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This paper presents a novel approach to one-step-forward prediction of traffic flow based on fuzzy reasoning. The successful
construction of a competent fuzzy inference system of Sugeno type largely relies on proper choice of input dimension and accurate
estimation of structure parameters and rules. The first issue is addressed with a proposed method, based on §-test, which can
simultaneously determine input dimension and reduce noise level. In response to the second issue, two clustering techniques, based
on nearest-neighbor clustering and Gaussian mixture models, are successively employed to determine the antecedent parameters
and rules, and the estimation for the consequent parameters is achieved by the least square estimation technique. A number of
experiments have been performed on the one-week data of traffic flow to evaluate the proposed approach in terms of denosing,
prediction performances, overfitting, and so forth. The experimental results have demonstrated that the proposed prediction
approach is effective in removing noise and constructing a competent and compact fuzzy inference system without significant

overfitting.

1. Introduction

Since intelligent transportation systems (ITS) emerged,
research efforts have been continuously devoted to traffic flow
prediction, as live and accurate prediction on traffic flow is a
premise for efficient traffic management and control. While a
wide spectrum of prediction techniques, such as Kalman filter
[1] and its extension [2], support vector machine [3], Bayesian
networks [4], and hybrid approach [5-8], has been reported
in literature, the methodology behind these techniques is
based either on influencing factors or on historical data of
traffic flow. The influencing factors (e.g., weather) are used as
inputs for the underlying traffic system which outputs traffic
flows to reflect traffic states. The correlation between the
inputs and outputs, established using either analytical model
or data-derived approach, is used as the primary reasoning
for future traffic flow. On the other hand, the methodology
behind the historical data-based approaches is different from
those based on influencing factors and the fundamental idea
is that the future depends on its past. For a sequence of traffic
flow observations with equal sampling interval, called traffic
flow time series, the dependent relation between the traffic

flow to be predicted at t and its past x,_;, X,_,, ..., X,_; can be
formulated as follows:
X0 = f (%o Xeg e n Xeg) 70 @)

where the term r,, called residual in this paper, is the part that
cannot be accounted by the model f, due to either a lack of
functional determination or real noise. Therefore, the term
residual in this paper is defined to include modeling error and
real noise.

The prediction performance by the methods based on
influencing factors is considerably dependent on the quality
of data collected for different factors which may not be
guaranteed always. Therefore, in our ongoing work, the
methodology based on historical data is adopted. Also, as
only one type of data (i.e., traffic flow) is required, there is
no need to manipulate units for different types of data. This
paper reports our work on the prediction approach for one
step ahead (i.e., short-term).

To model the dependent behavior, a number of tech-
niques have been proposed, ranging from Kalman filter [1, 2],
artificial neural network [9], and nonparametric regression



[10] to hybrid approach [11]. Our research has been focused
on the modeling approach based on fuzzy inference system
(FIS), in that it is tolerant to noise, resistant to uncertainty,
and easy to incorporate expert and field knowledge [12].
However, research activity in this area is relatively silent,
reflected by a few notable contributions reported in literature
over the last decade. Zhang and Ye proposed a prediction
methodology by using fuzzy logic system to fuse the outputs
of two methods out of autoregressive integrated moving aver-
age, backpropagation neural networks, exponential smooth-
ing method, and Kalman filter, resulting in four different
combinations [6]. Similar idea has been adopted in [7],
but the two methods mixed by a fuzzy logical model are
history mean and artificial neural network models. Paper
[8] describes a hybrid methodology that two fuzzy rule-
based systems are constructed, one providing the next flow
estimation based on the current flow only and the other
predicting the one-step-ahead flow based on the current
flow at the current location and the upstream location. A
genetic algorithm is used to tune the parameters for the fuzzy
rule-based systems by minimizing the mean absolute relative
error between the estimated and the observed values. Paper
[13] presents a prediction approach for short-term traffic
flow prediction primarily based on a Sugeno fuzzy system
(also known as TSK fuzzy system). The initial structure is
formed by partitioning the input vector space by the mean
shift clustering algorithm and subsequently optimized to
eliminate redundant structure by the mean firing technique,
and finally the other parameters are determined by particle
swarm optimization with the aim of minimizing root mean
squared error (RMSE).

