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This paper is concerned with the stability analysis issue for coupled systems on networks with mixed delays and reaction-diffusion
terms (CSNMRs). By employing Lyapunov method and Kirchhoff ’s Theorem in graph theory, a systematic method is proposed to
guarantee exponential stability of CSNMRs. Two different kinds of sufficient criteria are derived in the form of Lyapunov function
and coefficients of the system, respectively. Finally, a numerical example is given to show the effectiveness of the proposed criteria.

1. Introduction

Coupled systems on networks (CSNs) have important prac-
tical significance; for example, neural networks can be seen
as a coupled system, so that they are widely used in physics,
biology, and engineering fields [1–4]. In recent years, CSNs
have been an active research topic and received considerable
attention. When a coupled system is constructed, some
unknown small disturbance force, which is unavoidable and
affects everymovement of the system, has not been taken into
consideration. So, whether the coupled system is stablewill be
an important issue. As a main property of CSNs, stability has
been an enduring topic, andmany results have been reported
[5–7]. Gan and Xu [8] investigated the stability of a delayed
reaction-diffusion neural network. The stability problem for
a class of neutral-type neural networks was investigated in
the paper [9]. Hu et al. [10] considered globally exponential
stability for delayed neural networks.

On the other hand, time delay is inevitably in practice
because of finite transmission of interaction [11]. Meanwhile,
distributed time delays also should be included in the model
due to the fact that there may exist a distribution of propa-
gation delays over a period of time in some cases [7, 12–14].
Therefore, both time-varying delay and the distributed time-
varying delay should be taken into account when we model
CSNs. In addition, to describe the dynamics changes of CSNs

more accurately, diffusion effects cannot be avoided (see [15–
17] and the references therein). As previously shown, the
stability of coupled systems on networks with mixed delays
and reaction-diffusion terms (CSNMRs) has been a research
focus.

The main method that contributes to investigating stabil-
ity of a system is Lyapunov function. In the literature, Zhu
and Song [18] derived some sufficient conditions by applying
the Lyapunov-Krasovskii functional, Dynkin formula, and
Razumikhin technique with a stochastic version as well
as the linear matrix inequalities (LMIs) technique. In [19],
some new delay-dependent conditions are derived applying
the Lyapunov stability theory, Dynkins formula, and linear
matrix inequality technique. And the method, linear matrix
inequalities technique, is also used in the paper [20]. So
far, plenty of sufficient conditions have been deduced to
determine the stability of coupled systems and more relevant
researches can be seen in [21, 22] and the references therein.

However, it is complicated to straightly construct an
appropriate Lyapunov function for a specific coupled system,
for the reason that the stability of a system depends on not
only the nature of the vertex system, but also the network
topology. Considering that CSNMRs can be described in
a digraph, in which each vertex represents an individual
system called vertex system and the directed arcs stand for
the interconnections and interactions among vertex systems,
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a novel method based on graph theory, which is used to
construct the Lyapunov function, is proposed.Thepioneering
work based on graph theory to consider the global stability
problem for coupled systems on networks has been done by
Li et al. [23, 24]. From then on, plenty of researchers devoted
themselves to this method for coupled systems [25–30]. We
also have made great efforts in this aspect and achieved some
results [31–34].

To the best of the authors’ knowledge, the discussion
about the exponential stability for CSNMRs is not deep
enough, and much room remains to be explored. According
to our survey, thismethod has not been applied to the systems
with distributed time delay or reaction-diffusion terms. With
few conclusions about the stability of CSNMRs obtained from
the new method, we start the present research.

Compared with the previous results on the analysis of
exponential stability, the main contribution of this paper
is threefold. Firstly, distributed time delay and reaction
diffusion are taken into account in the model. Secondly,
a graph-theoretic approach is employed to get different
kinds of sufficient stability criteria. Thirdly, some conditions
that keep from finding a global Lyapunov function directly
for CSNMRs are developed, through effective utilization of
topological structure and coefficients of CSNMRs.

The remainder of this paper is organized as follows:
in Section 2, problem statement and preliminaries are pre-
sented; in Section 3, with some theorems and corollaries
demonstrated, conditions based on graph theory for the
stability of CSNMRs are developed. Ultimately, a numerical
simulation is given in Section 4 to show the effectiveness and
feasibility of our theoretical results.

2. Modeling and Preliminaries

In this section, we will give some useful notations, prelimi-
naries about graph theory, and model descriptions.

2.1. Notations. For convenience, we use the following nota-
tions. Write R, R𝑛 for the set of real numbers and 𝑛
dimensional Euclidean space. Denote R+ = [0, +∞), L =
{1, 2, . . . , 𝑛} and C1,1(R𝑛 × R+;R+) for the family of all non-
negative functions 𝑉(𝑥, 𝑡) on R𝑛 × R+ that are continuously
differentiable once in 𝑥 and once in 𝑡. Let Ω be an open
bounded domain in R𝑙, which has smooth boundary 𝜕Ω,
and mes(Ω) > 0 denotes the measure of Ω. Denote by
C∗ ≜ C([−𝜏

0
, 0] × Ω,R𝑛) the Banach space of continuous

functions mapping [−𝜏
0
, 0] × Ω into R𝑛 with the topology

of uniform converge. Set 𝑢(𝑥) = (𝑢
1
(𝑥), 𝑢
2
(𝑥), . . . , 𝑢

𝑛
(𝑥))
𝑇

and 𝐿2(Ω) to be the space of real functions on Ω which are
𝐿
2 for the Lebesgue measure. It is a Banach space with the

norm

|𝑢(𝑥)|
2
= √

𝑛

∑

𝑖=1





𝑢
𝑖
(𝑥)





2

2
, (1)

where |𝑢
𝑖
(𝑥)|
2
= (∫
Ω

|𝑢
𝑖
(𝑥)|
2

𝑑𝑥)
1/2. For any 𝜙(𝑠, 𝑥) ∈ C∗,

define





𝜙



2
= √

𝑛

∑

𝑖=1





𝜙
𝑖






2

2
, (2)

where 𝜙(𝑠, 𝑥) = (𝜙
1
(𝑠, 𝑥), 𝜙

2
(𝑠, 𝑥), . . . , 𝜙

𝑛
(𝑠, 𝑥))

𝑇, |𝜙
𝑖
|
2
=

(∫
Ω

|𝜙
𝑖
(𝑥)|
2

𝜏0

𝑑𝑥)
1/2, and |𝜙

𝑖
(𝑥)|
𝜏0
= sup

−𝜏0≤𝑠≤0
|𝜙
𝑖
(𝑠, 𝑥)|.

