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The optimal performance of the ant colony algorithm (ACA)mainly depends on suitable parameters; therefore, parameter selection
for ACA is important. We propose a parameter selection method for ACA based on the bacterial foraging algorithm (BFA),
considering the effects of coupling between different parameters. Firstly, parameters for ACA are mapped into a multidimensional
space, using a chemotactic operator to ensure that each parameter group approaches the optimal value, speeding up the convergence
for each parameter set. Secondly, the operation speed for optimizing the entire parameter set is accelerated using a reproduction
operator. Finally, the elimination-dispersal operator is used to strengthen the global optimization of the parameters, which avoids
falling into a local optimal solution. In order to validate the effectiveness of this method, the results were compared with those
using a genetic algorithm (GA) and a particle swarm optimization (PSO), and simulations were conducted using different grid
maps for robot path planning.The results indicated that parameter selection for ACA based on BFA was the superior method, able
to determine the best parameter combination rapidly, accurately, and effectively.

1. Introduction

In the 1990s, Dorigo et al. [1] were inspired by the foraging
behavior of ants and proposed an ant colony algorithm
(ACA) that had the characteristics of strong robustness, a
high degree of parallelism, and positive feedback. The ACA
demonstrates high effectiveness and superiority in global
optimization and in solving the traveling salesman [2, 3], shop
scheduling [4–7], and robot path planning [8–10] problems.

However, the optimal performance and efficiency of
the ACA are closely related to the chosen parameters that
include the information heuristic factor 𝛼, the expectation
heuristic factor 𝛽, the pheromone evaporation factor 𝜌, the
pheromone strength 𝑄, and the number of ants 𝑀 [11].
Parameter selection differs for different types of optimization
problems. Moreover, even for the same type of optimization
problem, parameters may change due to the different scales
of the problem. Traditional parameter selection methods
for the ACA include the empirical selection method, the
trial and error method, and the orthogonal experimental
design method [12]. The empirical selection method requires
a priori knowledge of the problem in question, and the

method requires the need to conduct multiple experiments,
consuming considerable time and effort, rendering it difficult
to obtain the optimum parameters. Hei and Du [13] applied
the trial and error method, which required a large number
of digital simulations to obtain the parameters, and the
authors determined that it was difficult to guarantee that the
obtained parameters were optimal. Gan and Li [14] studied
parameter selection for ACA based on the orthogonal exper-
imental design method, which ignores coupling between the
parameters.This method is computationally intensive, which
is a disadvantage. Traditional parameter selection methods
for the ACA are mainly based on a large number of repli-
cated experiments, which is inefficient and time consuming.
Moreover, traditional parameter selection methods ignore
the coupling between the parameters, making it difficult to
obtain the optimal parameters.

In the ACA, the parameters are coupled with each other,
and it is difficult to achieve the best performance for the
algorithm by adjusting only a single parameter. Therefore,
it is common to adjust multiple parameters simultaneously
to determine the optimal parameter combination. Recently,
scholars who have considered the parameter selection in
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the ant colony algorithm as an optimization problem have
applied intelligent algorithms to solve the parameter selec-
tion problem in the ACA. Feng [15] proposed a parameter
selection method based on a GA. Although this method
is effective with regard to global optimization, it had the
disadvantage of slow convergence speed. Li et al. [16] applied
a PSO, which can avoid subjectivity in parameter selection
and obtain optimum parameters rapidly. In spite of that, this
method is prone to premature convergence and falling into
a local optimal solution. Although GA and PSO are suitable
for obtaining ACA parameters quickly and accurately, due to
the disadvantages of themethods, the parameter selection can
be improved upon.Therefore, a suitable intelligent algorithm
that can optimize globally is required to obtain the optimal
parameters for the ACA.

The bacterial foraging algorithm (BFA) [17] has a fast
convergence speed and searches objects in parallel. The
algorithm includes a chemotaxis operator, a reproduction
operator, and an elimination-dispersal operator. In addition,
the BFA is able to jump out of the local optimal solution.
Therefore, the BFA has shown good adaptability for solv-
ing the problems of job shop scheduling [18], robot path
planning [19], image processing [20], and high dimensional
optimization [21]. In this study, ACA parameters are mapped
into a multidimensional space, and a chemotactic operator
is used to enable each group of parameters to approach the
optimal value and speed up the convergence of each set of
parameters. A reproduction operator is used to accelerate
the optimization for the entire set of parameters. Lastly, the
elimination-dispersal operator is utilized to strengthen the
global optimization ability of the parameters to avoid falling
into a local optimal solution. The BFA is commonly applied
to solve the problem of parameter selection for ACA and is
able to take into account the coupling between parameters,
which allows for adjusting the parameters automatically with
little prior knowledge.Therefore, it is appropriate to apply the
BFA to obtain the ACA parameters.