A multiple-inputs (or single input vector) and single-
output (MISO) FIS captures the conditional dependence

between inputs and output, P(x, | x,_;, X, 5,...,X;_4), using
the following rules with fuzzified inputs:
R if x,,is A;; and x,_, is A, and --- x,_;is Ay,
)

then x, is B; or f; (x).

Whether the consequent part in fuzzy rules (as described
above) is based on fuzzy sets or linear functions of input
vector yields two common types of FISs, namely, Mamdani
and Sugeno FISs. Although the prediction method proposed
in this paper adopts the Sugeno approach, it is interesting to
investigate the predictability of Mamdani FIS as well.

To create a competent Sugeno FIS, careful decisions
should be made on the following steps: (1) the input dimen-
sion: although all traffic flow recordings in the past should in
principle be taken into account when predicting the future
flow, it is not practical to consider the whole set of historical
data as the computational complexity grows exponentially
with the number of input dimension and curse of dimen-
sionality [14]; (2) parameters and rules: a large number
of membership functions can reduce model error, but the
model suffers from the computational complexity, again. To
compromise the complexity and accuracy, a proper choice
should be made on the number of membership functions
and the parameters associated should be determined in an
optimal or near-optimal fashion. As a Sugeno FIS is adopted
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FIGURE 1: Framework of the prediction approach proposed.

as the basis for the prediction, the set of parameters for the
consequent part should be optimized to improve modeling
performance.

This paper proposes a novel approach to one-step-ahead
prediction (e.g., but multistep-ahead prediction can be real-
ized simply by recursive prediction) for traffic flow based
on a Sugeno FIS, with a particular emphasis on the above-
mentioned issues. Firstly, a nonparametric residual variance
estimation method, called §-test [15], is used to measure
the noise level reduced using a wavelet-based denoising
technique and the input dimension is determined when the
noise reaches a reasonable level. To address the second issue, a
clustering is performed using the nearest-neighbor clustering
(NNC) method [16] to obtain the number of membership
functions and a Gaussian mixture model (GMM) [17] is
subsequently applied to determine the parameters associated
with membership functions. Finally, the consequent param-
eters are obtained using the least square estimation (LSE)
technique [18].

2. Prediction Approach

2.1. Approach Outline. The prediction approach presented in
this paper uses a first-order Sugeno FIS as a basis of the
predictor. Such choice has been made due to the fact that
Sugeno FIS has been proved to be a universal approximator
[19-21]. Additionally, FIS has been reported to be tolerant to
noise and resistant to uncertainty [12]. To achieve a concrete
implementation for the FIS, we follow the commonly adopted
model structure: T-norm for conjunction operations, Gaus-
sian membership functions, linear function for consequent
part, and product inference of rules.

Figure 1 schematically shows the approach framework
used to build the FIS based on the historical observations
of traffic flow. Note that it is assumed that an appropriate
preprocess has been taken to exclude any outliers and make
up all missing recordings for the traffic flow time series.
The algorithm firstly generates a set of input vectors by
incrementing the dimension which has been bounded to
the maximum dimension specified by users. For the set of
input vectors generated, the &-test is used to estimate the
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residual variance for each input vector without explicitly
building a model. Based on the estimated residual variances,
the algorithm subsequently evaluates whether any input
vectors satisfy the requirement set by users. If the evaluation
indicates none of them can meet the requirement, which
implies the noise level still remains high, the time series
is processed by a wavelet-based technique to reduce the
noise level. Such process is iteratively performed until the
residual error can be reduced to meet the requirement.
During the second step, two clustering algorithms (NNC and
GMM) are successively employed to determine the number
of membership functions and the associated parameters,
respectively. Also, the clustering results obtained from the
GMM algorithm help determine the rules for the FIS to
be constructed. In our approach, the LSE technique is used
to determine a set of parameters for consequent part that
minimizes the mean square error (MSE) between the model
output and training samples. Those steps and how they
are specifically implemented are discussed in detail in the
following subsections.

