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Asymptotic formulas for the generalized Stirling numbers of the second kind with integer and real parameters are obtained and
ranges of validity of the formulas are established.The generalizations of Stirling numbers considered here are generalizations along
the line of Hsu and Shuie’s unified generalization.

1. Introduction

Asymptotic formulas of the classical Stirling numbers have
been done by many authors like Temme [1], Moser, and
Wyman [2, 3] due to the importance of the formulas in
computing values of the numbers under consideration when
parameters become large. The Stirling numbers and their
generalization, on the other hand, are important due to their
applications in statistics, life science, and physics.

The (𝑟, 𝛽)-Stirling numbers [4], the 𝑟-Whitney numbers
of the second kind [5], and the numbers considered by
Ruciński and Voigt [6] are exactly the same numbers which
can be classified as generalization of the classical Stirling
numbers of the second kind.This generalization is in linewith
the generalization of Hsu and Shuie [7]. For brevity, we can
use 𝑆𝛽,𝑟(𝑛,𝑚) to denote these numbers.These numbers satisfy
the following exponential generating function:

1

𝛽𝑚 (𝑚!)
𝑒
𝑟𝑧
(𝑒
𝛽𝑧
− 1)
𝑚
=

∞

∑
𝑛=𝑚

𝑆𝛽,𝑟 (𝑛,𝑚)
𝑧𝑛

𝑛!
, (1)

where 𝑛 and𝑚 are positive integers. When 𝛽 = 1, (1) reduces
to a generating function of 𝑟-Stirling numbers [8] of the
second kind and further reduces to a generating function
of the classical Stirling numbers of the second when 𝑟 =
0. Combinatorial interpretation and probability distribution
involving 𝑆𝛽,𝑟(𝑛,𝑚) are discussed in [9].

The behavior of the numbers 𝑆𝛽,𝑟(𝑛,𝑚) was shown to be
asymptotically normal in [4, 6].That means that the distribu-
tion of these numbers when the parameters 𝑛 and𝑚 are large
will follow a bell-shaped distribution.The unimodality of this
distribution was also discussed in [4]. Moreover, the bound
for the index in which the maximum value of these numbers
occurs has been established in [10]. With these properties
of the numbers 𝑆𝛽,𝑟(𝑛,𝑚), it is necessary to consider the
asymptotic formula for the numbers 𝑆𝛽,𝑟(𝑛,𝑚) to be able to
compute large values of the numbers.

Applying Cauchy Integral Formula to (1), the following
integral representation is obtained:

𝑆𝛽,𝑟 (𝑛,𝑚) =
𝑛!

2𝜋𝑖𝛽𝑚 (𝑚!)
∫
𝐶

𝑒𝑟𝑧(𝑒𝛽𝑧 − 1)
𝑚

𝑧𝑛+1
𝑑𝑧, (2)

where 𝐶 is a circle about the origin.
The primary purpose of the present paper is to investigate

if the analysis in [3] can be extended to the generalized Stir-
ling numbers of the second kind. The authors are motivated
by the work of Chelluri et al. [11] which proved the asymptotic
equivalence of the formulas obtained by Temme [1] and those
obtained byMoser andWyman in [2, 3].Moreover, it was also
shown in [11] that the formulas obtained apply not only for
integral values of the parameters 𝑛 and𝑚, but for real values
as well. To be able to do a similar investigationwith that in [11]
for the generalized Stirling numbers of the first and second
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kinds, it is necessary to come upwith asymptotic formulas for
each kind generalized Stirling numbers which may have used
a method similar to that in [2, 3]. The necessary asymptotic
formulas for the generalized Stirling numbers of the first
kind can be found in [12, 13]. In this paper, an asymptotic
formula for the generalized Stirling numbers of the second
kind 𝑆𝛽,𝑟(𝑛,𝑚) with integral values of 𝑚 and 𝑛 are obtained
using a similar analysis as that in [3]. The formula is proved
to be valid when 𝑚 > (1/4)𝑛𝜇 and lim𝑛→∞(𝑛 − 𝑚) = ∞,
where 𝜇 = 𝑟/𝛽. Moreover, other asymptotic formulas are
obtained for 𝑆𝛽,𝑟(𝑛,𝑚), where 𝑛 and𝑚 are real numbers under
the conditions 𝑛 − 𝑚 ≥ 𝑛𝛼 and 𝑛 − 𝑚 ≥ 𝑛1/3.