2.2. Basic Concepts on Graph Theory. The following basic
concepts on graph theory from [23] will be reviewed. A
digraphG = (𝑈, 𝐸) contains a set 𝑈 = {1, 2, . . . , 𝑛} of vertices
and a set𝐸 of arcs (𝑖, 𝑗) leading from initial vertex 𝑖 to terminal
vertex 𝑗. A subgraphL of G is said to be spanning ifL and
G have the same vertex set. A digraph G is weighted if each
arc (𝑗, 𝑖) is assigned a positive weight ℎ

𝑖𝑗
, where ℎ

𝑖𝑗
> 0 if

and only if there exists an arc from vertex 𝑗 to vertex 𝑖 in G.
The weight 𝑊(G) of G is the product of the weights on all
its arcs. A directed path P in G is a subgraph with distinct
vertices {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑠
}, such that its set of arcs is {(𝑖

𝑘
, 𝑖
𝑘+1
) :

𝑘 = 1, 2, . . . , 𝑠 − 1}. We call C a directed cycle if 𝑖
𝑠
= 𝑖
1
. A

connected subgraphT is a tree if it contains no cycles. A tree
T is rooted at vertex 𝑖, called the root, if 𝑖 is not a terminal
vertex of any arcs, and each of the remaining vertices is a
terminal vertex of exactly one arc. A digraph G is strongly
connected if there exists a directed path from one to the other
for any pair of distinct vertices. Given a weighted digraph
G with 𝑛 vertices, define the weight matrix 𝐴 = (ℎ

𝑖𝑗
)
𝑛×𝑛

whose entry ℎ
𝑖𝑗
equals the weight of arc (𝑗, 𝑖) if it exists, and

0 otherwise. Denote the digraph with weight matrix 𝐴 as
(G, 𝐴). A weighted digraph (G, 𝐴) is said to be balanced if
𝑊(C) = 𝑊(−C) for all directed cycles C. Here, −C denotes
the reverse ofC and is constructed by reversing the direction
of all arcs in C. For a unicyclic graph Q with cycle CQ, let ̃Q
be the unicyclic graph obtained by replacing CQ with −CQ.
Suppose that (G, 𝐴) is balanced; then 𝑊(Q) = 𝑊(̃Q). The
Laplacian matrix of (G, 𝐴) is defined as

𝐿 =

(

(

(

(

∑

𝑘 ̸= 1

𝑎
1𝑘
−𝑎
12
⋅ ⋅ ⋅ −𝑎

1𝑛

−𝑎
21
∑

𝑘 ̸= 2

𝑎
2𝑘
⋅ ⋅ ⋅ −𝑎

2𝑛

...
... d

...
−𝑎
𝑛1
−𝑎
𝑛2
⋅ ⋅ ⋅ ∑

𝑘 ̸= 𝑛

𝑎
𝑛𝑘

)

)

)

)

. (3)

Here, we show a result in Li et al. [23], which will be used
in Section 3.

Lemma 1 (see [23]; assume 𝑛 ≥ 2). Then the following identity
holds:
𝑛

∑

𝑖,𝑗=1

𝐶
𝑖
ℎ
𝑖𝑗
𝐹
𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) = ∑

Q∈Q

𝑤 (Q) ∑
(𝑠,𝑟)∈𝐸(𝐶Q)

𝐹
𝑟𝑠
(𝑥
𝑟
, 𝑥
𝑠
) . (4)

Here, 𝐶
𝑖
denotes the cofactor of the 𝑖th diagonal element of

Laplacian matrix of (G, 𝐴). And 𝐹
𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
), 𝑖, 𝑗 ∈ L, are

arbitrary functions;Q is the set of all spanning unicyclic graphs
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of (G, 𝐴), 𝑤(Q) ≥ 0 is the weight of Q, and 𝐶Q denotes the
directed cycle ofQ. In particular, if (G, 𝐴) is strongly connected,
then 𝐶

𝑖
> 0 for 𝑖 ∈ L.

2.3. Model Descriptions. It is well known that CSNMRs have
caughtmany researchers’ attention. In this paper, exponential
stability for delayed coupled networks is studied as stated in
Section 1.

Given a network represented by digraphGwith 𝑛 vertices,
𝑛 ≥ 2, we can get the following system [35]:

𝜕

𝜕𝑡

𝑦
𝑖
(𝑡, 𝑥) =

𝑙

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘

𝜕𝑦
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

) − 𝑐
𝑖
𝑦
𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗

̃
𝑓
𝑗
(𝑦
𝑗
(𝑡, 𝑥)) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡) , 𝑥))

+

𝑛

∑

𝑗=1

𝑘
𝑖𝑗
∫

𝑡

𝑡−𝜏1(𝑡)

̃
ℎ
𝑗
(𝑦
𝑗
(𝑠, 𝑥)) 𝑑𝑠 + 𝑆

𝑖
,

(5)

where 𝑐
𝑖
> 0 is a constant, 𝑖 ∈ L, 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑙
)
𝑇

∈

Ω ⊂ R𝑙, and Ω = {𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑙
)
𝑇

| |𝑥
𝑘
| ≤ 𝑚

𝑘
, 𝑘 =

1, 2, . . . , 𝑙} is a bound compact set with smooth boundary 𝜕Ω,
and mes(Ω) > 0 in space R𝑙. 𝑦

𝑖
(𝑡, 𝑥) represents the state of

the 𝑖th vertex at time 𝑡 and in space 𝑥. 𝐷
𝑖𝑘
≥ 0 refers to the

transmission diffusion operator along the 𝑖th vertex. 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
,

and 𝑘
𝑖𝑗
are, respectively, the connection strength, the time-

varying delay connection weight, and the distributed time-
varying delay connection weight of the 𝑗th vertex to the 𝑖th
vertex. 0 < 𝜏(𝑡) ≤ 𝜏