2.2. Input Selection and Noise Reduction. A proper selection
of input dimension can alleviate the curse of dimensionality
problem, while all the mostly related historical states can
still be utilized for the prediction. Our approach employs
the O-test to determine the input dimension from a set of
candidate input vectors that have been generated using recent
recordings and the maximum number of input dimensions is

predefined.

The §-test was first introduced in [22], improved in [23],
simplified in [24], and used in [15, 25]. The idea behind all
versions of the §-test is simple and intuitive. As expressed
in (1), if the underlying relationship of the system can be
completely determined by a smooth function f, r should be
real noise which is assumed to be independent to input vector
x (ie., (x,_1, X, 5. .., X;_4)) and have zero mean and bounded
variance. For a given input vector x and its nearest neighbor
x', the continuity of regression function implies the outputs
f(x) and f(x) should be close enough in the output space
(note that it is not necessary to be the closest pair for the
outputs). In other words, if a deterministic (time-invariant)
system is fed with the same values at different time instants,
the same values should be outputted from the system, apart
from the noise. Alternatively, the corresponding outputs are
different due to the presence of noise.

This work uses the simplified version of the §-test, which
first searches for the nearest neighbor (its index is denoted
as NN) from N points for a given point in the input space
according to a distance metric (Euclidean distance is used in
this context):

. . 2
NN (i) == argmin “xi - x]-" . 3)
j#i
Then, the variance of r, var[r], can be estimated by

1 N

var[r] = 8 = ﬁ; (f (x) - f(XNN(i)))Z' (4)

The result obtained from the §-test provides a criterion
for input selection. The algorithm starts by including only
the current observation as the initial dimension of the
candidate input vector and the residual variance for such
origination is calculated. Then, the dimension increments
by considering the next recent recording to form a new
candidate input vector which is subsequently examined by
the §-test. Such iterative process terminates when the input
dimension exceeds the maximum number predefined.

In contrast to the model-based approaches, it is not nec-
essary to build a model for input dimension determination by
using the §-test to select a competent input vector within the
maximum dimension which may require domain knowledge
or assistance of a model. However, the result from the 6-
test cannot implicitly tell us to what extent an optimal model
can fit a noisy time series, as the estimated residual variance
encompasses modeling error and real noise.

The data-driven approach is often used to construct a FIS
based on a set of training data, whenever a prior knowledge
about the system is unavailable or incomplete. The goodness
of the model is usually measured by the MSE between
the training data and the outputs from the model. If the
training data has been corrupted by some noise, there is a
risk of overfitting to the noisy training data if the objective
is to minimize the MSE and the model will consequently
perform poorly on the previously unseen inputs. This is the
primary reason that we designed the denoising substage,
as the consequent parameters estimated are subject to the
minimization of the MSE (described in the next section).

To this end, the well-known denoising technique based
on wavelet transform [26] is employed and one-dimensional
denoising process is performed directly on the collected time
series of traffic flow. In general, the denoising procedure
follows the three steps: (1) decomposition: compute the
wavelet decomposition of the noisy data by applying a wavelet
(“db3” in our case) to it at the specified level; (2) detail
coefficients thresholding: select appropriate threshold for
each level and apply thresholding method (soft thresholding
in our implementation) to remove the noises; (3) reconstruc-
tion: inverse wavelet transform of the thresholded wavelet
coefficients to generate clean data. Further information on
wavelet-based denoising technique can be obtained from the
papers [26-28].

The decomposition level is one of the critical factors,
which has significant impact on the denoising performance
(the discussions on the others, such as wavelet base, are
beyond the scope of this paper) [29]. The simplest method
is to choose a fixed decomposition level of wavelet trans-
form based on experience before denoising, but it will be
problematic when the noise level embedded is not what is
expected. Therefore, a number of adaptive approaches have
been proposed [30, 31]. Those approaches determine the
decomposition level by iteratively examining the denoising
performance for the incremented level until the performance
meets some stop criteria which are set normally based on
either signal-to-noise ratio (SNR) [32] or singular spectrum
[30]. However, our method is different from those reported



in literature in that it is based on the residual variance esti-
mated by the §-test and the input vector can be determined
simultaneously.