2. Model and Parametric Analysis of
the Ant Colony Algorithm

TheACA described in this paper will be applied to robot path
planning.Generally, environmentalmodeling is an important
aspect of path planning.

2.1. Environmental Modeling. By the direct encoding format
for the data, this study uses the grid method [22] for environ-
mental modeling. XY is described as a convex polygon, an
area of limited motion that contains several static obstacles
in a two-dimensional plane. A Cartesian coordinate system is
established for 𝑋𝑌. Figure 1 shows a grid sequence diagram
with a size of 10×10, and the black grids in the figure represent
obstacles. V is an arbitrary grid within𝑋𝑌,𝑉 is the sum of all
grids, and, therefore, V ∈ 𝑉. V(𝑥, 𝑦) are the coordinates of a
grid, where its center point coordinates are 𝑥 and 𝑦. Suppose
that 𝑁 = {1, 2, . . . , 𝑛} is a set of grid sequence number, and
this study regards a grid 𝑖 (𝑖 ∈ 𝑁) as V𝑖(𝑥𝑖, 𝑦𝑖).
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Figure 1: Grid sequence diagram.

2.2. Model of Ant Colony Algorithm

2.2.1. Rules of Path Selection. 𝑝𝑚𝑖𝑗 (𝑡) is defined as the transition
probability that ant𝑚 walks forward from V𝑖 to V𝑗, which can
be expressed as follows [23]:

𝑝𝑚𝑖𝑗 (𝑡)

=
{{{
{{{
{

[𝜏𝑖𝑗 (𝑡)]
𝛼 ⋅ [𝜂𝑖𝑗 (𝑡)]

𝛽

∑V
𝑚
∈𝑉𝑚allowed

[𝜏𝑖𝑚 (𝑡)]𝛼 ⋅ [𝜂𝑖𝑚 (𝑡)]𝛽
, if V𝑗 ∈ 𝑉𝑚allowed,

0, otherwise,

(1)

where 𝑉𝑚allowed is a set of the next feasible grid when ant m
arrives at V𝑖; 𝜏𝑖𝑗(𝑡) is the residual pheromones between V𝑖 and
V𝑗 at 𝑡 time; 𝛼 represents the information elicitation factor,
which shows the relative importance of 𝜏𝑖𝑗(𝑡); 𝜂𝑖𝑗(𝑡) is the
expectation heuristic function between V𝑖 and V𝑗 at 𝑡 time,
which can be defined as the reciprocal of the distance 𝑑𝑖𝑗
between V𝑖 and V𝑗, namely, 𝜂𝑖𝑗(𝑡) = 1/𝑑𝑖𝑗; 𝛽 is the expected
heuristic factor, which shows the relative importance of 𝜂𝑖𝑗(𝑡).

2.2.2. Rules of Pheromone Updating. Ants will leave pherom-
ones in their path, and the pheromones will evaporate over
time to avoid the masking of heuristic information due to
excessive residual pheromones. Supposing that 𝜌 (0 ≤ 𝜌 ≤
1) is the pheromone evaporation coefficient, the rules of
pheromone updating between V𝑖 and V𝑗 at 𝑡 + Δ𝑡 time can be
expressed as follows [23]:

𝜏𝑖𝑗 (𝑡 + Δ𝑡) = (1 − 𝜌) ⋅ 𝜏 (𝑡) + Δ𝜏𝑖𝑗 (𝑡) ,

Δ𝜏𝑖𝑗 (𝑡) =
𝑀

∑
𝑚=1

Δ𝜏𝑚𝑖𝑗 (𝑡) ,
(2)
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where Δ𝜏𝑚𝑖𝑗 (𝑡) is the pheromone that ant 𝑚 leaves between
V𝑖 and V𝑗, and this paper applies the Ant-Cycle model [1]
proposed by Dorigo et al., which can be expressed as follows:

Δ𝜏𝑚𝑖𝑗 (𝑡) =
{
{
{

𝑄
𝐿𝑚

, V𝑖, V𝑗 ∈ Path𝑚,
0, otherwise,

(3)

where 𝑄 is the pheromone intensity; 𝐿𝑚 is the total length of
path traversed by ant𝑚; Path𝑚 is the set of grids traversed by
ant𝑚.