2. Preliminary Results

The integral representation in (2) can be written in the form

𝑆𝛽,𝑟 (𝑛,𝑚) =
𝑛!

2𝜋𝑖𝛽𝑚−𝑛𝑚!
∫
𝐶

𝑒𝜇𝑤(𝑒𝑤 − 1)
𝑚

𝑤𝑛+1
𝑑𝑤, (3)

where 𝜇 = 𝑟/𝛽, 𝑤 = 𝛽𝑧.
Using the representation𝑤 = 𝑅𝑒𝑖𝜃, for the circle 𝐶, where

−𝜋 ≤ 𝜃 ≤ 𝜋 and 𝑅 is a positive real number, (3) becomes

𝑆𝛽,𝑟 (𝑛,𝑚) =
𝑛!

2𝜋𝛽𝑚−𝑛𝑅𝑛 (𝑚!)
∫
𝜋

−𝜋

𝑒𝜇𝑅𝑒
𝑖𝜃

(𝑒𝑅𝑒
𝑖𝜃

− 1)
𝑚

𝑒𝑖𝑛𝜃
𝑑𝜃. (4)

Multiplying and dividing the right-hand side of (4) by the
correction constant

(𝑒
𝑅
− 1)
𝑚
𝑒
𝜇𝑅
, (5)

it reduces to

𝑆𝛽,𝑟 (𝑛,𝑚) = 𝐴∫
𝜋

−𝜋
exp ℎ (𝜃, 𝑅) 𝑑𝜃, (6)

where

𝐴 =
𝑛!𝑒𝜇𝑅(𝑒𝑅 − 1)

𝑚

2𝜋𝛽𝑚−𝑛𝑅𝑛𝑚!
, (7)

and ℎ(𝜃, 𝑅) is the function,

ℎ (𝜃, 𝑅) = 𝜇𝑅𝑒
𝑖𝜃
+ 𝑚 log (𝑒𝑅𝑒

𝑖𝜃

− 1)

− 𝑚 log (𝑒𝑅 − 1) − 𝜇𝑅 − 𝑖𝑛𝜃.
(8)

Observe that ℎ(𝜃, 𝑅) can be written in the form

ℎ (𝜃, 𝑅) = 𝜇𝑅𝑒
𝑖𝜃
− 𝜇𝑅 + 𝑚𝑔 (𝜃, 𝑅) , (9)

where 𝑔(𝜃, 𝑅) is the same function 𝑔(𝜃, 𝑅)which appeared in
[14], except for the value of 𝑅.

The Maclaurin expansion of ℎ(𝜃, 𝑅) is

ℎ (𝜃, 𝑅) = 𝑖𝐵𝜃 + 𝑚𝑅𝐻(𝑖𝜃)
2
+ 𝑚

∞

∑
𝑘=3

𝐷𝑘 (𝑅) (𝑖𝜃)
𝑘
, (10)

where

𝐵 = 𝑅(𝜇 +
𝑚

1 − 𝑒−𝑅
) − 𝑛, (11)

𝐻 =
1

2
[
𝜇

𝑚
+
𝑒𝑅 (𝑒𝑅 − 𝑅 − 1)

(𝑒𝑅 − 1)
2

] , (12)

𝐷𝑘 (𝑅) =
𝜇𝑅

𝑘!𝑚
+
1

𝑘!
Δ
𝑘 log (𝑒𝑅 − 1) , (13)

where Δ is the operator 𝑅(𝑑/𝑑𝑅).