0
and 0 < 𝜏

1
(𝑡) ≤ 𝜏

1
are the time-varying

delay and the distributed time-varying delay, respectively.
In order to complete the proof of this paper, we suppose

that the system (5) has a trivial solution (𝑦∗
1
, 𝑦
∗

2
, . . . , 𝑦

∗

𝑛
)
𝑇. By

making a transformation 𝑦
𝑖
(𝑡, 𝑥) = 𝑦

𝑖
(𝑡, 𝑥) − 𝑦

∗

𝑖
, system (5)

can be rewritten as

𝜕

𝜕𝑡

𝑦
𝑖
(𝑡, 𝑥) =

𝑙

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘

𝜕𝑦
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

) − 𝑐
𝑖
𝑦
𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑡, 𝑥)) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡) , 𝑥))

+

𝑛

∑

𝑗=1

𝑘
𝑖𝑗
∫

𝑡

𝑡−𝜏1(𝑡)

ℎ
𝑗
(𝑦
𝑗
(𝑠, 𝑥)) 𝑑𝑠,

(6)

where 𝑓
𝑗
(𝑦
𝑗
(⋅, 𝑥)) =

̃
𝑓
𝑗
(𝑦
𝑗
(⋅, 𝑥)) −

̃
𝑓
𝑗
(𝑦
∗

𝑗
), 𝑔
𝑗
(𝑦
𝑗
(⋅, 𝑥)) =

𝑔
𝑗
(𝑦
𝑗
(⋅, 𝑥)) − 𝑔

𝑗
(𝑦
∗

𝑗
), and ℎ

𝑗
(𝑦
𝑗
(⋅, 𝑥)) =

̃
ℎ
𝑗
(𝑦
𝑗
(⋅, 𝑥)) −

̃
ℎ
𝑗
(𝑦
∗

𝑗
).

The boundary conditions of system (6) associated are
given by

𝑦
𝑖
(𝑡, 𝑥) |

𝜕Ω
= 0, (𝑡, 𝑥) ∈ [−𝜏

2
, +∞) × 𝜕Ω, (7)

as well as the initial value of system (6):

𝑦
𝑖
(𝑠, 𝑥) = 𝜙

𝑖
(𝑠, 𝑥) , (𝑠, 𝑥) ∈ [−𝜏

2
, 0] × Ω, (8)

where 𝑖 ∈ L, 𝜏
2
= max{𝜏

0
, 𝜏
1
}, and 𝜙(𝑠, 𝑥) =

(𝜙
1
(𝑠, 𝑥), 𝜙

2
(𝑠, 𝑥), . . . , 𝜙

𝑛
(𝑠, 𝑥))

𝑇 is bounded and continuous
on [−𝜏

2
, 0] × Ω.

Throughout this paper, the following definition, assump-
tions, and lemmas are needed to derive our main results.

(A1) The functions ̃𝑓
𝑗
and 𝑔

𝑗
satisfy







̃
𝑓
𝑗
(𝑢
𝑗
) −
̃
𝑓
𝑗
(V
𝑗
)






⩽ 𝑃
𝑗






𝑢
𝑗
− V
𝑗






,






𝑔
𝑗
(𝑢
𝑗
) − 𝑔
𝑗
(V
𝑗
)






⩽ 𝑄
𝑗






𝑢
𝑗
− V
𝑗






,







̃
ℎ
𝑗
(𝑢
𝑗
) −
̃
ℎ
𝑗
(V
𝑗
)






⩽ 𝑇
𝑗






𝑢
𝑗
− V
𝑗






,

(9)

for any 𝑢
𝑗
, V
𝑗
∈ R, 𝑗 ∈ L, where 𝑃

𝑗
, 𝑄
𝑗
, and 𝑇

𝑗
are

positive constants.
(A2) 𝜏(𝑡) and 𝜏

1
(𝑡), time-varying delays, satisfy ̇𝜏(𝑡) ⩽ 𝛾 <

1 and ̇𝜏
1
(𝑡) ⩽ 𝛾

∗

< 1 for all 𝑡, respectively, where 𝛾
and 𝛾∗ are constants.

Definition 2. The trivial solution to system (6) is said to be
exponential stable, if there exist positive constants 𝐿, 𝛽, and
𝑝 ≥ 2 such that





𝑦(𝑡, 𝑥)





𝑝

2
≤ 𝐿𝑒
−𝛽𝑡

, (10)

for (𝑡, 𝑥) ∈ [0, +∞) × Ω.

Lemma 3 (see [35]). Let X be a cube |𝑥
𝑘
| ≤ 𝑚

𝑘
(𝑘 =

1, 2, . . . , 𝑙), and let 𝜑(𝑥) be a real-valued function belonging
to C1(Ω) which vanishes on the boundary 𝜕Ω of Ω; that is,
𝜑(𝑥)|
𝜕Ω
= 0. Then

∫

Ω

𝜑
2

(𝑥) 𝑑𝑥 ≤ 𝑚
2

𝑘
∫

Ω










𝜕𝜑

𝜕𝑥
𝑘










2

𝑑𝑥. (11)

Lemma 4 (see [36]). For any positive definite matrix 𝐺 > 0,
scalar 𝜏 > 0, and vector function𝜔 : [0, 𝜏] → R𝑛 such that the
integrations concerned arewell defined, the following inequality
holds:

[∫

𝜏

0

𝜔(𝑠)𝑑𝑠]

𝑇

𝐺[∫

𝜏

0

𝜔 (𝑠) 𝑑𝑠] ≤ 𝜏∫

𝜏

0

𝜔
𝑇

(𝑠) 𝐺𝜔 (𝑠) 𝑑𝑠. (12)

3. Stability Analysis

In the study of stability, Lyapunovmethod plays an important
role. Combining Lyapunov method with graph theory, two
kinds of sufficient criteria are investigated. One is given in
the form of Lyapunov function, while the other is in terms
of coefficients of system (6).