As shown in Figure 1, a number of candidate input
vectors are generated by incrementing the dimension in turn
and analyzed via the §-test. If the minimum residual variance
obtained from the set of candidate input vectors does not
satisfy the following criterion (called variance ratio R in this

paper),

var (s)
" min (6) L ©)
where s is the original time series or the reconstructed
time series (if denoising is performed), & is a set of residual
variance values corresponding to the set of candidate input
vectors, and T is a constant which needs to be predetermined,
then the wavelet-based denoising technique is applied to
the time series to reduce noise level and the decomposition
starts from one level. The denoised time series generates
another set of candidate input vectors which are subsequently
examined again by the §-test. If the noise level is still high, the
decomposition level increments and the denoising process is
performed again. Such iterative process terminates until the
stop criterion is met and the input vector that has produced
the minimum residual variance will be selected as the input
for the FIS.

2.3. Parameters and Rules Determination. The NNC [16] is a
simple but effective clustering technique that can be used to
determine the number of membership functions and provide
initial cluster centers for the subsequent tuning process. The
clustering process by the NNC algorithm is as follows: (1)
choose the first data from the set of training data as the
first cluster center; (2) group the data into the first cluster if
its distance to the cluster center is less than the predefined
threshold value (0.8 for all experiments presented in this
paper); (3) otherwise, set the data as the second cluster center;
(4) examine the next data by calculating its distances to all
existing cluster centers; (5) group the next data into the cluster
whose center is closest to it and their distance is less than the
threshold; (6) otherwise, generate a new cluster by setting it
as the center. Such process terminates if all data have been
checked and the final number of clusters obtained is used as
the number of membership functions.

During the tuning process, a GMM is used to group the
training data into a set of clusters whose number and initial
centers have been determined by the preceding process.

A mixture of K component Gaussians can be expressed as
follows:

K K
fOO =Y wer f(svieZ) = ) w
k=1 k=1

) (6)

\ @m)? |%]

exp |3 (= w0 = (x-v)
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where f(x;Vy,X;) is the probability density function of kth
component Gaussian with mean vector v, and covariance
matrix X, and its weight w, satisfies

M=

u)k = 1, Vi: wk > 0. (7)

k

]
—_

To determine the parameter vector 0 (i.e., wy, v;, and
3, for each component) for a Gaussian mixture model, the
Expectation Maximization (EM) algorithm is applied to the
set of training data. An unobserved latent variable y is added
and this latent variable determines the component from
which the observed data x originates. Thus, the log-likelihood
function can be formulated as follows:

N
InL(6;x,y) =) In f(x,;6). (8)
i=1

The EM algorithm [33] fits a mixture model to a set of
training data by alternately performing between expectation
step and maximization step. Suppose the current step is
at t step. Expectation Step. Determine the expectation of
the log-likelihood function, with respect to the conditional
distribution of y given x under the current estimate of
the parameters. Maximization Step. Update the parameters
that maximize the expectation of the log-likelihood function
obtained in expectation step. The process terminates either if
a predefined number of iterations is exceeded or if the param-
eters improvement between two consecutive iterations is less
than the minimum amount of improvement predefined.

As Gaussian membership functions are adopted for the
premises of the FIS, the result from the clustering by GMM
can be directly used to determine the parameters for the
membership functions. Meanwhile, the rules can be extracted
from the clustering results and the number of rules for the FIS
is the number of clusters.

The consequent part is a linear function of the input
components, and, therefore, we use a well-known method,
least square estimation [18], to determine the parameters for
the linear function.

