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Direct forecasting method for Urban Rail Transit (URT) ridership at the station level is not able to reflect nonlinear relationship
between ridership and its predictors. Also, population is inappropriately expressed in this method since it is not uniformly
distributed by area. In this paper, a new variable, population per distance band, is considered and a back propagation neural network
(BPNN) model which can reflect nonlinear relationship between ridership and its predictors is proposed to forecast ridership. Key
predictors are obtained through partial correlation analysis. The performance of the proposed model is compared with three other
benchmark models, which are linear model with population per distance band, BPNN model with total population, and linear
model with total population, using four measures of effectiveness (MOEs), maximum relative error (MRE), smallest relative error
(SRE), average relative error (ARE), and mean square root of relative error (MSRRE). Also, another model for contribution rate of
population per distance band to ridership is formulated based on the BPNNmodel with nonpopulation variables fixed. Case studies
with Japanese data show that BPNNmodel with population per distance band outperforms other threemodels and the contribution
rate of population within special distance band to ridership calculated through the contribution rate model is 70%∼92.9% close to
actual statistical value. The result confirms the effectiveness of models proposed in this paper.

1. Introduction

In transportation planning, ridership modeling and forecast-
ing is the basis for analyzing project viability and sustainabil-
ity in the long run. Urban Rail Transit (URT) ridership at sta-
tion level is an important element of URT ridership, which is
critical for determining scale of stations and access facilities.
Four-step model has been a traditional method for transit
modeling [1], a forecasting method mainly on a region scale,
integrating four interrelated submodels, trip generation, trip
distribution, mode split, and traffic assignment together [2,
3] which makes it inappropriate to forecast detailed transit
ridership, such as at the station level. Furthermore, the four-
step model needs all basic information involving trips on
a regional scale, which requires large amount of resources.
Despite its proven effectiveness, the high complexity and
costs prevent it from providing quick and timely response to
dynamic land-use change within service area of stations.

Forecasting method for URT ridership at station level
with multivariate regression models, also known as direct-
forecast method, can forecast ridership based on the changes
in factors affecting ridership throughout service area of sta-
tions [4–8].This method considers factors affecting ridership
such as built environment, social and economic attributes
within service area, and ownership of stations as independent
variables and average daily or peak hour ridership as depen-
dent variable for regression analysis.

Considerable research has been conducted on finding
factors significantly affecting ridership. Cervero and Kock-
elman analyzed relationship between travel demand and
3Ds (density, diversity, and design) [9]. “Density” refers to
population and employment density within the service area
of the stations, which is considered as the most important
factor [4–8]. “Diversity” means land-use type and land-use
mix within the service area of the stations [10–12]. “Design”
indicates whether or not the design of streets and roads
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is convenient for people to access transit services [12, 13].
Additionally, station ownership can also explain the ridership
changes well. The type of station (intermediate, terminal,
interchange, and intermodal) influences the ridership as well
[7, 8, 11, 12]. The distance from the station to central business
district (CBD) was also found to be a significant factor [8, 12].
Parking and riding facilities and feeder services [7, 8, 12] also
affect the ridership.

The tendency of using transit declines as the distance
from stations/lines increases [7, 8, 14, 15]. Zhao et al. (2003)
drew an exponential curve to depict the effect of walking
distance to transit by surveying people living in station
service areas [14]. Gutiérrez et al. drew a line to depict the
ratio of inhabitants living in service areas of stations to daily
boarding per distance band and an exponential curve to
depict the ratio of employment population within service
area of stations to daily alighting per distance band [8]. The
previously mentioned line or curve is called distance-decay
function curve. The literature recommends that the popula-
tion variable in forecasting model needs to be weighted by
the distance-decay function according to its distance to the
station. However, it is problematic when the function is used
to weight population living or working in the service area
of stations, because distance-decay weight in real world may
not change continually as the distance-decay function shows
in special distance bands. It stays the same in per distance
bands.