3.1. Lyapunov-TypeTheorem. In order to propose a Lyapunov
function for system (6), we first give a definition about vertex-
Lyapunov functions on the basis of [37].

Definition 5. Functions𝑉
𝑖
(𝑦
𝑖
, 𝑡) ∈ C1,1(R×R+;R+) for 𝑖 ∈ L,

as

𝑉
𝑖
(𝑦
𝑖
, 𝑡) = 𝑒

𝛽𝑡

𝑉
(1)

𝑖
(𝑦
𝑖
, 𝑡) + 𝑉

(2)

𝑖
(𝑡) , (13)
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in which 𝛽 > 0, 𝑉(2)
𝑖
(𝑡) ≥ 0, are called vertex-Lyapunov

functions for system (6) if the following hold.

(H1) There are positive constants 𝑝 ≥ 2, 𝛼
𝑖
, 𝛽
𝑖
, where 𝑖 ∈ L,

functions 𝐹
𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
), and matrix 𝐴 = (ℎ

𝑖𝑗
)
𝑛×𝑛

, ℎ
𝑖𝑗
≥ 0

satisfying

𝛼
𝑖





𝑦
𝑖






𝑝

≤ 𝑉
(1)

𝑖
(𝑦
𝑖
, 𝑡) ≤ 𝛽

𝑖





𝑦
𝑖






𝑝

, (14)

𝜕

𝜕𝑡

𝑉
𝑖
(𝑦
𝑖
(𝑡, 𝑥) , 𝑡) =

𝜕

𝜕𝑡

𝑉
𝑖
(𝑦
𝑖
, 𝑡)

+

𝜕

𝜕𝑦
𝑖

𝑉
𝑖
(𝑦
𝑖
, 𝑡)

𝜕

𝜕𝑡

𝑦
𝑖
(𝑡, 𝑥)

≤ 𝑒
𝛽𝑡

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
𝐹
𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
) .

(15)

(H2) Along each directed cycle C of weighted digraph
(G, 𝐴), there is

∑

(𝑠,𝑟)∈𝐸(C)

𝐹
𝑟𝑠
(𝑦
𝑟
, 𝑦
𝑠
) ≤ 0, (16)

for all 𝑦
𝑟
∈ R, 𝑦

𝑠
∈ R.

Theorem 6. Let (G, 𝐴) be strongly connected. If system (6)
admits vertex-Lyapunov functions 𝑉

𝑖
, then the trivial solution

of system (6) is exponentially stable.

Proof. Let 𝑉(𝑦, 𝑡) = ∑𝑛
𝑖=1
𝐶
𝑖
𝑉
𝑖
(𝑦
𝑖
, 𝑡), where 𝐶

𝑖
is defined as

Lemma 1. Denote

𝛼 = (min
𝑖∈L
{𝐶
𝑖
𝛼
𝑖
})

2/𝑝

. (17)

Note that weighted digraph (G, 𝐴) is strongly connected,
which implies that 𝐶

𝑖
> 0 for any 𝑖 ∈ L. So 𝛼 is a positive

number.Then, it follows readily from conditions (13) and (14)
that

𝑉 (𝑦, 𝑡)

=

𝑛

∑

𝑖=1

𝐶
𝑖
𝑒
𝛽𝑡

𝑉
(1)

𝑖
(𝑦
𝑖
, 𝑡) +

𝑛

∑

𝑖=1

𝐶
𝑖
𝑉
(2)

𝑖
(𝑡)

≥ 𝑒
𝛽𝑡

𝑛

∑

𝑖=1

𝐶
𝑖
𝛼
𝑖





𝑦
𝑖






𝑝

+

𝑛

∑

𝑖=1

𝐶
𝑖
𝑉
(2)

𝑖
(𝑡)

≥ 𝑒
𝛽𝑡

𝑛

∑

𝑖=1

𝐶
𝑖
𝛼
𝑖





𝑦
𝑖






𝑝

.

(18)

Meanwhile, taking the partial derivative of 𝑉(𝑦(𝑡, 𝑥), 𝑡), via
inequalities (15) and (16),𝑤(Q) ≥ 0, and Lemma 1, we deduce

∫

Ω

𝜕

𝜕𝑡

𝑉 (𝑦, 𝑡) 𝑑𝑥

= ∫

Ω

𝑛

∑

𝑖=1

𝐶
𝑖

𝜕

𝜕𝑡

𝑉
𝑖
(𝑦
𝑖
, 𝑡) 𝑑𝑥

≤ 𝑒
𝛽𝑡

∫

Ω

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝐶
𝑖
ℎ
𝑖𝑗
𝐹
𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
) 𝑑𝑥

= 𝑒
𝛽𝑡

∫

Ω

∑

Q∈Q

𝑤 (Q) ∑
(𝑠,𝑟)∈𝐸(𝐶Q)

𝐹
𝑟𝑠
(𝑦
𝑟
, 𝑦
𝑠
) 𝑑𝑥 ≤ 0.

(19)

Thereby,

∫

Ω

𝑉 (𝑦 (𝑡, 𝑥) , 𝑡) 𝑑𝑥

≤ ∫

Ω

𝑉 (𝑦 (0, 𝑥) , 0) 𝑑𝑥

= ∫

Ω

𝑛

∑

𝑖=1

𝐶
𝑖
(𝑉
(1)

𝑖
(𝑦
𝑖
(0) , 0) + 𝑉

(2)

𝑖
(0)) 𝑑𝑥.