3. Experiments

The proposed approach has been implemented in MATLAB
and evaluated through a series of experiments on the traffic
flow data which was collected and aggregated at intervals of
2 minutes’ duration for a road in Beijing for one week, from
November 20 (Monday) to November 26 (Sunday), 2006.
Before examining the proposed prediction approach,
the performance of the O-test should be evaluated as it
has been employed to determine the decomposition level
and input dimension. The evaluations on the J§-test from
various aspects have been reported in [22-25], apart from its
sensitiveness on the choice of the starting point. Therefore,
this work is concentrated to a sensitive analysis to evaluate
the dependence of the §-test on the starting point. The one-
week traffic flow data with 100 different starting points have
been used by the d-test to estimate the residual variance and
the coefficients of variation have been calculated and listed in
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TaBLE 1: Coeflicients of variation for the residual variances estimated for the traffic flow with 100 different initial points.
Day
Mon Tue Wed Thu Fri Sat Sun
Coefficient of variation 1.8983 2.1455 2.4925 3.2683 3.2022 1.4212 2.4154

Table 1 for the traffic flow of each day. From Table 1, it can be
seen that all the coefficients of variation are bounded below
3.3, implying that the results obtained by the §-test does not
vary considerably with different starting points.

When determining the input dimension, the maximum
number of input dimensions has to be specified by users.
To this end, users may take advantage of their experience
and knowledge on the traffic flow field. Here, we provide a
simple method to determine the maximum number of input
dimensions based on the calculation of the partial correlation
coeficients [34] for the traffic flow data. Figure 2 shows the
partial correlation coeflicients obtained for the traffic flow
data of each day with the maximum lag of 100 steps. This
experiment implies the traffic flow with lag greater than
10 generally has much less significant association with the
current flow, as most coefficients fall into 95% confidence
intervals, as shown in Figure 2. Therefore, the maximum
number of input dimensions has been selected to be 10 for
the experiments presented in this paper.

The next experiment has been designed to evaluate
the denoising and prediction performance of the proposed
approach on the traffic flow data of one week. To evaluate
the denoising performance for the proposed approach on
the traffic flow, Kolmogorov-Smirnov test (K-S test) has been
employed for each test to determine whether the denoised
data and noise data estimated by the wavelet denoising
technique follow the same distribution and the correlation
coeflicient between the denoised data and the estimated
noise has been also calculated for each day to measure their
dependency. On the other hand, Root Mean Square Error
(RMSE) [13] was used as an index to evaluate the prediction
performance of the proposed approach. Although it is not
appropriate to use RMSE as an objective to build a model as
the minimization of RMSE is likely to result in overfitting,
it is suitable for performance evaluation particularly when
comparison is carried out. For all the following experiments,
the first 500 datasets of traffic flow was used to train a FIS and
the last 200 datasets to test the prediction performance.

The obtained results are shown in Table 2 and Figures
3 and 4. The decomposition level and input dimension for
the traffic flow on each day have been obtained when the
variance ratio meets the required criterion. The number of
rules (the same as the number of membership functions) has
been determined by performing the NNC algorithm on the
training data with the cluster radii set as 0.8.

Figure 3 shows the histograms for the denoised data and
the noise data estimated by the wavelet denosing method
with the decomposition levels determined by the proposed
approach and listed in Table 2. It is obvious that the denoised
data and the noise data do not follow the same distribution
which is also proved by the p values obtained with 95%
confidence level through the T-S test. From Figure 3, it can be

seen that the estimated noise data generally follow a Gaussian
distribution. Additionally, the correlation coefficients calcu-
lated for the denoised flow and the noise data also indicate
there is a very weak correlation between them. Furthermore,
the original traffic flow data and the denoised flow are also
illustrated in Figure 4, with grey solid lines and black dotted
lines, respectively. From Figure 4, it can be seen that the
denoised flow data is able to retain the general flow trend
without losing the mostly significant peaks and valleys, while
a smooth traffic flow pattern is obtained.

Regarding the training and prediction performance,
RMSEs have been calculated and listed in Table 2, together
with the fitting data and the predicted data depicted against
the original data and the denoised data in Figure 4. From
Table 2, although the RMSEs for training are lower than those
for prediction, the prediction in general performed well. The
larger RMSE values obtained during the prediction stage may
be caused by inefficient samples presented during the training
stage. Furthermore, the discrepancies between the fitting flow
or the predicted flow and the denoised data are hardly seen
from Figure 4 for all days, reflecting the proposed approach
can accurately predict the flow trend.