2.3. Parametric Analyses of the Ant Colony Algorithm. The
parameters for ACA are extremely important to the per-
formance of the algorithm, and appropriate parameters can
enhance the global search ability of the algorithm and
improve the convergence speed considerably [24]. From the
above formulas, it is evident that the parameters with a
significant impact on the path selection of the ant 𝑚 are 𝛼,
𝛽, 𝜌, and 𝑄. We will elaborate further on the relationship
between the four parameters and the performance of the
ACA.

2.3.1. Information Elicitation Factor 𝛼. The information elic-
itation factor 𝛼, which represents the relative importance of
the pheromone, reflects the importance of the accumulation
of the pheromone with regard to the ants’ path selection. If 𝛼
is very large, the ants tend to choose the same path that the
preceding ants have chosen, resulting in stronger cooperation
among the ants. Although the convergence speed of ACAwill
be accelerated, it is likely for the algorithm to fall into the
local optimal solution and reduce the global search ability.
Conversely, if 𝛼 is too small, the convergence speed of the
ACA is slowed down, regardless of the fact that the global
search ability of the algorithm can be improved.

2.3.2. Expected Heuristic Factor 𝛽. The expected heuristic
factor 𝛽, which represents the relative importance of the
visibility, reflects the importance of the heuristic information
with regard to the ants’ path selection. If the value is very
large, the probability of a state transition is close to that of a
greedy algorithm. If 𝛽 is too small, the heuristic information
has virtually no effect on path selection, which leads ACA to
fall into stagnation or a local optimum.

2.3.3. Pheromone Evaporation Coefficient 𝜌. The pheromone
evaporation coefficient 𝜌, which represents the degree of
pheromone evaporation, reflects the degree of mutual influ-
ence among ants. Generally, the value of 𝜌 is [0, 1], which
prevents the infinite accumulation of pheromone effectively.
If 𝜌 is too small, the global search ability of ACA will be
reduced. Otherwise, if 𝜌 is too large, it will improve the global

search ability of ACA; however, the convergence speedwill be
slow.

2.3.4. Pheromone Intensity 𝑄. The pheromone intensity 𝑄,
which represents the total pheromone, affects the conver-
gence speed of the ACA to a certain extent. If 𝑄 is large, the
pheromone concentration will be highly concentrated, which
leads the algorithm to fall into a local optimum. Furthermore,
a small 𝑄 results in a slow optimization speed.

3. Parameters Selection of ACA Based on BFA

In 2002, Passino put forward a bacterial foraging algorithm
[17], based on the foraging behavior of Escherichia coli in
the human intestinal tract. This algorithm includes a chemo-
taxis operator, a reproduction operator, and an elimination-
dispersal operator. The algorithm is able to search in parallel
and jump out of the local minima easily. In this paper, we
will transfer any set of parameters (𝛼𝑖, 𝛽𝑖, 𝜌𝑖, 𝑄𝑖) to four-
dimensional arrays, which are seen as an individual bacteria
𝑝𝑖, where 𝑝𝑖 = (𝛼𝑖, 𝛽𝑖, 𝜌𝑖, 𝑄𝑖)𝑇. 𝑃 is a bacterial population,
and 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}. Because the application of the
algorithms discussed in this paper is aimed at the problem of
robot path planning in a gridmap environment, the objective
of this study is the selection of optimal parameters for the
ACA. path𝑖 is the path for a robot under the individual
bacteria𝑝𝑖, and path𝑖 ∈ PATH.Therefore, the fitness function
of BFA can be expressed as follows:

𝑓 (𝑝𝑖) = Length (path𝑖) , (4)

where Length(∗) is adopted to calculate the length of a path.

3.1. Chemotaxis Operator 𝑇𝐵𝑐 . The chemotaxis operator rep-
resents the core of the BFA, and it determines changes in
the location of the bacteria that are searching for food.
Therefore, the chemotaxis operator plays a decisive role
in finding a food source for the bacteria, which has an
important influence on the performance and convergence of
the algorithm. 𝑃(𝑚) is the bacterial population, and 𝑃(𝑚) =
[𝑝1(𝑚) 𝑝2(𝑚) ⋅ ⋅ ⋅ 𝑝𝑛(𝑚)]𝑇. And the chemotaxis operator
can be expressed as follows:

𝑃𝐵𝑐 (𝑚) = 𝑇𝐵𝑐 (𝑃 (𝑚))