Lemma 1. There is a unique 0 < 𝑅 < 𝑛/𝑚 such that

𝑅(𝜇 +
𝑚

1 − 𝑒−𝑅
) − 𝑛 = 0. (14)

Proof. Equation (14) can be written in the form

𝑅(1 − 𝑒
−𝑅
)
−1
=
𝑛

𝑚
−
𝜇

𝑚
𝑅. (15)

Let 𝑓1(𝑅) = 𝑅(1 − 𝑒
−𝑅)
−1 and 𝑓2(𝑅) = 𝑛/𝑚 − (𝜇/𝑚)𝑅.

Note that 𝑓1(𝑅) is a continuous function on (0,∞) and
lim𝑅→∞𝑓1(𝑅) = ∞ while lim𝑅→0𝑓1(𝑅) = 1. On the other
hand, 𝑓2(𝑅) is a line with 𝑥 intercept at 𝑅 = 𝑛/𝜇 and 𝑦
intercept at 𝑓2(0) = 𝑛/𝑚 and is decreasing when 𝑚 and
𝜇 are positive real numbers. Thus, 𝑓1 and 𝑓2, as functions
of 𝑅, surely intersect at some point. The value of 𝑅 at the
intersection point is the desired solution. Moreover, it can be
seen graphically that 𝑅 < 𝑛/𝜇.

Lemma 2. 𝐻 defined in (12) obeys the inequalities

1

4
≤ 𝐻 ≤

1

2
+
𝜇

2
. (16)

Proof. This lemma follows from Lemma 2.2 in [3].

Lemma 3. There exists a constant𝑀 independent of 𝑘 and 𝑅
such that



𝐷𝑘 (𝑅)

𝑅


≤ 𝑀. (17)

Proof. 𝐷𝑘(𝑅) defined in (13) can be written as

𝐷𝑘 (𝑅) =
𝜇𝑅

𝑘!𝑚
+ 𝐶𝑘 (𝑅) , (18)

where 𝐶𝑘(𝑅) is the same as that defined in (16) in [3].
Dividing both sides of the preceding equation by𝑅 and taking
the absolute value, we have



𝐷𝑘 (𝑅)

𝑅


≤


𝜇

𝑘!𝑚


+


𝐶𝑘 (𝑅)

𝑅


. (19)

With 𝜇 a fixed parameter and 𝑚 → ∞ as 𝑛 → ∞ and
using Lemma 3.2 in [3], the desired result is obtained.

Define 𝜖 = (𝑚𝑅)−3/8 and consider the integral 𝐽 defined
by

𝐽 = ∫
𝜋

𝜖
exp ℎ (𝜃, 𝑅) 𝑑𝜃. (20)
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Lemma 4. A constant 𝑘 > 0 exists such that

|𝐽| ≤ 𝜋 exp (−𝑘(𝑚𝑅)1/4) . (21)

Proof. We claim that

|ℎ (𝜃, 𝑅)| ≤

(𝑒
𝑅𝑒𝑖𝜃
− 1)


⋅

(𝑒
𝑅
− 1)
−1

𝑚

. (22)

Using the definition of ℎ(𝜃, 𝑅) given by (9), we have

exp ℎ (𝜃, 𝑅)
 =

exp [𝜇𝑅 (𝑒𝑖𝜃 − 1)] ⋅



𝑒𝑅𝑒
𝑖𝜃

− 1

𝑒𝑅 − 1



𝑚

⋅

𝑒
−𝑖𝑛𝜃

.

(23)

Because |𝑒𝑖𝑛𝜃| = 1, it remains to show that | exp[𝜇𝑅(𝑒𝑖𝜃 −
1)]| ≤ 1.

Note that | exp[𝜇𝑅(𝑒𝑖𝜃−1)]| = 𝑒𝜇𝑅 cos 𝜃 ⋅𝑒−𝜇𝑅.The claim now
follows from the fact that −1 ≤ cos 𝜃 ≤ 1 and 𝜇𝑅 ≥ 0.

