; if it deviates from desired output, the
difference between actual output and the desired output is
propagated back from the output layer to previous layer to
modify the strength or weight of connection.

4. Genetic Algorithm (GA)

GA is a type of evolutionary concept generally used to solve
optimization problems. GA is called a global optimizer. GA
is based on the principles of evolution and inheritance.
GA system maintains a population of potential solutions. It
has some selection process based on fitness of individuals
and a set of biologically inspired operators. GA consists
of both a local search operator such as crossover and a
global search operator such as mutation. In an evolutionary
theory, only the fit individuals in a population are likely
to survive and generate offspring, and their biological traits
have been inherited in the next generations. In the large
search space GA is much better than the conventional
search and optimization techniques due to its parallelism and
random search implemented by recombination operators.
The following three steps are followed for GA to solve any
given problem [18].

(1) Create an initial population of potential solutions to
the given problem randomly.

(2) Repeatedly perform the following subsets for each
generation until a termination condition has been
satisfied.

(i) Compute the fitness value of each individual in
the population and save the best individual of all
previous populations.

(ii) Create the new population by applying the
genetic operators such as selection, crossover,
and mutation.

(iii) Replace the current population with the new
population.

(3) Individual with best fitness value is the optimum
solution.

A brief description of various operators used in GA and some
of the basic terminologies is given.

4 Advances in Software Engineering

Selection. This operator selects fit individuals from the pop-
ulation for reproduction to generate offspring in the next
generation. Selection is based on fitness value.

Crossover. This operator generates offspring from each pair
of individuals. Each individual contributes a portion of its
genetic information to each offspring.

Mutation. This operator randomly changes a tiny amount of
genetic information in each offspring.

Chromosome. The complete genetic description of an indi-
vidual is described as chromosome. It is a collection of basic
features called genes.

Gene.This is a single feature within a chromosome. Genemay
take any of several values called alleles.

Allele. Allele is a particular value that may be taken by a gene.

Population. A number of chromosomes form a single popu-
lation.

Objective Function. This is a function that is considered for
minimization or maximization of certain criterion.

Fitness. This is a measure of how well a parameter set
performs.

Schema. This is a collection of genes in a chromosome having
certain specified values.

Functioning of GA can be visualized as a balanced
combination of exploration of new regions in the search space
and exploitation of already sampled regions. By choosing the
right control parameters such as the crossover and mutation
probabilities and population size, performance of GA can be
measured.The chromosome level representation is called the
genotype. All the information that is necessary to construct
an organism has been resided in genotype. The organism is
called phenotype [16].

5. Implementation Details of OHFNN
Prediction Model Using GA

OHFNN with 16 input neurons, 19 hidden layer neurons to
develop input outputmapping, and 1 output neuron to predict
development effort in person-months has been taken. GAhas
been used to solve the problem of optimizing the weights
of OHFNN 16-19-1 in order to minimize the mean squared
error over a training PROMISE data set [19]. Here OHFNN
16-19-1 is called the phenotype, and the string of weights of
OHFNN 16-19-1 is called the genotype. Genotype is a data
structure which represents information about the phenotype
and which is encoded for use in GA. Since 16 neurons and
one bias value are at input layer, 19 neurons and one bias value
are at hidden layer, and 1 neuron is at output layer, so weight
vector from input to hidden layer is 17×19, and weight vector
fromhidden to output layer is 20×1. OHFNN 16-19-1 consists

0 200 400 600 800 1000

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Best validation performance is 0.0088132 at epochs 2173

M
ea

n
sq

ua
re

d
er

ro
r (

m
se

)

2173 epochs

Train
Validation
Test

Best
Goal

Figure 1: Performance graph of OHFNN 16-19-1 with traingda.