Forecasting models such as the ordinary least squares
(OLS) regression model [12], Poisson regression [16], and
other multivariate linear regression [8] models are fed by
variables on the characteristic of stations and their catchment
areas. However, linear regression models are not appro-
priate because relationship between some predictors and
URT ridership at station level does not show linear trends.
Taking population within service area as an example, if the
degree of land-use mix is high, inhabitants and employment
are balanced in this area. And it is likely that no extra
transit demand is derived. For this, back propagation neutral
network (BPNN) model which can reflect high nonlinear
relationship between URT ridership and its predictors is put
forward. BPNN model is trained using case study data, with
predictors as input and ridership as output, to get parameters
(weights and bias), and then it is used to forecast the URT
ridership at station level.

The major contributions of this paper are as follows:

(i) Take population or employment per distance band as
predictor directly.

(ii) Identify key factors affecting ridership through partial
correlation analysis.

(iii) Formulate BPNN model to reflect exact relationship
between URT ridership and its predictors.

(iv) Formulate a model of contribution rate of population
per distance band to URT ridership using numerical
analysis.

2. Methodology

2.1. Key Factors Affecting Ridership

2.1.1. Factors Affecting Ridership. Referring to previously
mentioned researches, population per distance band, road
density, number of shuttle bus lines, land-use mix within
station service areas, train frequency in one direction during
peak hour, number of lines through station (station on the
line), number of park and ride facilities, station type (terminal
or not), and distance from station to CBD are selected
preliminarily as factors affecting URT ridership at station
level. This paper uses data of Tokyo, Japan, to illustrate how
values of the above factors are calculated or obtained and the
case study is conducted using the same dataset.

The population distance bands include 0-1 km, 1-2 km, 2-
3 km, 3-4 km, 4-5 km, 5-6 km, 6 km, and above, according
to road network buffer by GIS (Geographic Information
System) [17]. Data from “Total Rail Season Tickets Classified
by Departure Stations and Inhabitant Zones of Tokyo, Japan”
at 2010 are used [18]. The data show that, within 6 km of
service areas, access ridership during morning peak hour is
above 97% of the total access ridership. So, 6 km and above
is taken as a unit distance band. Population of each distance
band is sum of capita living/working in Chomes (smallest
unit of street block in Japan) within this distance band.

Road density (unit: km/km2) is used to measure the
convenience to stations. Larger road density favors access
to stations by walking and increase transit use [7, 8, 12].
This variable is calculated by total length of roads gauged by
Google Earth divided by area of the service area.

Number of shuttle bus lines is used to measure conve-
nience of shuttle bus access, which can be obtained from
Google Earth within service area of 200m radius from
station. Both shuttle bus and URT belong to mass transit and
they are strongly dependent on each other.

Land-usemix can be expressed by land-usemix ratio.The
higher the value, the more diverse the land-use throughout
this area and the more likely the fact that inhabitant and
employment population are balanced here. The formula is as
follows [19]:

𝑃mix = 󵄨󵄨󵄨󵄨󵄨𝐷popu × log10 (𝐷popu)󵄨󵄨󵄨󵄨󵄨
+ 𝑛∑
𝑘=1

󵄨󵄨󵄨󵄨(𝐷em)𝑘 × log10 (𝐷em)𝑘󵄨󵄨󵄨󵄨 , (1)

where 𝑃mix is land-use mix ratio of service area; 𝐷popu is
population density of service area (unit: per/hectare); 𝐷em
is density of the 𝑘th type employment (unit: per/hectare) of
service area; 𝑛 is total number of employment types in service
area.

Unidirectional peak-hour train frequency is sum of all
trains in one direction from any line stopping at a station.
Same as number of lines through station, station type (ter-
minal or not) and distance from station to CBD are used
to measure station attraction. The station type is a binary
variable: “1” indicates terminal and “0” otherwise.

The number of parking and riding facilities is also an
important variable. More facilities are likely to attract more
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drivers, making them choose transit instead. Data for the last
5 variables can be obtained from official websites of railway
operation industries in Japan.

2.1.2. Partial Correlation Analysis. Identifying key factors is
critical. If all the above variables are used to formulate fore-
casting model, the performance of model will be unsatisfying
because of the correlation between these variables.