To evaluate the proposed algorithm for input dimension
determination, the input dimension has been varied from
1 to 10 while the decomposition level and the number of
rules is kept the same as those listed in Table 2. When
varying the input dimension, it is difficult to generate the
same number of clusters (i.e., the number of rules) by the
NNC algorithm and thus it was set to be ineffective for this
experiment. Consequently, the initial centers for the GMM
under construction were set randomly. To eliminate any
bias that might result from the random initialization, 100
independent runs have been performed and the averaged
results are presented in Table 3. While the RMSE:s for training
(denoted as T)) and prediction (denoted as P) are presented,
the ratios of the RMSEs for prediction over those for training
are listed as well in an attempt to indicate the degree of
overfitting.

In general, the RMSEs for each day of the week decrease
with the growth of the input dimension, indicating a trend
that the modeling performance is gradually improved. How-
ever, the situation for prediction is quite complicated, as
the pattern is not very evident, though it appears that a
concave pattern generally holds for the most of days. The
RMSE ratios (indicated by P/T'), in the cells with bold font
in Table 3, correspond to the input dimensions shown in
Table 2 and the smallest ratio for each day of the week is
also highlighted by italic font. For the Monday, although
the RMSE ratio corresponding to the input dimension of
2 is the third smallest RMSE ratio, the overfitting problem
is not significant. However, the RMSE ratio for Tuesday is
quite high, but the RMSE values obtained during the training
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FIGURE 2: Partial correlation coefficients for the traffic flow data collected from November 20, 2006, to November 26, 2006, with 95%

confidence interval indicated by the horizontal lines.

TABLE 2: Evaluation of the proposed approach on the one-week traffic flow.

Day of week
Mon Tue Wed Thu Fri Sat Sun
Decomposition level 3 4 4 4 4 3 3
p of K-S test (95%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Correlation coefficient 0.0042 0.0038 0.0039 0.0107 0.0041 0.0037 0.0007
Input dimension 2 4 4 2 2 2 2
Number of rules 2 2 2 2 2 2 2
Training (RMSE) 0.0107 0.0028 0.0054 0.0064 0.0054 0.0025 0.0052
Predicting (RMSE) 0.0181 0.0171 0.0124 0.0269 0.0095 0.0113 0.0058

and predicting phase are both smaller than those indicated
with italic font, which gives the smallest RMSE ratio. A
similar pattern is also held for Wednesday. For Thursday, the
overfitting effect has been reduced to the minimum when
the input dimension corresponds to that listed in Table 2.
Although the RMSE ratios for Friday and Sunday are not
the smallest, they are bounded within 2, implying overfittings
are not considerable. For Saturday, the RMSE ratio is ranked
as the second in terms of the smallest value, but the RMSE
values for the training and prediction phase are all smaller
than those with the smallest ratio (denoted as italic font).
After all, the experimental results indicate that the overfitting
problem can be generally restrained with the input dimension
determined by the proposed approach which is not designed
to explicitly deal with the overfitting problem.

In order to evaluate the NNC algorithm for the determi-
nation of the number of rules (clusters), we have performed
another experiment by varying the number of clusters from
1to 10 and the RMSE values and the RMSE ratios (i.e., P/T)
obtained from the FISs created by the GMMs with random
initialization are presented in Table 4. Note that the RMSEs
and the RMSE ratios presented have been averaged over

100 independent runs as the initial center for each Gaussian
component in a mixture model was initialized randomly.