(20)

Combining Hölder inequality and (18), we successively find
that

𝐶
0
𝛼𝑒
𝛽𝑡



𝑦 (𝑡, 𝑥)





𝑝

2
≤ ∫

Ω

𝑒
𝛽𝑡

𝑛

∑

𝑖=1

𝐶
𝑖
𝛼
𝑖





𝑦
𝑖






𝑝

𝑑𝑥

≤ ∫

Ω

𝑉 (𝑦 (𝑡, 𝑥) , 𝑡) 𝑑𝑥

≤ ∫

Ω

𝑛

∑

𝑖=1

𝐶
𝑖
(𝑉
(1)

𝑖
(𝑦
𝑖
(0) , 0) + 𝑉

(2)

𝑖
(0)) 𝑑𝑥,

(21)

where 𝐶
0
is a positive constant. In the sequel, define

𝐿 = 𝐶
−1

0
𝛼
−1

∫

Ω

𝑛

∑

𝑖=1

𝐶
𝑖
(𝑉
(1)

𝑖
(𝑦
𝑖
(0) , 0) + 𝑉

(2)

𝑖
(0)) 𝑑𝑥, (22)

where𝐿 > 0, evidently.Hence, after rearrangement, we obtain





𝑦(𝑡, 𝑥)





𝑝

2
≤ 𝐿𝑒
−𝛽𝑡

, (23)

for all 𝑡 ≥ 0. This means that the trivial solution of system (6)
is exponentially stable. This concludes the whole proof.

Remark 7. Recently, attention was paid to stability analysis
for coupled systems increasingly, and many methods were
proposed. Gan and Xu [8] discussed the local stability by
analyzing the corresponding characteristic equations, and
more scholars [5, 20–22] used linear matrix inequality
approach to construct the Lyapunov function of a system. As
is well-known to us, it is a challenging task to construct an
appropriate Lyapunov function. In this paper, a new method
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based on graph-theoretic approach, which is first applied to
the system with distributed time delay or reaction-diffusion
terms, is presented by making use of the Lyapunov function
𝑉
𝑖
of each vertex system. Through effective utilization of

topological structure, the method is practicable avoiding
finding a Lyapunov function directly for system (6). The
validity of the technique is shown inTheorem 10 in Section 3.

However, the conditions in Theorem 6 can be simplified.
Now, some simply and easy-verified conditions are discussed.
Note that if (G, 𝐴) is balanced, then

𝑛

∑

𝑖,𝑗=1

𝐶
𝑖
ℎ
𝑖𝑗
𝐹
𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
)

=

1

2

∑

Q∈Q

𝑤 (Q) ∑
(𝑠,𝑟)∈𝐸(CQ)

[𝐹
𝑠𝑟
(𝑥
𝑠
, 𝑥
𝑟
) + 𝐹
𝑟𝑠
(𝑥
𝑟
, 𝑥
𝑠
)] .

(24)

In this case, condition (H2) can be replaced by

∑

(𝑠,𝑟)∈𝐸(CQ)

[𝐹
𝑠𝑟
(𝑥
𝑠
, 𝑥
𝑟
) + 𝐹
𝑟𝑠
(𝑥
𝑟
, 𝑥
𝑠
)] ≤ 0. (25)

Consequently, an easier stability criterion is derived below.

Corollary 8. Suppose that (G, 𝐴) is balanced. Then the
conclusion of Theorem 6 holds if inequality (16) is replaced by
inequality (25).

Furthermore, in view that if for every 𝑠, 𝑟 ∈ L there exist
functions 𝑃

𝑠
(𝑥
𝑠
) and 𝑃

𝑟
(𝑥
𝑟
), such that

𝐹
𝑠𝑟
(𝑥
𝑠
, 𝑥
𝑟
) ≤ 𝑃
𝑠
(𝑥
𝑠
) − 𝑃
𝑟
(𝑥
𝑟
) , (26)

then inequality (16) follows naturally. Thus, we obtain one
more corollary below.

Corollary 9. The conclusion of Theorem 6 holds if inequality
(16) is replaced by inequality (26).

Since the previous results are based on vertex-Lyapunov
functions for system (6), the exponential stability criteria are
not very convenient to be verified for given systems. We now
establish some sufficient conditions for exponential stability
by using coefficients of system (6) and this method is proved
to be very useful in practice.

3.2. Coefficients-Type Theorem. In the following, another
sufficient exponential stability criterion is established in the
form of coefficients of system (6). For simplicity, we set 𝛿

𝑖
=

∑
𝑛

𝑗=1
𝑏
2

𝑖𝑗
+ 1, 𝜆

𝑖
= (1 − 𝛾)(∑

𝑛

𝑗=1
𝑘
2

𝑖𝑗
+ 1) and 𝜎

𝑖
= ∑
𝑛

𝑗=1
(|𝑎
𝑖𝑗
| +

|𝑎
𝑖𝑗
|𝑃
2

𝑖𝑗
+ 𝑄
2

𝑗
+ 𝜏
2

1
𝑇
2

𝑗
) − 2𝑐
𝑖
, with 𝑖 ∈ L.

Theorem 10. Let (G, 𝐴) be strongly connected. If (1 − 𝛾∗)𝛿
𝑖
+

𝜆
𝑖
+ (1 − 𝛾)(1 − 𝛾

∗

)𝜎
𝑖
≤ 0, then the trivial solution of system

(6) is exponentially stable under hypotheses (A1) and (A2).

Proof. Let

𝑉
(1)

𝑖
(𝑦
𝑖
, 𝑡) = 𝑦

2

𝑖
,

𝑉
(2)

𝑖
(𝑡) =

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏(𝑡)

𝑒
2𝜇𝑠

[𝑔
𝑗
(𝑦
𝑗
(𝑠, 𝑥))]

2

𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
2𝜇𝜏0

1 − 𝛾

𝑒
2𝜇𝑠

𝑦
2

𝑖
(𝑠, 𝑥) 𝑑𝑠

+ 𝜏
1

𝑛

∑

𝑗=1

∫

0

−𝜏1(𝑡)

∫

𝑡

𝑡+𝑠

𝑒
2𝜇𝜃

[ℎ
𝑗
(𝑦
𝑗
(𝜃, 𝑥))]

2

𝑑𝜃 𝑑𝑠

+

𝑒
2𝜇𝜏1

1 − 𝛾
∗
∫

𝑡

𝑡−𝜏1(𝑡)

𝑒
2𝜇𝑠

𝑦
2

𝑖
(𝑠, 𝑥) 𝑑𝑠,

(27)

where 𝑖 ∈ L and 𝜇 > 0 is an enough small real number
properly selected. With 𝛽 = 2𝜇, it is explicit that 𝛽 > 0 and
𝑉
(2)