Best validation performance is 0.012839 at epoch 100900

100900 epochs

M
ea

n
sq

ua
re

d
er

ro
r (

m
se

)

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0 2 4 6 8 10

Train
Validation
Test

Best
Goal

×10
4

Figure 2: Performance graph of OHFNN 16-19-1 with traingdm.

of 343 weights connecting various layers. These 343 weights
are encoded in a chromosomal string. In this optimization
problem fitness function is represented in terms of root mean
square error (rmse) shown as follows:

rmse = sqrt(1
𝑄

𝑄

∑

𝑘=1

𝜉𝑘) . (15)

Advances in Software Engineering 5

Best: 0.0014602 Mean:0.0014995

Best fitness
Mean fitness

Fi
tn

es
s v

al
ue

0

0.5

1

Generation
0 100 200 300 400 500

GenerationStop

100 200 300 400 500

Average distance between individuals

Av
er

ag
e d

ist
an

ce

0

20

40

60

Current best individual

0

10

Cu
rr

en
t b

es
t i

nd
iv

id
ua

l

0 100 200 300

Number of variables (343)

−30

−20

−10

Figure 3: Optimized value of root mean square error for OHFNN 19-16-1 using GA.

Table 1: Control parameters of GA for adjusting the weight of
connections inOHFNN 16-19-1 for optimizing the rootmean square
error.

Parameters Value
Population size 10000
Elite count 4
Crossover fraction 0.7000
Generations 500
Initial population [10000 × 343 double]
Selection function Roulette
Crossover function Heuristic
Number of variables 343
Scaling function Rank

The real valued coding scheme has been used to form
a string. This predictor has been developed on Intel core
2Duo CPU 2.10GHz, 2GB RAM,Windows 7 32-bit OS using
NNtool and GA Tool of MATLAB. In this predictor, first we
obtain best four weight vectors after training OHFNN 16-19-1
on PROMISE data set.These four weight vectors are solutions
in initial population of GA. Excellent results can be obtained
by using the control parameters of GA given in Table 1.

6. Results and Discussion

By varying the number of neurons at hidden layer of OHFNN
architecture, the optimal neural architecture ofOHFNN is 16-
19-1 for traingdm and traingda training methods of NNtool.
The performance graphs of OHFNN 16-19-1 with traingda
and OHFNN 16-19-1 with traingdm are shown in Figures 1
and 2, respectively. Best validation performance of OHFNN
16-19-1 with traingda is 0.0088132 at epoch 2173 and the best
validation performance of OHFNN 16-19-1 with traingdm is
0.012839 at epoch 1,00,900. During the analysis of this work
it has been found that development effort of some projects
is not predicted precisely. Research work has been carried
out to change the proposed algorithm for better results in
all cases. In [1] best root mean square error is 0.00149074 for
network architectureOHFNN 16-19-1 at learning rate 1.01 and
momentum 0.7. Gradient descent never guarantees that root
mean square error obtained is a global one. For exploring
the problem in global search space, GA has been used to
optimize the fitness function. This fitness function is written
in terms of root mean square error. Weight vector obtained
after training the neural network has been used as input for
the fitness function. Using the operators such as selection,
crossover, and mutation operator of GA, root mean square
error can be further optimized. Root mean square error is
0.0014602 after 500 generations using 10000 populations as

6 Advances in Software Engineering

shown in Figure 3. Control parameters of GA for the above
are represented in Table 1.

7. Conclusion and Future Scope

In this research work, by a large number of simulation works,
OHFNN 16-19-1 architecture has been obtained to predict
the development effort accurately using GA. Performance
index of OHFNN-GA prediction model depends not only
on the architecture of network and learning algorithm for
training but also on the crossover and mutation probabilities
and population sizes. In this study, OHFNN 19-16-1 has
been fixed with both training algorithms for having common
platforms in the comparison of the performance. In the
future the other neural network like radial basis function
(RBF) with GA would be used for the prediction model.
Binary associative architecture (BAM) with GA can also
be used for a better result. Two hidden layer feed forward
neural networks (THFNN) with GA can be used for further
optimizing the rmse. Particle swarm optimization (PSO) can
be combined with neural network architecture to predict the
object oriented software development effort precisely. Other
attributes of the object oriented software can also be predicted
using this model. This nonparametric model can be used
for establishing relationship between input vector and output
vector with the help of weight vector.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] C. S. Yadav and R. Singh, “Implementation of prediction model
for object oriented software development effort estimation
using one hidden layer neural network,” International Journal of
Advanced Computer Research, vol. 4, no. 14, part 1, pp. 157–166,
2014.