From (9),

ℎ (𝜃, 𝑅) = 𝜇𝑅 (𝑒
𝑖𝜃
− 𝜇𝑅) + 𝑚𝑔 (𝜃, 𝑅) . (24)

Thus,
exp ℎ (𝜃, 𝑅)

 =

exp [𝜇𝑅 (𝑒𝑖𝜃 − 1)]

exp𝑚𝑔 (𝜃, 𝑅)
 . (25)

The result now follows from the previous claim and the
fact that 𝑔(𝜃, 𝑅) is the same function 𝑔(𝜃, 𝑅) that appeared in
[3] except for the value of 𝑅.

Observe that when𝑚𝑅 → ∞ as 𝑛 → ∞, Lemma 4 will
imply that 𝐽 → 0 as 𝑛 → ∞. Indeed,𝑚𝑅 → ∞ as 𝑛 → ∞

under some conditions, as shown in the following lemma.

Lemma 5. 𝑚𝑅 → ∞ as 𝑛−𝑚 → ∞ provided𝑚 > (1/4)𝑛𝜇,
𝑛 > 4.

Proof. Write (14) in the form

𝑚𝑅

1 − 𝑒−𝑅
= 𝑛 − 𝜇𝑅. (26)

Now the application of the mean value theorem to the
function 𝑓(𝑅) = 1 − 𝑒−𝑅 over the interval (0, 𝑅) will yield

1 − 𝑒
−𝑅
= 𝑅𝑒
−𝜍
, (27)

where 𝜍 is a number within the interval (0, 𝑅). Then,
𝑚

𝑛 − 𝜇𝑅
= 𝑒
−𝜍
. (28)

Consequently,

1 − 𝑒
−𝑅
= 𝑅(

𝑚

𝑛 − 𝜇𝑅
) ,

1 −
𝑚𝑅

𝑛 − 𝜇𝑅
= 𝑒
−𝑅
≤ 𝑒
−𝜍
=

𝑚

𝑛 − 𝜇𝑅
,

1 −
𝑚𝑅

𝑛 − 𝜇𝑅
≤

𝑚

𝑛 − 𝜇𝑅
.

(29)

The last inequality will yield

𝑚𝑅 ≥ (𝑛 − 𝜇𝑅) − 𝑚, (30)

provided 𝑛 − 𝜇𝑅 > 0. The previous inequality can be written
in the form

𝑚𝑅 ≥ 𝑛 − (𝑚 − 𝜇𝑅) ≥ 𝑛 − (𝑚 +
𝑛𝜇

𝑚
) ≥ 𝑛 − (𝑚 + 4) , (31)

when 𝑚 ≥ (1/4)𝑛𝜇. The second inequality previous follows
if 𝑅 < 𝑛/𝑚. Indeed, 𝑅 < 𝑛/𝑚 when 𝑚 ≥ (1/4)𝑛𝜇 and
𝑛 > 4 because 𝑓1(𝑛/𝑚) > 𝑓2(𝑛/𝑚), where 𝑓1 and 𝑓2 are
the functions in the proof of Lemma 1. Hence, 𝑅 which
is the 𝑥-coordinate of the point of intersection of the two
functions must be less than 𝑛/𝑚. The last inequality shows
that𝑚𝑅 → ∞ as 𝑛 − 𝑚 → ∞ under the given restriction of
𝑚.

Returning to the condition that 𝑛 − 𝜇𝑅 > 0, note that
𝑅 < 𝑛/𝑚. Thus,

𝑛 − 𝜇𝑅 > 𝑛 − 𝜇
𝑛

𝑚
> 𝑛 − 4, (32)

under the restriction that 𝑚 ≥ (1/4)𝑛𝜇. So that 𝑛 − 𝜇𝑅 > 0
whenever 𝑛 > 4.

For example, when 𝑛 = 100 and 𝜇 = 4/7, 𝑚 in Lemma 5
must satisfy𝑚 ≥ (1/4)100(4/7) = 14.2857. Thus,𝑚 ≥ 15.