Partial correlation analysis [20, 21] is used to find key
factors, avoiding the influence of other confounding factors
when analyzing relationship between two variables. The
formulas are listed as follows:

𝑟𝑥𝑦 = ∑𝑛𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)√∑𝑛𝑖=1 (𝑥𝑖 − 𝑥)2∑𝑛𝑖=1 (𝑦𝑖 − 𝑦)2
𝑟𝑥𝑦,𝑧1 = 𝑟𝑥𝑦 − 𝑟𝑥𝑧1𝑟𝑦𝑧1√(1 − 𝑟2𝑥𝑧1) (1 − 𝑟2𝑦𝑧1)
𝑟𝑥𝑦,𝑧1𝑧2 = 𝑟𝑥𝑦,𝑧1 − 𝑟𝑥𝑧2 ,𝑧1𝑟𝑦𝑧2,𝑧1√(1 − 𝑟2𝑥𝑧2 ,𝑧1) (1 − 𝑟2𝑦𝑧2 ,𝑧1)

𝑟𝑥𝑦,𝑧1 ,...,𝑧𝑛 = 𝑟𝑥𝑦,𝑧1 ,...,𝑧𝑛−1 − 𝑟𝑥𝑧𝑛 ,𝑧1,...,𝑧𝑛−1𝑟𝑦𝑧𝑛,𝑧1,...,𝑧𝑛−1√(1 − 𝑟2𝑥𝑧𝑛,𝑧1 ,...,𝑧𝑛−1) (1 − 𝑟2𝑦𝑧𝑛 ,𝑧1,...,𝑧𝑛−1)
,

(2)

where 𝑟𝑥𝑦 is simple correlation coefficient of variable 𝑥 and𝑦; 𝑟𝑥𝑦,𝑧1 is correlation coefficient of variables 𝑥 and 𝑦 when
controlling 𝑧1; 𝑟𝑥𝑦,𝑧1𝑧2 is correlation coefficient of variables𝑥 and 𝑦 when controlling 𝑧1 and 𝑧2; 𝑟𝑥𝑦,𝑧1,...,𝑧𝑛 is correlation
coefficient of variables 𝑥 and 𝑦 when controlling 𝑧1, . . . , 𝑧𝑛;𝑥𝑖, 𝑥 is the 𝑖th value of variable 𝑥 and the mean value of 𝑥; the
meaning of 𝑦𝑖, 𝑦 is the same as 𝑥𝑖, 𝑥.

The partial correlation coefficient needs to be tested for
significance further. The null hypothesis is that the partial
correlation coefficient to be tested is not significantly different
from zero. The corresponding t-statistic for the test is shown
in

𝑡 = 𝑟√𝑛 − 11 − 𝑟2 , (3)

where 𝑡 is statistic value of test; 𝑟 is partial correlation
coefficient to be tested; 𝑛 is sample size.

When degree of freedom is 𝑛 − 1, the probability value𝑝 corresponding to 𝑡 is obtained to be compared with 0.01
and 0.05. If 𝑝 < 0.01, association between the two variables
is strongly significant. If 0.01 < 𝑝 < 0.05, association
between the two variables is generally significant. If 𝑝 >0.05, association between the two variables is not significant.
Partial correlation coefficient is used to identify key factors in
the case study.

2.1.3. Data Source and key Predictors. Data from 129 stations
in Tokyo, Japan, are used for case study to get the key
predictors. Tokyo is the capital of Japan, encompassing 23
special wards, 26 cities, 5 towns, and 8 villages, which is also
called Tokyo Metropolitan Area. The whole area is 2188.67
square kilometers, and the population is 13.23 million. URT
is the main commuter traffic mode of Tokyo, whose total line

Selected stations in case study
Urban rail transit lines

Figure 1: URT in Tokyo metropolitan area.

is approximately 1000 km long and amount of total station is
approximately 800 excluding the line servicing just suburban
area. The selected station for case study is mainly in 23
special wards where the economic and trade activity mainly
develops. Figure 1 is the distribution of urban transit rail
line and selected station in case study in Tokyo Metropolitan
Area.

(1) Access Ridership (Annual Average Daily) in Morning Peak
Hours. The data are obtained from “Total Rail Season Tickets
Grouped by Departing Stations and Inhabitant Zones of
Tokyo” at 2010 [18].