= [𝑝𝐵𝑐1 (𝑚) 𝑝𝐵𝑐2 (𝑚) ⋅ ⋅ ⋅ 𝑝𝐵𝑐𝑛 (𝑚)]
𝑇

(5)

∀𝑖 ∈ [1, 𝑛], 𝑝𝐵𝑐𝑖 (𝑚) = 𝑇𝐵𝑐 (𝑝𝑖(𝑚)).
Supposing that 𝑝𝑖(𝑚) = 𝑝𝑖(𝑚, 𝑗, 𝑘, 𝑙) and 𝑝𝐵𝑐𝑖 (𝑚) =

𝑝𝑖(𝑚, 𝑗 + 1, 𝑘, 𝑙), this paper adjusts the position of a bacteria
in accordance with the formula (6), which can be expressed
as follows [25]:

𝑝𝑖 (𝑚, 𝑗 + 1, 𝑘, 𝑙) = 𝑝𝑖 (𝑚, 𝑗, 𝑘, 𝑙) + Step × 𝜑 (𝑖) , (6)

𝜑 (𝑖) = 𝑝𝑖 (𝑚, 𝑗, 𝑘, 𝑙) − 𝑝rand (𝑚, 𝑗, 𝑘, 𝑙)
sqrt ((𝑝𝑖 (𝑚, 𝑗, 𝑘, 𝑙) − 𝑝rand (𝑚, 𝑗, 𝑘, 𝑙))𝑇 × (𝑝𝑖 (𝑚, 𝑗, 𝑘, 𝑙) − 𝑝rand (𝑚, 𝑗, 𝑘, 𝑙)))

, (7)
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where 𝑝𝑖(𝑚, 𝑗, 𝑘, 𝑙) represents the current location of the
bacterial individual 𝑖; 𝑗 is the number of the chemotaxis
operator; 𝑘 is the number of the reproduction operator; 𝑙
is the number of the elimination-dispersal operator; Step
represents the step that the bacteria moves forward each
time;𝜑(𝑖) is the direction of random tumbling;𝑝rand(𝑚, 𝑗, 𝑘, 𝑙)
represents a random position in the neighborhood of the
current individual.

In the chemotaxis operator, the movement patterns of
the bacteria include flipping and moving. The bacteria move
forward in any direction with a unit step, which is defined
as the flipping operator. After 𝑝𝑖(𝑚) executes the flipping
operator, namely, 𝑝𝐵𝑐𝑖 (𝑚) = 𝑇𝐵𝑐 (𝑝𝑖(𝑚)), and the fitness value
of 𝑝𝑖(𝑚) is not improved, namely, 𝑓(𝑝𝐵𝑐𝑖 (𝑚)) > 𝑓(𝑝𝑖(𝑚)),
𝑝𝑖(𝑚) jumps out of the loop. If the fitness value of 𝑝𝑖(𝑚)
is improved, namely, 𝑓(𝑝𝐵𝑐𝑖 (𝑚)) < 𝑓(𝑝𝑖(𝑚)), 𝑝𝑖(𝑚) keeps
moving in the same direction until the fitness value cannot
be improved further, or the algorithm achieves themaximum
number of flipping, which is defined as the moving operator.

3.2. Reproduction Operator 𝑇𝐵𝑟 . The reproduction operator
ensures the improvement in the performance of the bacte-
rial population, which encourages the population to move
towards the optimal direction. The reproduction operator
is conducive to achieving the global optimal, which can be
expressed as follows:

𝑃𝐵𝑟 (𝑚) = 𝑇𝐵𝑟 (𝑃𝐵𝑐 (𝑚))

= [𝑝𝐵𝑟1 (𝑚) 𝑝𝐵𝑟2 (𝑚) ⋅ ⋅ ⋅ 𝑝𝐵𝑟𝑛 (𝑚)]
𝑇 .

(8)

Supposing that 𝑃𝐵𝑐 (𝑚)value is the fitness value of the bac-
terial population after performing the chemotaxis operator,
which can be expressed as follows:

𝑃𝐵𝑐 (𝑚)value = 𝑓 (𝑃𝐵𝑐 (𝑚)) = Length (PATH𝐵𝑐 (𝑚)) . (9)

With the standard of 𝑃𝐵𝑐 (𝑚)value, this paper gets 𝑃𝐵𝑐 (𝑚)bad
that is half of the bacterial population with a bad fit-
ness value and 𝑃𝐵𝑐 (𝑚)good that represents half of the bac-
terial population with a good fitness value. Therefore,
𝑃𝐵𝑐 (𝑚) = 𝑃𝐵𝑐 (𝑚)bad ∩ 𝑃𝐵𝑐 (𝑚)good. Then, this paper replaces
𝑃𝐵𝑐 (𝑚)bad with 𝑃𝐵𝑐 (𝑚)good to get 𝑃𝐵𝑟 (𝑚), and 𝑃𝐵𝑟 (𝑚) =
[𝑃𝐵𝑐 (𝑚)good 𝑃𝐵𝑐 (𝑚)good].