The RMSEs listed in the column corresponding to 1
cluster are considerably large, as compared to those in other
columns, and this is due to the fact that all training data have
been grouped in one cluster. Apart from the first column, the
performances are quite constant for the whole week, reflected
by a general decreasing and increasing patterns possessed for
modeling and prediction, respectively. In Table 4, the RMSE
ratios in the second column have been highlighted with bold
font to indicate they have been obtained when the number
of rules (clusters) was determined as 2, as shown in Table 2.
The RMSE ratios obtained with the choice of 2 rules for the
days of the week except for Friday are all closer to 1 than
those with the number of rules greater than 2. For Friday, the
RMSE ratio (highlighted with the italic font in Table 2) mostly
approaches 1 among those with the number of rules greater
than 1, but the number of rules is just one more than that
determined by the NNC algorithm. In summary, the choice
of 2 rules (clusters) is proper as the overfitting problem can be
considerably alleviated in general and consequently results in
a compact structure for the FIS.
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FIGURE 3: Histograms of the denoised data and the noise data in the week, November 20 to 26, 2006.
TABLE 3: Evaluation of the impact of the input dimension on the prediction by varying the dimension from 1 to 10 for the one-week traffic

flow (RMSEs averaged over 100 independent runs are presented, T and P denote the RMSE values obtained from training and prediction,
resp., and P/T presents the RMSEs for prediction over those for training).

Inputs
1 2 3 4 5 6 7 8 9 10

Mon

T 0.0115 0.0108 0.0105 0.0108 0.0095 0.0096 0.0092 0.0091 0.0093 0.0098

P 0.0191 0.0154 0.0147 0.0128 0.0207 0.0189 0.0186 0.0239 0.0267 0.0193

P/T 1.6597 1.4265 1.3996 1.1863 21734 1.9692 2.0206 2.6174 2.8844 1.9665
Tue

T 0.0059 0.0029 0.0029 0.0029 0.0028 0.0028 0.0028 0.0028 0.0028 0.0027

P 0.0187 0.0181 0.0175 0.0174 0.0179 0.0183 0.0194 0.0180 0.0204 0.0202

P/T 3.1700 6.1422 6.0858 6.1060 6.3589 6.6108 6.9882 6.5280 7.3970 7.4519
Wed

T 0.0090 0.0056 0.0053 0.0053 0.0053 0.0053 0.0052 0.0051 0.0050 0.0045

P 0.0149 0.0147 0.0130 0.0130 0.0129 0.0128 0.0127 0.0126 0.0121 0.0136

P/T 1.6659 2.6353 2.4358 2.4358 2.4476 2.4290 2.4454 2.4803 2.4069 3.0425
Thu

T 0.0071 0.0068 0.0063 0.0056 0.0056 0.0056 0.0056 0.0056 0.0057 0.0056

P 0.0318 0.0288 0.0307 0.0289 0.0268 0.0269 0.0267 0.0292 0.0334 0.0469

P/T 4.4555 4.2649 4.8475 5.1203 4.8073 4.7819 4.7918 5.2005 5.8887 8.4189
Fri

T 0.0062 0.0059 0.0058 0.0054 0.0053 0.0052 0.0052 0.0052 0.0050 0.0050

P 0.0171 0.0110 0.0115 0.0110 0.0100 0.0096 0.0095 0.0096 0.0100 0.0102

P/T 2.7758 1.8723 1.9914 2.0230 1.8928 1.8430 1.8382 1.8701 1.9925 2.0338
Sat

T 0.0055 0.0025 0.0024 0.0024 0.0023 0.0023 0.0023 0.0022 0.0022 0.0019

P 0.0135 0.0113 0.0124 0.0128 0.0135 0.0146 0.0157 0.0149 0.0149 0.0162

P/T 2.4502 4.5961 5.1182 5.3653 5.7938 6.3996 6.9174 6.7054 6.7307 8.6916
Sun

T 0.0093 0.0052 0.0052 0.0051 0.0049 0.0049 0.0048 0.0045 0.0045 0.0037

P 0.0124 0.0055 0.0052 0.0053 0.0052 0.0049 0.0047 0.0049 0.0048 0.0041

P/T 1.3314 1.0533 1.0068 1.0310 1.0636 0.9970 0.9910 1.0982 1.0878 1.1193
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TABLE 4: Evaluation of the impact of the number of clusters on the prediction by varying it from 1 to 10 for the one-week traffic flow (RMSEs
averaged over 100 independent runs are presented, and T and P denote the RMSE values obtained from training and prediction, resp.).