(2) Land-Use Mix within Service Area of the Station. The data
is obtained from “The Number of Enterprises and Employ-
mentGrouped byChomes and Industries” of Tokyo statistical
information [22], where the 16 types of employment are
agriculture-forestry-fisheries, mining, construction, manu-
facturing, electrical, gas heating and water supply Industry,
information and communications, transport, wholesale and
retail trade, finance and insurance, real estate, restaurant
accommodation, medical welfare, education and learning
supported industry, composite services, services not classi-
fied, and unclassified public services. Chomes are the smallest
units for population, similar to blocks in America.

(3) Inhabitant Population within Service Area of the Station.
The data is obtained from “Day and Night Population
Grouped by Chomes” of Tokyo statistical information [23].

(4) Characteristic of Station. Variables like “unidirectional
peak-hour train frequency,” “number of lines through sta-
tion,” “number of parking and riding facilities, station type,”
and “distance from station to CBD” can be obtained from
official websites of railway operation corporation in Japan
[24–27].

Table 1 shows the correlation analysis of population per
distance band and ridership using (2)–(3), when fixing all
other variables. “Total” in Row 1 of Table 1 means population
within all distance bands, which is taken as a single variable.
Table 2 shows the correlation analysis of nonpopulation
variables and ridership, when fixing all the other variables.
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Table 1: Correlation analysis of population per distance band and ridership.

Correlation coefficient 0-1 km 1-2 km 2-3 km 3-4 km 4-5 km 5-6 km Above 6 km Total
Ridership 0.365∗∗ 0.216∗∗ 0.356∗∗ 0.211∗∗ 0.202∗ 0.061∗ −0.186 −0.039
∗: 0.01 < 𝑝 < 0.05, generally significant.
∗∗: 𝑝 < 0.01, strongly significant.

Table 2: Correlation analyses of nonpopulation variables and ridership.

Correlation
coefficient

Road
density

Number of
shuttle bus lines

Land-use
Mix

Peak-hour unidirectional
train frequency

Number of lines
through station

Number of park
and ride facilities

Station
type

Distance
To CBD

Ridership 0.07∗ 0.18∗ −0.164∗ 0.043∗ 0.101 −0.251 0.028∗ 0.04
∗: 0.01 < 𝑝 < 0.05, generally significant.

Table 1 illustrates that correlation coefficient decreases as
distance increases. Population in 0-1 km, 1-2 km, 2-3 km, and
3-4 km bands are strongly significantly correlated with rid-
ership. Population in 4-5 km and 5-6 km bands are generally
significantly correlatedwith ridership. Population above 6 km
band and population within all bands are not correlated with
ridership.

Table 2 shows that “road density,” “number of shuttle
bus lines,” “land-use mix,” “peak-hour unidirectional train
frequency,” and “station-type” are all generally significantly
correlated with ridership. It needs to be noted that “land-
use mix” is a negative predictor for ridership. That is because
ridership in case study is the amount of annual average daily
passengers entering station in the morning peak hour, which
is mainly produced by inhabitants living in service area of
the station. Imagine that there are two stations with same
amount of inhabitants in their service area; if one station has
no employment in its service area for inhabitants, inhabitants
have no choice but find employment outside the region, so the
URT railway may be used with high probability. Meanwhile,
the area for the other station has enough employments for
inhabitants, inhabitants would like to work near their home,
and thus URT may be used with low probability. The result
is ridership of station whose “land-use mix” is high is less
than that of the stationwhose “land-usemix” is low.However,
the case study only shows “land-use mix” is negative for
ridership entering station in the morning peak hour, and
how it influences the all-day ridership entering station needs
further research.

Other than results in Table 2, correlation coefficient of
“peak-hour unidirectional train frequency” and “number
of lines through station” is 0.924 using (2)–(3), and they
are strongly significantly correlated. Table 2 shows “number
of lines through station” is not correlated with “ridership,”
while “peak-hour unidirectional train frequency” is generally
significantly correlated with “ridership” even though the
coefficient of the two is only 0.043. Since predictors should
be independent of each other [28], the variable “number of
lines through station” is abandoned. Correlation coefficient
of “road density” and “distance to CBD” is 0.542 using (2)–
(3), and they are strongly significantly correlated. Table 2
shows “distance to CBD” is not correlated with “ridership,”
while “road density” is generally significantly correlated with

“ridership” and the coefficient of the two is 0.07. Thus,
“distance to CBD” is abandoned.