3.3. Elimination-Dispersal Operator 𝑇𝐵𝑒 . The elimination-
dispersal operator generates a new individual with a certain
probability, which has a different location compared to the
dead individual. The operator has a promoting effect on the
algorithm, because the new individual may be closer to the
food source, which is more conducive to jumping out of
the local optimal solution and finding the global optimal
solution.The elimination-dispersal operator can be expressed
as follows:

𝑃𝐵𝑒 (𝑚) = 𝑇𝐵𝑒 (𝑃𝐵𝑟 (𝑚))

= [𝑝𝐵𝑒1 (𝑚) 𝑝𝐵𝑒2 (𝑚) ⋅ ⋅ ⋅ 𝑝𝐵𝑒𝑛 (𝑚)]
𝑇

(10)

∀𝑖 ∈ [1, 𝑛], 𝑝𝐵𝑒𝑖 (𝑚) = 𝑇𝐵𝑒 (𝑝𝐵𝑟𝑖 (𝑚)). In this paper, some bacte-
ria individuals pass away in a certain probability. Supposing
that 𝑝𝑒 is the probability of death for the individual. If rand <
𝑝𝑒, 𝑝𝐵𝑟𝑖 (𝑚) passes away, and 𝑝𝐵𝑒𝑖 (𝑚) = 𝑝rand(𝑚), where
𝑝rand(𝑚) is a new bacterial individual generated randomly.

3.4. Steps of the Algorithm. See Algorithm 1.

4. Experimental Analysis

In order to analyze the application performance of the
parameter selection for the ACA based on the BFA, we
ran a simulation for robot path planning in a grid map
environment.

4.1. Establishing Grid Maps. Figure 2 shows six grid maps,
where the white grid represents an accessible area and the
black grid is a barrier. The ACA based on the parameters
obtained using the BFA is used to determine the robot’s
optimal path in the map without running into obstacles. The
upper left corner grid is the starting point, and the lower right
corner grid is the end point. Beginning at the starting point,
the robot has the potential tomove into 8 different directions,
including the front, rear, left, right, left front, left rear, right
front, and right rear. Excluding the grids with obstacles or
already gone, the robotmoves one grid at a time.Details of the
gridmaps are shown inTable 1, including the size, the number
of grids, the number of obstacles, and the coverage rate. Maps
1–4 are of the same size, but the complexity is different for
each map. Although Map 5 is small, its complexity is high.
Map 6 is not only large, but also highly complex. In general,
the larger and the more complex the grid map is, the more
difficult robot path planning becomes.

4.2. Simulation. To analyze further the application perfor-
mance of the parameters obtained by using the BFA for the
ACA, we conducted the tests for the different grid maps
using MATLAB and compared the results with the GA and
the PSO. The following parameters were used: parameter
initialization of ACA: 𝑚 = 40; parameter initialization of
GA: size of population: 20, probability of selection: 0.08,
probability of crossover: 0.3, probability of mutation: 0.1,
maximum generation: 32; parameter initialization of PSO:
number of particles: 20, inertia weight: 0.5, parameter of
speed adjusting: 1.9 and 0.8; parameter initialization of BFA:
𝑃 = 20, 𝑁𝑐 = 4, 𝑁𝑠 = 4, Step = 1, 𝑁𝑟 = 4, 𝑁𝑒 = 2, and
𝑃𝑒 = 0.1. Prior to using the different intelligent algorithms
to determine ACA parameter selection, we initialized 𝛼, 𝛽, 𝜌,
and 𝑄: 𝛼 ∈ [0, 10], 𝛽 ∈ [0, 20], 𝜌 ∈ [0, 1], and 𝑄 ∈ [50, 150].