Cluster
1 2 3 4 5 6 7 8 9 10

Mon

T 260.31 0.0108 0.0103 0.0102 0.0101 0.0100 0.0099 0.0097 0.0097 0.0096

P 265.27 0.0154 0.0180 0.0194 0.0187 0.0196 0.0201 0.0210 0.0212 0.0224

P/T 1.0191 1.4259 1.7476 1.9020 1.8515 1.9600 2.0303 2.1649 2.1856 2.3333
Tue

T 226.74 0.0029 0.0026 0.0026 0.0025 0.0025 0.0025 0.0024 0.0024 0.0024

P 253.02 0.0174 0.0224 0.0214 0.0211 0.0208 0.0204 0.0200 0.0202 0.0202

P/T 1.1159 6.0000 8.6154 8.2308 8.4400 8.3200 8.1600 8.3333 8.4167 8.4167
Wed

T 241.15 0.0053 0.0049 0.0049 0.0048 0.0047 0.0046 0.0044 0.0044 0.0043

P 205.69 0.0129 0.0205 0.0212 0.0210 0.0218 0.0227 0.0236 0.0236 0.0257

pP/T 0.8530 2.4340 4.1837 4.3265 4.3750 4.6383 4.9348 5.3636 5.3636 5.9767
Thu

T 262.33 0.0067 0.0063 0.0050 0.0050 0.0046 0.0041 0.0035 0.0034 0.0032

P 280.59 0.0287 0.0308 0.0350 0.0378 0.0405 0.0426 0.0454 0.0436 0.0458

P/T 1.0696 4.2836 4.8889 7.0000 7.5600 8.8043 10.3902 12.9714 12.8235 14.3125
Fri

T 258.21 0.0059 0.0063 0.0051 0.0050 0.0049 0.0048 0.0048 0.0047 0.0046

P 289.71 0.0110 0.0086 0.0133 0.0133 0.0129 0.0125 0.0134 0.0139 0.0143

P/T 1.1220 1.8644 1.3651 2.6078 2.6600 2.6327 2.6042 2.7917 2.9574 3.1087
Sat

T 269.68 0.0025 0.0025 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024

P 328.19 0.0113 0.0115 0.0112 0.0114 0.0113 0.0111 0.0112 0.0112 0.0112

P/T 1.2170 4.5200 4.6000 4.6667 4.7500 4.7083 4.6250 4.6667 4.6667 4.6667
Sun

T 274.15 0.0052 0.0053 0.0052 0.0052 0.0051 0.0051 0.0050 0.0049 0.0049

P 316.86 0.0055 0.0059 0.0065 0.0061 0.0061 0.0062 0.0061 0.0068 0.0072

p/T 1.1558 1.0577 1.1132 1.2500 1.1731 1.1961 1.2157 1.2200 1.3878 1.4694

4. Conclusions

The approach proposed for one-step-ahead prediction in this
paper consists of a number of novel elements that have been
developed to deal with the issues relating to the input dimen-
sion determination and parameters and rules estimation. A
series of experiments have been performed based on the
one-week traffic flow to evaluate the proposed prediction
approach. The first experiment demonstrates a method intro-
duced to determine the maximum number of input dimen-
sions, a parameter required for the determination of the input
dimension, by calculating partial correlation coefficient. By
analyzing the distribution discrepancy between the denoised
flow and the estimated noise data, the denoising performance
has been evaluated and the experimental results indicate the
denoising procedure is effective in the noise removal. The
prediction performance has been evaluated by calculating the
RMSE values for the training phase and the predicting phase.
Further experiments have been performed to evaluate the
input dimension and the number of rules determined by the

proposed approach in terms of overfitting. Although the pre-
diction approach has not been designed with the particular
emphasis on the overfitting issue, the experimental results
have shown that no significant overfitting is caused from the
proposed prediction approach. Based on the experimental
analyses, it can be concluded that the proposed approach
is compact and competent, but further improvements are
possible, by refining the stopping criterion for denosing and
input dimension determination process, for example.
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FIGURE 4: Evaluation of the proposed prediction approach for the training and prediction phases on the traffic flow data in the week, November
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the black solid lines indicate the fitting and predicted traffic flow).
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