𝑖
(𝑡) ≥ 0. Then, from equality (13), it follows that

𝑉
𝑖
(𝑦
𝑖
, 𝑡) = 𝑒

2𝜇𝑡

𝑦
2

𝑖
+

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏(𝑡)

𝑒
2𝜇𝑠

[𝑔
𝑗
(𝑦
𝑗
(𝑠, 𝑥))]

2

𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
2𝜇𝜏0

1 − 𝛾

𝑒
2𝜇𝑠

𝑦
2

𝑖
(𝑠, 𝑥) 𝑑𝑠

+ 𝜏
1

𝑛

∑

𝑗=1

∫

0

−𝜏1(𝑡)

∫

𝑡

𝑡+𝑠

𝑒
2𝜇𝜃

[ℎ
𝑗
(𝑦
𝑗
(𝜃, 𝑥))]

2

𝑑𝜃 𝑑𝑠

+

𝑒
2𝜇𝜏1

1 − 𝛾
∗
∫

𝑡

𝑡−𝜏1(𝑡)

𝑒
2𝜇𝑠

𝑦
2

𝑖
(𝑠, 𝑥) 𝑑𝑠.

(28)

Then obviously,

∫

Ω

𝜕

𝜕𝑡

𝑉
𝑖
(𝑦
𝑖
(𝑡, 𝑥) , 𝑡) 𝑑𝑥

= ∫

Ω

[2𝜇𝑒
2𝜇𝑡

𝑦
2

𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

(𝑒
2𝜇𝑡

[𝑔
𝑗
(𝑦
𝑗
(𝑡, 𝑥))]

2

− (1 − ̇𝜏 (𝑡))

× 𝑒
2𝜇(𝑡−𝜏(𝑡))

[𝑔
𝑗
(𝑦
𝑗
(𝑡 − 𝜏(𝑡), 𝑥))]

2

) +

𝑒
2𝜇𝜏0

1 − 𝛾

× (𝑒
2𝜇𝑡

𝑦
2

𝑖
(𝑡, 𝑥) − (1 − ̇𝜏 (𝑡)) 𝑒

2𝜇(𝑡−𝜏(𝑡))

𝑦
2

𝑖
(𝑡 − 𝜏 (𝑡) , 𝑥))

+ 2𝑒
2𝜇𝑡

𝑦
𝑖
(𝑡, 𝑥)

𝑙

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘

𝜕𝑦
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)
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+ 2𝑒
2𝜇𝑡

𝑦
𝑖
(𝑡, 𝑥)(−𝑐

𝑖
𝑦
𝑖
(𝑡, 𝑥) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡) , 𝑥))

+

𝑛

∑

𝑗=1

𝑘
𝑖𝑗
∫

𝑡

𝑡−𝜏1(𝑡)

ℎ
𝑗
(𝑦
𝑗
(𝑠, 𝑥)) 𝑑𝑠)

+

𝑛

∑

𝑗=1

𝜏
1
(𝜏
1
(𝑡) 𝑒
2𝜇𝑡

[ℎ
𝑗
(𝑦
𝑗
(𝑡, 𝑥))]

2

− (1 − ̇𝜏
1
(𝑡))

× ∫

𝑡

𝑡−𝜏1(𝑡)

𝑒
2𝜇𝑠

[ℎ
𝑗
(𝑦
𝑗
(𝑠, 𝑥))]

2

𝑑𝑠)

+

𝑒
2𝜇𝜏1

1 − 𝛾
∗
(𝑒
2𝜇𝑡

𝑦
2

𝑖
(𝑡, 𝑥) − (1 − ̇𝜏

1
(𝑡)) 𝑒
2𝜇(𝑡−𝜏1(𝑡))

× 𝑦
2

𝑖
(𝑡 − 𝜏
1
(𝑡) , 𝑥))] 𝑑𝑥.

(29)

Using the boundary conditions (7) and Lemma 3, we can get
[17, 35]

∫

Ω

2𝑒
2𝜇𝑡

𝑦
𝑖
(𝑡, 𝑥)

𝑙

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝐷
𝑖𝑘

𝜕𝑦
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑘

)𝑑𝑥

≤ −2𝑒
2𝜇𝑡

𝑙

∑

𝑘=1

∫

Ω

𝐷
𝑖𝑘

𝑚
2

𝑘

𝑦
2

𝑖
(𝑡, 𝑥) 𝑑𝑥.

(30)

Proceeding by applying inequality (30) and (A2) to equality
(29), we obtain

∫

Ω

𝜕

𝜕𝑡

𝑉
𝑖
(𝑦
𝑖
(𝑡, 𝑥) , 𝑡) 𝑑𝑥

≤ 𝑒
2𝜇𝑡
{

{

{

∫

Ω

[

[

2𝜇𝑦
2

𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

([𝑔
𝑗
(𝑦j(𝑡, 𝑥))]

2

− (1 − 𝛾) 𝑒
−2𝜇𝜏0

× [𝑔
𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡) , 𝑥))]

2

+ 𝜏
2

1
[ℎ
𝑗
(𝑦
𝑗
(𝑡, 𝑥))]

2

− 𝜏
1
(1 − 𝛾

∗

) 𝑒
−2𝜇𝜏1

× ∫

𝑡

𝑡−𝜏1(𝑡)

[ℎ
𝑗
(𝑦
𝑗
(𝑠, 𝑥))]

2

𝑑𝑠) +

𝑒
2𝜇𝜏0

1 − 𝛾

× (𝑦
2

𝑖
(𝑡, 𝑥) − (1 − 𝛾) 𝑒

−2𝜇𝜏0
𝑦
2

𝑖
(𝑡 − 𝜏 (𝑡) , 𝑥))

+

𝑒
2𝜇𝜏1

1 − 𝛾
∗
(𝑦
2

𝑖
(𝑡, 𝑥) − (1 − 𝛾

∗

) 𝑒
−2𝜇𝜏1

×𝑦
2

𝑖
(𝑡 − 𝜏
1
(𝑡) , 𝑥)) + 2𝑦

𝑖
(𝑡, 𝑥)

× (−𝑐
𝑖
𝑦
𝑖
(𝑡, 𝑥) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡) , 𝑥))

+

𝑛

∑

𝑗=1

𝑘
𝑖𝑗
∫

𝑡

𝑡−𝜏1(𝑡)

ℎ
𝑗
(𝑦
𝑗
(𝑠, 𝑥)) 𝑑𝑠)

]

]

𝑑𝑥

− 2

𝑙

∑

𝑘=1

∫

Ω

𝐷
𝑖𝑘

𝑚
2

𝑘

𝑦
2

𝑖
(𝑡, 𝑥) 𝑑𝑥

}

}

}

.