Therefore, key predictors affecting ridership in this paper
are obtained: population within distance bands (0-1 km, 1-
2 km, 2-3 km, 3-4 km, 4-5 km, and 5-6 km), road density,
number of shuttle bus lines, land-use mix, peak-hour unidi-
rectional train frequency, and station type (terminal or not).

2.2. BPNNModel. BPNNmodel is selected as the forecasting
model for URT ridership at station level [29–31]. BPNNs
have hierarchical feed forward network architecture [32].The
processing procedures can be done with a minimum of three
layers: one layer that receives and distributes the input pat-
tern, middle or hidden layer that captures the nonlinearities
of the input/output relationship, and one layer that produces
the output pattern. BPNNs also may contain a bias node
in the output and/or hidden layers that produce a constant
output of 1 and is fully connected to the upper layer but
receives no input.The procedures of the BPNNs are the error
at output layer propagating backward to input layer through
the hidden layer in the network to obtain the final expected
outputs. BPNNs are trained by repeatedly presenting a series
of input/output pattern sets to the network. The trained
network is usually examined through a separate set of data
called the test set to monitor its performance and validity.
When the mean squared error (MSE) of the test set reaches a
minimum, network training is considered to be complete and
the weights are fixed.

Three-layer BPNN (input-hidden-output) is able to
reflect any nonlinearity from input to output and thus is
adopted in this paper. The number of key factors affecting
ridership is 11, and it is also the number of nodes in input layer.
In output layer, there is only 1 node: ridership. The number
of nodes in hidden layer is |√11| ≈ 4, which is square root
of product of number of nodes in input layer and number of
nodes in output layer.

The mathematical formulation of BPNN is as follows:

Min 𝐸 (𝑤, 𝑏, V, 𝑐) = 12𝑞
𝑞∑
𝑝=1

𝑙∑
𝑘=1

(𝑂𝑘 (𝑝) − 𝑂̂𝑘 (𝑝))2 , (4)

subject to the following:
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For output layer,

𝑜𝑘 = 𝑓( 𝑚∑
𝑗=1

V𝑗𝑘𝑦𝑗 + 𝑐𝑘)
𝑘 = 1, 2, . . . , 𝑙; 𝑗 = 1, 2, . . . , 𝑚.

(5)

For hidden layer,

𝑦𝑗 = 𝑓( 𝑚∑
𝑗=1

𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗)
𝑗 = 1, 2, . . . , 𝑚; 𝑖 = 1, 2, . . . , 𝑛,

(6)

in which, transform function

𝑓 (𝑥) = 11 + 𝑒−𝑥 , (7)

where 𝐸(𝑤, 𝑏, V, 𝑐) is the objective function, minimizing the
MSE of the actual and predicted ridership; 𝑤, V are matrix of
weights variable; 𝑏, 𝑐 are bias vector variable;𝑂𝑘(𝑝), 𝑂̂𝑘(𝑝) are
the actual and predicted ridership of the 𝑘th neuron in output
layer of the𝑝th station sample. In ourmodel, there is only one
node in output layer and thus 𝑙 = 1. V𝑗𝑘 is the weight of the 𝑗th
node in hidden layer related to the 𝑘th node in output layer;𝑤𝑖𝑗 is the weight of the 𝑖th node in input layer related to the𝑗th node in hidden layer; 𝑦𝑗 is the output of the 𝑗th node in
hidden layer; 𝑥𝑖 is the input of the 𝑖th node in output layer,
that is, the value of key variables; 𝑐𝑘 is the 𝑘th bias node in
output layer; 𝑏𝑗 is the 𝑗th bias node in hidden layer; 𝑚 is the
number of nodes in hidden layer, which is rounded off of√𝑛.𝑛 is the number of nodes in input layer. 𝑞 is the total number
of station samples.

Steepest gradient descentmethod is adopted to update the
weight and bias at each iteration. The detailed solution steps
are described as follows:

Step 1 (initialization). Initialize weight and bias of BPNN. At
the same time, for BPNN train, it is needed to set prediction
accuracy and the maximum number of learning iterations.