[2] C. S. Yadav and R. Singh, “Tuning of COCOMO II model par-
ameters for estimating software development effort using GA
for PROMISE project data set,” International Journal of Com-
puter Applications, vol. 90, no. 1, pp. 37–43, 2014.

[3] S. Kumar, M. P. Singh, R. Goel, and R. Lavania, “Hybrid evo-
lutionary techniques in feed forward neural network with dis-
tributed error for classification of handwritten Hindi ‘SWARS’,”
Connection Science, vol. 25, no. 4, pp. 197–215, 2013.

[4] A. Kumar, C. S. Yadav, and P. Singh, “Parameter tuning of
COCOMO modelfor software effort estimation using PSO,” in
Proceedings of the 1st International Conference on Innovations
and Advancements in Information and Communication Technol-
ogy (ICIAICT ’12), pp. 99–105, 2012.

[5] E. Praynlin and P. Latha, “Performance analysis of software
effort estimation models using neural networks,” International
Journal of Information Technology and Computer Science, vol. 5,
no. 9, pp. 101–107, 2013.

[6] N. Kumar, J. Borm, and A. Kumar, “Reliability analysis of
waste clean-up manipulator using genetic algorithms and fuzzy
methodology,” Computers and Operations Research, vol. 39, no.
2, pp. 310–319, 2012.

[7] S. Shrivastava and M. P. Singh, “Performance evaluation of
feed-forward neural network with soft computing techniques
for hand written English alphabets,” Applied Soft Computing
Journal, vol. 11, no. 1, pp. 1156–1182, 2011.

[8] A. F. Sheta and A. Al-Afeef, “A GP effort estimation model
utilizing line of code and methodology for NASA software
projects,” in Proceedings of the 10th International Conference on
Intelligent Systems Design and Applications (ISDA '10), pp. 290–
295, IEEE, Cairo, Egypt, December 2010.

[9] A. F. Sheta, “Estimation of the COCOMO model parameters
using genetic algorithms for NASA software projects,” Journal
of Computer Science, vol. 2, no. 2, pp. 118–123, 2006.

[10] C. S. Reddy and K. V. S. V. N. Raju, “An optimal neural network
model for software effort estimation,” International Journal of
Software Engineering, vol. 3, no. 1, pp. 63–78, 2010.

[11] C. S. Reddy and K. V. S. V. N. Raju, “A concise neural network
model for estimating software effort,” International Journal of
Recent Trends in Engineering, vol. 1, no. 1, pp. 188–193, 2009.

[12] M. P. Singh and V. S. Dhaka, “Handwritten character recog-
nition using modified gradient descent technique of neural
networks and representation of conjugate descent for training
patterns,” International Journal of Engineering, Transactions A:
Basics, vol. 22, no. 2, pp. 145–158, 2009.

[13] L. Tian and A. Noore, “Evolutionary neural network modeling
for software cumulative failure time prediction,” Reliability
Engineering and System Safety, vol. 87, no. 1, pp. 45–51, 2005.

[14] E. S. Jun and J. K. Lee, “Quasi-optimal case-selective neural
network model for software effort estimation,” Expert Systems
with Applications, vol. 21, no. 1, pp. 1–14, 2001.

[15] C. J. Burgess andM. Lefley, “Can genetic programming improve
software effort estimation? A comparative evaluation,” Informa-
tion and Software Technology, vol. 43, no. 14, pp. 863–873, 2001.

[16] K. K. Shukla, “Neuro-genetic prediction of software develop-
ment effort,” Information and Software Technology, vol. 42, no.
10, pp. 701–713, 2000.

[17] T. M. Khoshgoftaar, A. S. Pandya, and H. B. More, “A neural
network approach for predicting software development faults,”
in Proceedings of the 3rd International Symposium on Software
Reliability Engineering, pp. 83–89, IEEE, October 1992.

[18] S. Kumar, Neural Networks: A Classroom Approach, Tata
McGraw Hill Education Private, New Delhi, India, 2nd edition,
2004.

[19] http://promise.site.uottawa.ca/SERepository/datasets/
cocomo81.arff.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