(31)

From Lemma 4, it follows that

−

𝑛

∑

𝑗=1

𝜏
1
(1 − 𝛾

∗

) 𝑒
−2𝜇𝜏1
∫

𝑡

𝑡−𝜏1(𝑡)

[ℎ
𝑗
(𝑦
𝑗
(𝑠, 𝑥))]

2

𝑑𝑠

+ 2

𝑛

∑

𝑗=1

𝑘
𝑖𝑗
𝑦
𝑖
(𝑡, 𝑥) ∫

𝑡

𝑡−𝜏1(𝑡)

ℎ
𝑗
(𝑦
𝑗
(𝑠, 𝑥)) 𝑑𝑠

≤ −

𝑛

∑

𝑗=1

(1 − 𝛾
∗

) 𝑒
−2𝜇𝜏1
[∫

𝑡

𝑡−𝜏1(𝑡)

ℎ
𝑗
(𝑦
𝑗
(𝑠, 𝑥))d𝑠]

2

+ 2

𝑛

∑

𝑗=1

𝑘
𝑖𝑗
𝑦
𝑖
(𝑡, 𝑥) ∫

𝑡

𝑡−𝜏1(𝑡)

ℎ
𝑗
(𝑦
𝑗
(𝑠, 𝑥)) 𝑑𝑠

= −

𝑛

∑

𝑗=1

[(1 − 𝛾
∗

)
1/2

𝑒
−𝜇𝜏1
∫

𝑡

𝑡−𝜏1(𝑡)

ℎ
𝑗
(𝑦
𝑗
(𝑠, 𝑥)) 𝑑𝑠

−(1 − 𝛾
∗

)
−1/2

𝑒
𝜇𝜏1
𝑘
𝑖𝑗
𝑦
𝑖
(𝑡, 𝑥)]

2

+

𝑒
2𝜇𝜏1

1 − 𝛾
∗

𝑛

∑

𝑗=1

𝑘
2

𝑖𝑗
𝑦
2

𝑖
(𝑡, 𝑥)

≤

𝑒
2𝜇𝜏1

1 − 𝛾
∗

𝑛

∑

𝑗=1

𝑘
2

𝑖𝑗
𝑦
2

𝑖
(𝑡, 𝑥) ,

2

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑦
𝑖
(𝑡, 𝑥) 𝑓

𝑗
(𝑦
𝑗
(𝑡, 𝑥))

≤

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






[𝑦
2

𝑖
(𝑡, 𝑥) + (𝑓

𝑗
(𝑦
𝑗
(𝑡, 𝑥)))

2

] ,

(32)
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−

𝑛

∑

𝑗=1

(1 − 𝛾) 𝑒
−2𝜇𝜏0
[𝑔
𝑗
(𝑦
𝑗
(𝑡 − 𝜏(𝑡), 𝑥))]

2

+ 2

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑦
𝑖
(𝑡, 𝑥) 𝑔

𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡) , 𝑥))

= −

𝑛

∑

𝑗=1

[(1 − 𝛾)
−1/2

𝑒
−𝜇𝜏0
𝑔
𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡) , 𝑥))

−(1 − 𝛾)
−1/2

𝑒
𝜇𝜏0
𝑏
𝑖𝑗
𝑦
𝑖
(𝑡, 𝑥)]

2

+

𝑒
2𝜇𝜏0

1 − 𝛾

𝑛

∑

𝑗=1

𝑏
2

𝑖𝑗
𝑦
2

𝑖
(𝑡, 𝑥)

≤

𝑒
2𝜇𝜏0

1 − 𝛾

𝑛

∑

𝑗=1

𝑏
2

𝑖𝑗
𝑦
2

𝑖
(𝑡, 𝑥) .

(33)

Proceeding again by inequalities (31)–(33) and (A1), given
ℎ
𝑖𝑗
= |𝑎
𝑖𝑗
|𝑃
2

𝑗
+ 𝑄
2

𝑗
+ 𝜏
2

1
𝑇
2

𝑗
, 𝐹
𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
) = 𝑦
2

𝑗
− 𝑦
2

𝑖
, we find

∫

Ω

𝜕

𝜕𝑡

𝑉
𝑖
(𝑦
𝑖
(𝑡, 𝑥) , 𝑡) 𝑑𝑥

≤ 𝑒
2𝜇𝑡

∫

Ω

{

{

{

[

[

2𝜇 +

𝑒
2𝜇𝜏0

1 − 𝛾

(

𝑛

∑

𝑗=1

𝑏
2

𝑖𝑗
+ 1) +

𝑒
2𝜇𝜏1

1 − 𝛾
∗
+

𝑛

∑

𝑗=1






𝑎
𝑖𝑗







+

𝑒
2𝜇𝜏1

1 − 𝛾
∗

𝑛

∑

𝑗=1

𝑘
2

𝑖𝑗
− 2𝑐
𝑖

]

]

𝑦
2

𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






𝑃
2

𝑗
+ 𝑄
2

𝑗
+ 𝜏
2

1
𝑇
2

𝑗
) 𝑦
2

𝑗
(𝑡, 𝑥)

}

}

}

𝑑𝑥

= 𝑒
2𝜇𝑡

∫

Ω

{

{

{

[

[

2𝜇 +

𝑒
2𝜇𝜏0

1 − 𝛾

(

𝑛

∑

𝑗=1

𝑏
2

𝑖𝑗
+ 1)

+

𝑒
2𝜇𝜏1

1 − 𝛾
∗
(

𝑛

∑

𝑗=1

𝑘
2

𝑖𝑗
+ 1)

− 2𝑐
𝑖
+

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






+

𝑛

∑

𝑗=1

ℎ
𝑖𝑗

]

]

𝑦
2

𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
𝐹
𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
)

}

}

}

𝑑𝑥

= 𝑒
2𝜇𝑡

∫

Ω

{

{

{

[2𝜇 +

𝑒
2𝜇𝜏0

1 − 𝛾

(𝛿
𝑖
+

𝑒
2𝜇𝜏1

1 − 𝛾
∗
𝜆
𝑖
) + 𝜎
𝑖
]

× 𝑦
2

𝑖
(𝑡, 𝑥) +

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
𝐹
𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
)

}

}

}

𝑑𝑥.