Step 2. Select input (predictors)/output (actual ridership) of
any station randomly. Use BPNNwith initial weights and bias
to forecast and obtain the predicted ridership.Then,MSE can
be obtained by comparing the predicted ridership with actual
ridership of the station. Calculate 𝛿𝑜 = (𝑜̂ − 𝑜)𝑜(1 − 𝑜), where𝛿𝑜 is the MSE derivation of output of output layer.

Step 3. Calculate 𝛿ℎ(𝑗) = 𝛿𝑜V𝑗𝑦𝑗(1 − 𝑦𝑗), where 𝛿ℎ(𝑗) is MSE
derivation of output of hidden layer.

Step 4. Adjust each weight V𝑗𝑘 using 𝛿𝑜 and 𝑦𝑗; that is, ΔV𝑗 =𝜂𝛿𝑜𝑦𝑗. Adjust each weight 𝑤𝑖𝑗 using 𝛿ℎ(𝑗) and 𝑥𝑖; that is,Δ𝑤𝑖𝑗 = 𝜂𝛿ℎ(𝑗)𝑥𝑖, where 𝜂 is the learning rate of BPNN; ΔV𝑗
is the add value of V𝑗; Δ𝑤𝑖𝑗 is the add value of 𝑤𝑖𝑗.
Step 5. Use BPNN and weights and bias obtained from Step 4
to forecast ridership of all stations using input (predictors) of
these stations.Then, the objective function 𝐸 can be obtained

by comparing the predicted ridership with actual ridership of
all stations and summing the differences up. If 𝐸 satisfies the
prediction accuracy requirement or the maximum number
of learning iterations is satisfied, then the optimal value
is obtained and the calculation procedures are terminated.
Otherwise, select input (predictors)/output (actual ridership)
of next station, go back to Step 2, and go to the next iteration.

2.3. Contribution Rate Model. Contribution rate model
which predicts the contribution of population within specific
distance band to ridership at station level is formulated in
this section, by fixing the value of other variables. BPNN
is able to reflect interrelationship between key predictors
and ridership. To obtain contribution rate, population within
other distance bands are set to zero. By changing population
within specific distance band, we can observe corresponding
changes of ridership. Thus, variables other than population
(e.g., road density, number of shuttle bus lines, land-use mix,
peak-hour unidirectional train frequency, and station type
(terminal or not)) need to be known first. Figure 2 shows how
to formulate BPNN model to obtain the contribution rate of
population within 0-1 km band for ridership.

The detailed formulas are listed as follows:
𝑦 = 𝑔 (𝑥)
ℎ = 𝑑𝑦𝑑𝑥 ,

(8)

where ℎ is contribution rate to ridership of population
within specific distance band; 𝑥 is population within specific
distance band 𝑥 > 0; 𝑦 is ridership predicted by BPNN; 𝑔() is
the BPNN model.

The contribution rate model is solved by the following
process. Plot dot (𝑥,𝑦) in the two-dimension coordinate
which takes population within specific distance as 𝑥-axis
and ridership as 𝑦-axis. Find a curve to comply with all the
existing dots in the principle that variance is smallest. The
curvature is the appropriate solution that is contribution rate
to ridership of population within specific distance band.

3. Case Studies

3.1. BPNN Model. Data of previous 129 stations in Tokyo,
Japan, are used as case study and implementing BPNN
model to forecast ridership at station level. All variables
are normalized due to dimension difference. This paper sets
learning rate, prediction accuracy, and maximum number of
learning iteration to be 0.8, 0.001, and 30000, respectively.
BPNN is trained with data of 117 stations.

The optimal weights and bias are shown in Tables 3–5.
Data of the other 12 stations are taken for model test. Weights
and bias from the above training process are used to forecast
the ridership of the 12 stations. Results are shown in Figure 3.