3. Asymptotic Formula with
Integral Parameters

In the discussion that follows, 𝑅 denotes the unique positive
solution to (14). It will be seen later that our final asymptotic
formula is expressed in terms of powers of 1/𝑚𝑅. Anticipat-
ing this result and in view of Lemma 4, we write

𝑆𝛽,𝑟 (𝑚, 𝑛) ∼ 𝐴∫
𝜖

−𝜖
exp ℎ (𝜃, 𝑅) 𝑑𝜃. (33)

Substituting (10) for ℎ(𝜃, 𝑅) and noting that𝐵(𝑅) = 0, (33)
becomes

𝑆𝛽,𝑟 (𝑛,𝑚) ∼ 𝐴∫
𝜖

−𝜖
exp[−𝑚𝑅𝐻𝜃2 + 𝑚

∞

∑
𝑘=3

𝐷𝑘 (𝑅) (𝑖𝜃)
𝑘
]𝑑𝜃.

(34)

The change of variable 𝜙 = (𝑚𝑅𝐻)1/2𝜃 will yield 𝑑𝜙 =
(𝑚𝑅𝐻)

1/2
𝑑𝜃,

𝜃 =
𝜙

(𝑚𝑅𝐻)
1/2
, 𝑑𝜃 =

𝑑𝜙

(𝑚𝑅𝐻)
1/2
. (35)

Now, (34) becomes

𝑆𝛽,𝑟 (𝑛,𝑚) ∼
𝐴

(𝑚𝑅𝐻)
1/2
∫
𝛼

−𝛼
𝑒
−𝜙2 exp [𝑓 (𝑧, 𝑅, 𝜙)] 𝑑𝜙, (36)

where 𝛼 = (𝑚𝑅𝐻)1/2𝜖, 𝑧 = (𝑚𝑅𝐻)−1/2,

𝑓 (𝑧, 𝑅, 𝜙) =

∞

∑
𝑘=1

𝐷𝑘+2 (𝑅)
(𝑖𝜙)
𝑘+2

𝑅𝐻(𝑘+2)/2
(𝑚𝑅)
−𝑘/2
. (37)
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The equation in (37) can be written in the from

𝑓 (𝑧, 𝑅, 𝜙) =

∞

∑
𝑘=1

𝑎𝑘𝑧
𝑘
, (38)

where

𝑎𝑘 = 𝐷𝑘+2 (𝑅)
(𝑖𝜙)
𝑘+2

𝑅𝐻(𝑘+2)/2
. (39)

Note here that 𝑧 = (𝑚𝑅)
−1/2 is within the radius of

convergence of the series in (38). On the other hand, the
Maclaurin series of exp𝑓(𝑧, 𝑅, 𝜙) is

𝑒
𝑓(𝑧,𝑅,𝜙)

=

∞

∑
𝑘=0

𝑏𝑘 (𝑅, 𝜙) 𝑧
𝑘
, (40)

where 𝑏2𝑘 is a polynomial in 𝜙 containing only even powers of
𝜙, and 𝑏2𝑘+1 is a polynomial in 𝜙 containing only odd powers
of 𝜙. Now, (36) can be written in the form

𝑆𝛽,𝑟 (𝑛,𝑚) ∼ 𝑄∫
𝛼

−𝛼
𝑒
−𝜙2
(

∞

∑
𝑘=0

𝑏𝑘 (𝑅, 𝜙) 𝑧
𝑘
)𝑑𝜙, (41)

where 𝑄 = 𝐴/√𝑚𝑅𝐻 and 𝑧 = (𝑚𝑅)−1/2.
We write (41) as

𝑆𝛽,𝑟 (𝑛,𝑚) ∼ 𝑄[

𝑠−1

∑
𝑘=0

𝑧
𝑘
(∫
𝛼

−𝛼
𝑒
−𝜙2
𝑏𝑘𝑑𝜙) + 𝑈𝑠] , (42)

where

𝑈𝑠 =

∞

∑
𝑘=𝑠

(∫
𝛼

−𝛼
𝑒
−𝜙2
𝑏𝑘𝑑𝜙) 𝑧

𝑘
. (43)

In view of Lemma 2,𝐻 ≥ 1/4; hence,

𝛼 = (𝑚𝑅𝐻)
1/2
𝜖 = (𝑚𝑅𝐻)

1/2
(𝑚𝑅)
−3/8

≥
(𝑚𝑅)
1/8

2
. (44)