(34)

With (1 − 𝛾∗)𝛿
𝑖
+ 𝜆
𝑖
+ (1 − 𝛾)(1 − 𝛾

∗

)𝜎
𝑖
< 0, it is obvious that

2𝜇+(𝑒
2𝜇𝜏0
/(1−𝛾))(𝛿

𝑖
+(𝑒
2𝜇𝜏1
/(1−𝛾

∗

))𝜆
𝑖
)+𝜎
𝑖
≤ 0, when 𝜇 > 0

is an enough small real number. As a consequence, inequality
(34) can be changed into

∫

Ω

𝜕

𝜕𝑡

𝑉
𝑖
(𝑡, 𝑦
𝑖
(𝑡, 𝑥)) 𝑑𝑥 ≤ ∫

Ω

𝑒
2𝜇𝑡

𝑛

∑

𝑗=1

ℎ
𝑖𝑗
𝐹
𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
) 𝑑𝑥. (35)

On the other hand, along each directed cycle C of weighted
digraph (G, 𝐴

𝑛×𝑛
), there is ∑

(𝑠,𝑟)∈𝐸(C) 𝐹𝑟𝑠(𝑦𝑟 − 𝑦𝑠) =

∑
(𝑠,𝑟)∈𝐸(C)(𝑦

2

𝑠
− 𝑦
2

𝑟
) = 0. Therefore, from Theorem 6,

one can conclude that the trivial solution of system (6) is
exponentially stable.

4. Numerical Test

In this section, wewill give an example, showing the effective-
ness and the correctness of our results. Consider the following
system:

𝜕𝑦
𝑖
(𝑡, 𝑥)

𝜕𝑡

= 𝐷
𝑖

𝜕
2

𝑦
𝑖
(𝑡, 𝑥)

𝜕𝑥
2
− 𝑐
𝑖
𝑦
𝑖
(𝑡, 𝑥)

+

3

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑡, 𝑥)) +

3

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑡 − 𝜏, 𝑥))

+

3

∑

𝑗=1

𝑘
𝑖𝑗
∫

𝑡

𝑡−𝜏1(𝑡)

ℎ
𝑗
(𝑦
𝑗
(𝑠, 𝑥)) 𝑑𝑠,

(36)

where 𝑖 = 1, 2, 3, and 𝑓
𝑗
(𝑦
𝑗
) = 𝑔

𝑗
(𝑦
𝑗
) = ℎ

𝑗
(𝑦
𝑗
) = tanh(𝑦

𝑗
).

The parameters of system (36) assumed that 𝑐
1
= 𝑐
2
= 𝑐
3
= 3,

𝑎
11
= 1.8, 𝑎

12
= 1.3, 𝑎

13
= −1.5, 𝑎

21
= −1.5, 𝑎

22
= 2, 𝑎

23
= 1.1,

𝑎
31
= 0.6, 𝑎

32
= −2.4, 𝑎

33
= −0.47, 𝑏

11
= −1.5, 𝑏

12
= −0.5,

𝑏
13
= −0.1, 𝑏

21
= −0.5, 𝑏

22
= −1, 𝑏

23
= −0.4, 𝑏

31
= −0.37,

𝑏
32
= −0.09, 𝑏

33
= −0.1, 𝑘

11
= 0.6, 𝑘

12
= 0.2, 𝑘

13
= 0.3,

𝑘
21
= −1, 𝑘

22
= −0.1, 𝑘

23
= −0.05, 𝑘

31
= 0.2, 𝑘

32
= 0.04, 𝑘

33
=

0.01, 𝜏
0
= 1, 𝜏

1
= 1, 𝐷1 = 0.5, 𝐷2 = 0.2, 𝐷3 = 0.1. We can

easily check that the conditions in Theorem 10 are satisfied.
Further, we choose the following initial conditions associated
with system (36):

𝑦
1
(𝑠, 𝑥) = 9 cos (2𝑠) sin (𝑥𝜋)2,

𝑦
2
(𝑠, 𝑥) = −5 cos (2𝑠) sin (𝑥𝜋)2,

𝑦
3
(𝑠, 𝑥) = −6.5 cos (𝑠𝜋) sin (𝑥𝜋)2,

(37)

where (𝑠, 𝑥) ∈ [−1.3, 0] × Ω. The solution of system (36)
is shown in Figures 1, 2, and 3, with boundary conditions
(7) and initial conditions (37). In fact, we can clearly see
from Figures 1–3 that the trivial solution of system (36) is
exponentially stable. The numerical simulation results verify
the effectiveness and feasibility of the proposed results.
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Figure 1: The dynamical behavior of the subsystem 𝑦
1
of system

(36).
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Figure 2: The dynamical behavior of the subsystem 𝑦
2
of system

(36).
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Figure 3: The dynamical behavior of the subsystem 𝑦
3
of system

(36).

5. Discussions

In this paper, we have investigated the stability of CSNMRs.
By applying some results in graph theory and Lyapunov
method, we have derived two different types of novel
exponential stability criteria. One is given in the form of
Lyapunov functions and network topology, while the other is
given in the form of coefficients of systems. Compared with
the previous stability method, graph-theoretic approach in
this paper is new and efficient. Furthermore, an illustrative
example is given to validate the approach.
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