To verify forecasting accuracy of BPNN model in this
paper, its results are compared with that of linear model
with population per distance band, linear model with total
population, and BPNN model with total population. The
other three models are calibrated/trained using the same
input/output pattern sets of 117 stations and are implemented
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Figure 2: Contribution rate model for ridership of population within 0-1 km band.

for prediction with the same data of other 12 stations. Linear
model is calibrated/trained by SPSS.The results are compared
using multiple MOEs (unit: %), maximum relative error
(MRE), smallest relative error (SRE), average relative error
(ARE), and mean square root of relative error (MSRRE).
Relative error is the difference between forecasting ridership
of one model and actual ridership of each station divided by
actual ridership. MRE, SRE, and ARE of a model indicate
the maximum, the smallest, and mean values among relative
errors of 12 stations, respectively. MSRRE of a model is the
mean value of square root of relative errors of 12 stations.

Figure 3 and Table 6 show results of four models graphically
and numerically.

Figure 3 shows that, compared with other three models,
result of BPNN model with population per distance band is
the best and the difference of prediction of this model and
the actual ridership is the smallest. In Table 6, except SRE,
for other MOEs, BPNN model with population per distance
band outperformed other three models. Values of each MOE
of linear model with total population are nearly twice that of
linear model with population per distance band. Meanwhile,
values of eachMOE of BPNNwith total population are about
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Table 3: Weights for nodes in input layer and hidden layer.

Weights Hidden layer
Node 1 Node 2 Node 3 Node 4

Input
layer

Neural 1 (0-1 km band population) 9.016𝐸 − 06 −1.947𝐸 − 05 1.598𝐸 − 05 1.700𝐸 − 05
Neural 2 (1-2 km band population) 6.099𝐸 − 06 6.369𝐸 − 06 6.560𝐸 − 06 −2.490𝐸 − 06
Neural 3 (2-3 km band population) 4.487𝐸 − 06 −6.872𝐸 − 06 4.702𝐸 − 06 −9.129𝐸 − 06
Neural 4 (3-4 km band population) −5.178𝐸 − 06 −7.629𝐸 − 06 −7.395𝐸 − 06 5.073𝐸 − 06
Neural 5 (4-5 km band population) 6.990𝐸 − 06 −4.752𝐸 − 06 1.278𝐸 − 05 −1.286𝐸 − 05
Neural 6 (5-6 km band population) −2.955𝐸 − 06 −4.138𝐸 − 06 1.013𝐸 − 05 9.622𝐸 − 06

Neural 7 (road density) 0.0877 0.0819 −0.0822 0.0778
Neural 8 (number of shuttle bus lines) 0.0996 −0.219 −0.132 0.0238

Neural 9 (land use mix) 2.313 1.702 −1.369 1.608
Neural 10 (peak-hour unidirectional train frequency) 0.0132 −3.07𝐸 − 04 0.0069 −0.007

Neural 11 (station type (terminal or not)) −0.294 1.1325 0.869 1.168

Table 4: Weights for nodes in output layer and hidden layer.

Weights Hidden layer
Node 1 Node 2 Node 3 Node 4

Output layer Only one neural (ridership) 9.016𝐸 − 06 −1.947𝐸 − 05 1.598𝐸 − 05 1.700𝐸 − 05
Table 5: Bias for layers.

Hidden layer Output layer
Neural 1 Neural 2 Neural 3 Neural 4 Only one neural−7.1365 −1.9314 0.1474 −1.5717 0
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Figure 3: Comparison of four models.

10 times that of BPNN with population per distance band.
The comparisons indicate that taking population per distance
band as separate variable is necessary. The comparison of
BPNN model and linear model both with population per
distance band implies that BPNN model is able to better
reflect nonlinearity relationship between ridership and its
predictors than the linear model. After internal relationship

has been obtained through training BPNN, ridership is
predicted quickly and efficiently when changing value of any
variable (e.g., when population in any distance band increases
or decreases).

3.2. Contribution Rate Model. Mean values of every variable
of 129 stations are used as background value. The station
type is a binary variable, which makes us not able to take
mean value of 129 stations as its background value. Here, it
is set as 0. Under the above setting, increase population per
distance band from 10000 (unit: persons) to 320000 by 10000
every time. Ridership is predicted by BPNNwith weights and
bias already obtained in Section 3.1 for per distance band
every time. Taking 0-1 km distance band as an example, when
the population is 10000, there is a ridership value predicted
by previous BPNN model, and when the population is
20000, there is another ridership value predicted by previous
BPNN model, and so on. We can get 129 ridership values
corresponding to the changing population from 10000 to
320000 by 10000. We connect these ridership values to form
a curve line time of population value. The slope ratio of
this curve is contribution rate of population within 0-1 km
distance band to ridership. And the procedures are repeated
for contribution rate of population within 1-2 km, 2-3 km, 3-
4 km, 4-5 km, and 5-6 km distance band to ridership.