Formula (4) was used as the fitness function for BFA,
which was used to compare the parameter performance.
In order to ensure the rigor of the experiment, formula
(4) was also used as the fitness function of GA and PSO.
Length(∗) was adopted to calculate the length of the route
path𝑖 of the bacterial individual 𝑝𝑖. Therefore, ACA was used
for path planning to obtain the different route path under
different map environments for the GA, PSO, and BFA. Due
to the randomness of ACA, a fixed mathematical formula
for ACA could not be used for path planning. As long as
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Begin
Initialize: the bacterial population 𝑃; times of chemokines𝑁𝑐; maximum

steps of chemokines𝑁𝑠; step Step; times of reproduction𝑁𝑟; times of
elimination-dispersal𝑁𝑒; probability of elimination-dispersal 𝑃𝑒;
maximum generations 𝐺max.
𝑚 = 1;
While 𝑚 <= 𝐺max
For 𝑗 = 1: 𝑁𝑒

For 𝑘 = 1: 𝑁𝑟
For 𝑙 = 1: 𝑁𝑐
While 𝑖 <= 𝑛

𝑃𝐵𝑐 (𝑚) = 𝑇𝐵𝑐 (𝑃(𝑚)) = [𝑝𝐵𝑐1 (𝑚) 𝑝𝐵𝑐2 (𝑚) ⋅ ⋅ ⋅ 𝑝𝐵𝑐𝑛 (𝑚)]
𝑇;

𝑖 = 𝑖 + 1;
End

End
𝑃𝐵𝑟 (𝑚) = 𝑇𝐵𝑟 (𝑃𝐵𝑐 (𝑚)) = [𝑝𝐵𝑟1 (𝑚) 𝑝𝐵𝑟2 (𝑚) ⋅ ⋅ ⋅ 𝑝𝐵𝑟𝑛 (𝑚)]

𝑇;
End
If rand < 𝑃𝑒

𝑃𝐵𝑒 (𝑚) = 𝑇𝐵𝑒 (𝑃𝐵𝑟 (𝑚)) = [𝑝𝐵𝑒1 (𝑚) 𝑝𝐵𝑒2 (𝑚) ⋅ ⋅ ⋅ 𝑝𝐵𝑒𝑛 (𝑚)]
𝑇;

End
End
𝑚 = 𝑚 + 1;

End
End

Algorithm 1
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Figure 2: Six grid maps.
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Table 1: Details of grid maps.

Size Number of grids Number of obstacles Coverage rate
Map 1 20 × 20 400 106 26.5%
Map 2 20 × 20 400 113 28.25%
Map 3 20 × 20 400 123 30.75%
Map 4 20 × 20 400 133 33.25%
Map 5 16 × 16 256 103 40.23%
Map 6 40 × 40 1600 663 41.44%

Table 2: Performance comparison of GA, PSO, and BFA.

Optimization times Number of fitness function calls Simulation time/s Minimum distance Average distance

GA
10 274 142.1787 78.1838 101.9677
20 532 298.3970 75.4975 101.1249
30 788 449.1179 72.6690 101.1712

PSO
10 220 118.1516 76.7696 107.8844
20 420 217.0521 75.4975 107.5190
30 620 334.9856 72.9411 106.6085

BFA
10 505 249.2963 72.6690 96.1448
20 1018 526.5445 71.2548 91.8834
30 1570 810.1920 71.0122 91.1293

Table 3: Test results of GA, PSO, and BFA.

Map 1 Map 2 Map 3 Map 4 Map 5 Map 6

GA

Maximum distance 82.6690 80.6690 90.0833 85.4975 56.5269 169.9239
Minimum distance 28.6274 28.6274 28.6427 28.6427 22.3848 72.6690
Average distance 34.9960 34.7249 36.0491 35.4845 24.8728 101.5615
Standard deviation 2.1426 2.1856 3.1071 2.3975 1.4661 3.0223

PSO

Maximum distance 45.4558 47.1127 41.1127 43.7990 28.7279 191.5807
Minimum distance 28.0416 28.0416 28.0416 28.6427 22.3848 74.4264
Average distance 32.2744 31.4533 33.2238 32.7348 24.2252 100.0113
Standard deviation 0.4886 0.5327 0.3746 0.5969 0.1976 6.2984

BFA

Maximum distance 39.7990 38.8701 39.4558 39.7990 29.2132 119.3970
Minimum distance 28.0416 28.0416 28.0416 28.0416 22.3848 69.0122
Average distance 30.9162 31.2931 31.5497 31.6602 23.3873 88.9554
Standard deviation 0.7087 0.6806 0.5672 0.6367 0.7376 2.7994