Since 𝑏𝑘 is a polynomial in 𝜙, we can replace 𝛼 with ∞
in (41). Following the discussion in [3], it can be shown that
𝑈𝑠 = 𝑂(𝑧

𝑠); hence, we have the asymptotic formula

𝑆𝛽,𝑟 (𝑛,𝑚) ∼ 𝑄[

∞

∑
𝑘=0

(∫
∞

−∞
𝑒
−𝜙2
𝑏2𝑘𝑑𝜙) (𝑚𝑅)

−𝑘
] . (45)

Note that

∫
∞

−∞
𝑒
−𝜙2
𝑏2𝑘+1𝑑𝜙 = 0. (46)

This is why no odd subscript of 𝑏𝑘 appears in (45).
An approximation is obtained by taking the first two

terms of the sum in (45). Thus,

𝑆𝛽,𝑟 (𝑛,𝑚) ≈ 𝑄[∫
∞

−∞
𝑒
−𝜙2
𝑏0𝑑𝜙 + (𝑚𝑅)

−1
∫
∞

−∞
𝑒
−𝜙2
𝑏2𝑑𝜙] .

(47)

It can be computed that

𝑏0 = 1,

∫
∞

−∞
𝑒
−𝜙2
𝑑𝜙 = √𝜋,

𝑏2 = 𝑎2 (𝑅, 𝜙) +
1

2
[𝑎1 (𝑅, 𝜙)]

2
,

𝑎2 = 𝐷4 (𝑅)
(𝑖𝜙)
4

𝑅𝐻2
,

𝐷4 (𝑅) =
𝜇𝑅

24𝑚
+ 𝐶4 (𝑅) ,

(48)

where

𝐶4 (𝑅) =
1

24
[𝑅 + (𝑅 − 7𝑅

2
+ 6𝑅
3
− 𝑅
4
) (𝑒
𝑅
− 1)
−1
]

+
1

24
[(18𝑅

3
− 7𝑅
2
− 7𝑅
4
) (𝑒
𝑅
− 1)
−2

+ (12𝑅
3
− 12𝑅

4
) (𝑒
𝑅
− 1)
−3
]

−
1

24
[6𝑅
4
(𝑒
𝑅
− 1)
−4
] ,

(49)

while

𝑎1 (𝑅, 𝜙) = 𝐷3
(𝑖𝜙)
3

𝑅𝐻3/2
= (

𝜇𝑅

3!𝑚
+ 𝐶3)

(𝑖𝜙)
3

𝑅𝐻3/2
, (50)

where

𝐶3 =
1

6
[𝑅 + (𝑅 − 3𝑅

2
+ 𝑅
3
) (𝑒
𝑅
− 1)
−1

+ (3𝑅
3
− 3𝑅
2
) (𝑒
𝑅
− 1)
−2
]

+
1

6
[2𝑅
3
(𝑒
𝑅
− 1)
−3
] .

(51)

Thus, 𝑏2 can be written as follows:

𝑏2 = [
𝜇𝑅

24𝑚
+ 𝐶4]

𝜙4

𝑅𝐻2
−
1

2
(
𝜇𝑅

6𝑚
+ 𝐶3)

2 𝜙6

𝑅2𝐻3
. (52)

Let

𝐼 = ∫
∞

−∞
𝑒
−𝜙2
𝑏2𝑑𝜙. (53)
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Then,

𝐼 = ∫
∞

−∞
𝑒
−𝜙2 (𝜇𝑅/24𝑚 + 𝐶4)

𝑅𝐻2
𝜙
4
𝑑𝜙

−
1

2
∫
∞

−∞
𝑒
−𝜙2 (𝜇𝑅/6𝑚 + 𝐶3)

2

𝑅2𝐻3
𝜙
6
𝑑𝜙

=
𝜇𝑅/24𝑚 + 𝐶4

𝑅𝐻2
∫
∞

−∞
𝑒
−𝜙2
𝜙
4
𝑑𝜙

−
(𝜇𝑅/6𝑚 + 𝐶3)

2

2𝑅2𝐻3
∫
∞

−∞
𝑒
−𝜙2
𝜙
6
𝑑𝜙

=
𝜇𝑅/24𝑚 + 𝐶4

𝑅𝐻2
⋅
3√𝜋

4
−
(𝜇𝑅/6𝑚 + 𝐶3)

2

𝑅2𝐻3
⋅
15√𝜋

16
.