The results are shown in Figure 4. Figure 4 shows the
curve of contribution rate of population per distance band
to ridership. By (8), we get contribution rate of population
within 1-2 km, 2-3 km, 3-4 km, 4-5 km, and 5-6 km distance
band to ridership. The results are compared with actual
contribution rate of 129 stations by statistical analysis that
total ridership from special distance band of 129 stations
divided by total population within corresponding special
distance band of 129 stations.
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Table 6: MOEs of four models.

MRE SRE ARE MSRRE
Linear model with total population 2704 3.3 409 249
BPNN model with total population 3014 0.7 369 262
Linear model with population per distance band 1484 1.2 277 140
BPNN model with population per distance band 125 0.8 31 13

Table 7: Comparison of results from model and the real contribution rate.

0-1 km 1-2 km 2-3 km 3-4 km 4-5 km 5-6 km

Contribution rate
Result from model 0.161 0.069 0.0255 0.0098 0.0067 0.0059

Actual rate 0.19 0.07 0.033 0.012 0.009 0.0066
Relative error (%) 18.9 7.1 23.6 20.8 30 16.7
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Figure 4: Curve of contribution rate.

Table 7 shows results from the BPNN model and the
actual contribution rate are close. The relative error between
the BPNN mode and actual data ranged from 7.1% to 30%.
There are two possible explanations. The major one is that
the value of population per distance band of one station may
overlapwith adjacent stations. For example, “14201 inhabitant
zone” belongs to service area of both Kitami station and
Komae station in Tokyo, Japan. It is 1.7 km from Kitami
station and 1.8 km from Komae station. There are 14775
inhabitants in 14201-inhabitant zone. Potentially, some of
the people may choose Kitami station while others may
choose Komae station. However, in fact, population in 1-
2 km band of the two stations are both set as 14775 in
BPNNmodel, which leads to contribution rate of population
within 1-2 kmband to ridership decreasing.When calculating
actual contribution rate of population within 1-2 km band
to ridership, population within 1-2 km band of 129 stations
is added up, and population in overlapping areas of two
adjacent stations are just added once. Thus, actual rate is
greater than the results frommodel. Another possible reason
is that this paper sets the value of station type to 0 as the
background value. In fact, some stations are not terminal.
Population contribute less at nonterminal stations than at
terminal station to ridership. So the rate from the model is
smaller.

4. Conclusions

On the basis of previous researches, factors affecting URT
ridership at station level are summarized and identified. Key
factors are then obtained through partial correlation anal-
ysis, including population per distance band, road density,
number of shuttle bus lines, land-use mix, peak-hour train
frequency in one direction, and station type (terminal or not).

BPNN model is formulated to forecast ridership due to
the nonlinear relationship between ridership and its pre-
dictors. Input (factors affecting ridership)/output (ridership)
pattern sets of 117 stations inTokyo, Japan, are adapted to train
the model and data from other 12 stations are used to predict
for test. The result obtained from BPNN with population
per distance band is compared with that of BPNN with
total population, linear model with population per distance
band, and linear model with total population.TheMOEs, for
example, MRE, SRE, MRE, and MSRRE, are used to evaluate
the model and results show BPNN model with population
per distance band has the best performance. Since the model
can reflect the internal relationship between ridership and its
affecting factors, when one of factors varies, ridership can be
quickly and efficiently predicted.

Based on BPNN model, contribution rate model of pop-
ulation per distance band to ridership is constructed, when
setting other nonpopulation variables as background. Results
of the case study show the effectiveness of the model. When
population within special distance band changes, ridership
from this population can be calculated quickly and timely
by multiplying corresponding rate and population without
performing BPNN model once more. Explanations of the
relative errors are also presented.
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