GA, PSO, and BFA call the fitness function, these algorithms
have to use ACA for path planning, which increases the
complexity and simulation time for the algorithms, but
cannot be avoided. For example, for Map 6, Table 2 shows
the performance comparison of GA, PSO, and BFA. It is
evident that the fitness function is invoked multiple times
for either algorithm in Table 2. The chemotaxis operator and
reproduction operator of the BFA are based on the fitness
value of individual bacteria for the evolution of the evaluation
criteria. As a result, BFA had the highest number for invoking
the fitness function, resulting in the longest simulation time
for BFA. However, this study was mainly concerned with
path planning based on global maps, which did not require
rapid real-time performance. Therefore, it was acceptable to
use the BFA for ACA parameter selection. In Table 2, the
performance for parameter selection for GA and PSO for 30
optimizations was inferior compared to the performance of

BFA for 10 optimizations, which demonstrated that BFA had
fast convergence speed and superior performance.

The test results for the use ofGA, PSO, andBFA are shown
inTable 3.Themaximum,minimum, and average valueswere
the best for BFA, indicating that the BFA algorithm was the
preferred method for determining the combination of opti-
mal parameters. The chemotactic operator that adjusts the
parameters in an adaptive manner ensures that each group of
parameters approaches the optimal value in order to speed
up the convergence. The reproduction operator accelerates
the speed of optimization for the entire set of parameters.
Therefore, the parameters obtained using BFA were the most
appropriate to achieve the shortest path for the robot using
ACA.The standard deviation for BFAwas slightly larger than
for PSO due to the elimination-dispersal operator, which
introduced new parameter combinations.The new parameter
combinations with unknown performance increased the
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Figure 3: Distribution of parameters obtained by GA.

diversity of the parameter combinations, which improved the
global optimization and avoided the algorithm to fall into a
local optima. Furthermore, the initial path of the robot was
relatively long.The test results shown inMap 1–5 demonstrate
that the performance based on GA was the worst, that of
BFA was the best, and that of PSO was close to BFA. The
test results shown in Map 6 indicate that BFA performed
best, demonstrating that BFAwasmost suitable for parameter
optimization in a complex environment. Therefore, the test
results proved that parameter selection for ACA based on
BFAwas highly effective and superior to the other algorithms.

The initial number of parameter combinations was 20
for each algorithm. Using Map 6 as an example, Figures
3, 4, and 5 show the distribution of parameters under
different optimal generation for the three algorithms. In
Figure 3, the distribution of parameters underwent a process
of aggregating diverging and aggregating. Therefore, it was
difficult for the parameters to approach the optimal value
continuously. The distribution of parameters obtained using
PSO is illustrated in Figure 4, and it shows that the position
and velocity of a particle are updated constantly based on
the population information and individual experience in
order to obtain the optimal parameters. The distribution of
the 20-parameter combinations exhibited a gradual trend

to aggregate. The parameters aggregated quickly from the
1st optimization to the 12th optimization. However, after
the 18th optimization, the aggregating trend was almost
unchanged, indicating that PSO fell into a local optimal solu-
tion and underwent premature convergence. Figure 5 depicts
the parameter distribution obtained using BFA and shows
that the 20 parameter combinations aggregate continuously
due to the chemotactic operator and reproduction operator.
These results demonstrated the effectiveness and superiority
of parameter selection for ACA using BFA.

Figure 6 shows the evolution curves of the distances using
the three algorithms in the environment of Map 6. The
average evolution curves indicate that the convergence speed
was highest for BFA.The average evolution curves forGA and
PSO exhibited relatively large fluctuations. The convergence
speed of GA and PSO was slow, indicating that GA and
PSO fell into a local optimal solution. The optimal evolution
curves show that BFA had the strongest optimization ability.
Moreover, the optimization process for BFA was the most
stable. The optimization processes for GA and PSO had large
fluctuations.

The parameters of ACA for the shortest path are illus-
trated in Table 4, where the shortest path represents the
minimum value shown in Table 3. The results indicated that
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Figure 4: Distribution of parameters obtained by PSO.

Table 4: Parameters of ACA in the shortest path.