(54)

Finally, we obtain the approximation formula

𝑆𝛽,𝑟 (𝑛,𝑚) ≈
𝑛!

𝑚!

𝑒𝜇𝑅(𝑒𝑅 − 1)
𝑚

2𝛽𝑚−𝑛𝑅𝑛√𝜋𝑚𝑅𝐻
[1 +

𝐼

𝑚𝑅√𝜋
] . (55)

In view of Lemmas 4 and 5 and (33), the previous
asymptotic approximation is valid for 𝑚 ≥ (1/4)𝑛𝜇. The
formula obtained in the previous discussion is formally stated
in the following theorem.

Theorem 6. The formula

𝑆𝛽,𝑟 (𝑛,𝑚) ∼ 𝑄 [√𝜋 +
𝐼

𝑚𝑅
] (56)

behaves as an asymptotic approximation for the generalized
Stirling numbers of the second kind 𝑆𝛽,𝑟(𝑛,𝑚) with positive
integral parameters for 𝑚 > (1/4)𝑛𝜇, 𝑛 > 4 and such that
𝑛 − 𝑚 → ∞ as 𝑛 → ∞.

Table 1 displays the exact values and approximate values
for 𝑛 = 100, 𝑟 = 4, 𝛽 = 7. The exact values are obtained
using recurrence formula while the approximate values are
obtained using Theorem 6. In view of Lemma 5, the formula
is valid for𝑚 ≥ 15.

Values on the table affirm that the asymptotic formula in
Theorem 6 gives a good approximation for 𝑆7,4(100,𝑚)when
𝑚 ≥ 15.

4. Asymptotic Formula with Real Parameters

Recently, the (𝑟, 𝛽)-Stirling numbers for complex arguments
were defined in [15] parallel to the definition of Flajolet and
Prodinger as

𝑆𝛽,𝑟 (𝑥, 𝑦) =
𝑥!

𝑦!𝛽𝑦2𝜋𝑖
∫
H

𝑒
𝑟𝑧
(𝑒
𝛽𝑧
− 1)
𝑦 𝑑𝑧

𝑧𝑥+1
, (57)

where 𝑥! := Γ(𝑥 + 1) and H is a Hankel contour that
starts from −∞ below the negative axis surrounds the origin
counterclockwise and returns to−∞ in the half planeI𝑧 > 0.

Table 1

Exact value Approximate value Relative error
𝑆7,4(100, 5) 5.685 × 10152 6.335 × 10152 0.11428

𝑆7,4(100, 10) 7.728 × 10
171

8.169 × 10
171

0.05713

𝑆7,4(100, 15) 8.411 × 10
178 8.731 × 10178 0.03804

𝑆7,4(100, 30) 5.604 × 10
174 5.706 × 10174 0.01824

𝑆7,4(100, 60) 7.399 × 10
122

7.446 × 10
122

0.00641

𝑆7,4(100, 80) 1.275 × 10
70

1.279 × 10
70

0.00263

𝑆7,4(100, 90) 2.208 × 10
38 2.211 × 1038 0.00123

Note that by change of variable, say 𝑤 = 𝛽𝑧, we can express
𝑆𝛽,𝑟(𝑥, 𝑦) as follows:

𝑆𝛽,𝑟 (𝑥, 𝑦) = 𝛽
𝑥−𝑦

{{{

{{{

{

𝑥 +
𝑟

𝛽

𝑦 +
𝑟

𝛽

}}}

}}}

}𝑟/𝛽

, (58)

where

{
𝑥 + 𝑟

𝑦 + 𝑟
}
𝑟

=
𝑥!