Map 1 Map 2 Map 3 Map 4 Map 5 Map 6

GA

𝛼 2.1260 9.2126 8.1890 2.2835 7.1654 8.7402
𝛽 20 19.451 17.2549 18.9804 12.8627 18.6667
𝜌 1 0.8 04667 0.6667 0.4667 0.8000
𝑄 54.3988 116.8622 78.1525 122.5318 51.7595 146.6764

PSO

𝛼 9.1656 7.2622 6.2604 4.4029 1.7695 5.0572
𝛽 19.0578 22.7214 14.6075 16.6394 15.0183 18.1021
𝜌 0.4479 0.7653 0.5728 0.4764 0.3806 0.5898
𝑄 94.8379 133.7824 91.8428 129.7067 132.0365 66.2206

BFA

𝛼 7.7052 10.0753 1.1790 4.8531 9.6174 1.3500
𝛽 19.9652 18.8933 18.5790 19.3417 19.2342 19.5401
𝜌 0.2760 0.0199 0.5992 0.3716 0.1962 0.8699
𝑄 51.6965 132.6316 100.8766 139.1583 147.0755 70.7550

the shortest distance obtained by the different algorithms
was the same for the same grid map. Nevertheless, the
corresponding parameter combinationswere different, which
proved that the ACA parameters were coupled with each
other. Therefore, to find the relationship between the param-
eters and the performance of ACA, some researchers use the

control variable method and change a single parameter for an
experiment, which is considered not rigorous.

The performance of the parameter combinations in
Table 4 was determined using the fitness function.The fitness
function performs path planning for the current grid map,
which means that the performance is based on chance and
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Figure 5: Distribution of parameters obtained by BFA.
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Figure 7: Optimal paths under different parameter combinations.
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Figure 8: Evolution curves of the distance under different parameter combinations.

Table 5: Test results under different parameter combinations.

GA (𝛼 = 8.7402, 𝛽 = 18.666,
𝜌 = 0.8000, 𝑄 = 146.6764)

PSO (𝛼 = 5.0572,
𝛽 = 18.1021, 𝜌 = 0.5898,

𝑄 = 66.2206)
BFA (𝛼 = 1.3500, 𝛽 = 19.5401,
𝜌 = 0.8699, 𝑄 = 70.7550)

Maximum distance 139.6396 128.2254 129.7817
Minimum distance 88.669 73.4975 65.2548
Average distance 91.41 85.5504 66.7729
Standard deviation 2.1076 3.033 6.1966

randomness. To validate further the performance of the
parameter combinations, tests were conducted based onACA
with different parameter combinations and using Map 6 for
robot path planning. It was assumed that the number of ants
was 40 and the cycle time was 40.

The results of this test are shown in Table 5. Based on the
maximum, minimum, and average values, it was evident that
the use of BFA resulted in the best performance regarding
parameter combination. The initial path selection of the ants
was poor. As the cycle increased, the path became shorter.The

ants found the best route based on the parameters obtained
by BFA, and the path was much shorter than the initial
path, resulting in a large standard deviation. To some extent,
the large standard deviation proved the effectiveness and
superiority of BFA used for parameters selection for ACA.

The optimal paths using different parameter combina-
tions are shown in Figure 7. The use of ACA based on the
parameters obtained using BFA, resulted in the shortest path,
indicating that BFA was able to obtain the most appropriate
parameters. Figure 8 illustrates the evolution curves of the
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distance under different parameter combinations, and it is
evident that the parameters obtained by GA or PSO led
to ACA falling into the local optimal solution and to an
apparent premature convergence. However, usingACAbased
on parameters obtained by BFA resulted in the optimal path.
The test results in this paper showed that the parameters had
a large impact on the performance of ACA. Choosing suitable
parameters enabled ACA to achieve an optimal performance.
However, unsuitable parameters resulted in ACA falling into
a local optima. The test results showed that the use of BFA
could determine optimal parameters for ACA to achieve the
best performance.

5. Conclusion

Optimal performance of ACA mainly depended on suitable
parameters. However, the parameters were coupled with each
other, and the potential number of parameters was large,
presenting a considerable challenge forACAparameter selec-
tion. Therefore, multiple parameter selection for ACA based
on BFAwas proposed.The parameters for ACAweremapped
into a multidimensional space, and the optimal parameters
were obtained automatically using BFA, demonstrating the
superiority of the method. Moreover, the four parameters 𝛼,
𝛽, 𝜌, andQ could be obtained simultaneously.The parameter
optimization process took into account the coupling between
the parameters, which ensured the rationality of the param-
eters. The test results showed that the parameters obtained
using BFA for ACA were the most suitable. Compared with
GA and PSO, BFA had a better performance for parameter
selection of ACA with regard to convergence speed, opti-
mization capability, and stability, which demonstrated the
effectiveness and superiority of parameter selection for ACA
based on BFA.
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