𝑦!2𝜋𝑖
∫
H

𝑒
𝑟𝑧
(𝑒
𝑧
− 1)
𝑦 𝑑𝑧

𝑧𝑥+1
. (59)

The numbers { 𝑥+𝑟𝑦+𝑟 }𝑟 are certain generalization of 𝑟-
Stirling numbers of the second kind [8] in which the param-
eters involved are complex numbers. These numbers satisfy
the following properties.

Theorem 7. For nonnegative real number 𝑟, one has

{
𝑥 + 𝑟

𝑦 + 𝑟
}
𝑟

= {
𝑥 + 𝑟 − 1

𝑦 + 𝑟 − 1
}
𝑟

+ (𝑦 + 𝑟) {
𝑥 + 𝑟 − 1

𝑦 + 𝑟
}
𝑟

. (60)

Theorem 8. For nonnegative real numbers 𝑟 and 𝛽 and 𝑘 ∈ N,
one has

{
𝑥 + 𝑟

𝑘 + 𝑟
}
𝑟

=
1

𝑘!

𝑘

∑
𝑗=0

(−1)
𝑘−𝑗
(
𝑘

𝑗
) (𝑗 + 𝑟)

𝑥
. (61)

Furthermore, when 𝑘 = 𝑦, a complex number

{
𝑥 + 𝑟

𝑦 + 𝑟
}
𝑟

=
1

𝑦!

∞

∑
𝑗=0

(−1)
𝑦−𝑗
(
𝑦

𝑗
) (𝑗 + 𝑟)

𝑥
. (62)

The Bernoulli polynomial can be expressed using the
explicit formula in [16] and the first formula in Theorem 8,
with 𝑤 = 𝑟 and 𝑥 = 𝑛, as

𝐵𝑛 (𝑟) =

∞

∑
𝑘=0

(−1)
𝑘
𝑘!

𝑘 + 1
{
𝑛 + 𝑟

𝑘 + 𝑟
}
𝑟

. (63)

Moreover, it is known that, for 𝑛 = 1, 2, . . ., the Hurwitz
zeta function 𝜁(1 − 𝑛, 𝑥) = −𝐵𝑛(𝑥)/𝑛. Note that, as 𝑦 → 0,
(𝑦 − 1)! ∼ 1/𝑦. By Cauchy’s integral formula

{
𝑛 + 𝑟

𝑦 + 𝑟 − 1
}
𝑟

∼ 𝑦𝑛! [𝑧
𝑛+1
]
𝑒𝑟𝑧

𝑒𝑧 − 1
= 𝑦
𝐵𝑛+1 (𝑟)

𝑛 + 1
, (64)
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which further gives, using a result in [17], the following
relation:

[
𝑑

𝑑𝑦
{
𝑛 + 𝑟

𝑦 + 𝑟
}
𝑟

]
𝑦=−1

= −𝜁 (−𝑛, 𝑟)

=
𝑛!

2𝜋𝑖
∫
H

𝑒
𝑟𝑧
(𝑒
𝑧
− 1)
−1 𝑑𝑧

𝑧𝑛+1
.

(65)

An asymptotic formula for 𝑟-Stirling numbers of the
second kind was first considered by Corcino et al. in [14].
However, the formula only holds for integral arguments. In
this section, we are going to establish an asymptotic formula
for 𝑟-Stirling numbers of the second kind that will hold for
real arguments.

Consider the integral representation in (59) where |I𝑧| <
2𝜋. To see the analysis of Moser-Wyman applies to 𝑟-Stirling
numbers with real arguments 𝑥 and 𝑦, we deform the pathH
into the following contour: 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ 𝐶4 ∪ 𝐶5 where

(1) 𝐶1 is the line I𝑧 = −2𝜋 + 𝛿, 𝛿 > 0 andR𝑧 ≤ 𝜖, 𝜖 is a
small positive number;

(2) 𝐶2 is the line segmentR𝑧 = 𝜖, going from 𝜖+𝑖(𝛿−2𝜋)
to the circle |𝑧| = 𝑅;

(3) 𝐶5 and𝐶4 are the reflections in the real axis of 𝐶1 and
𝐶2, respectively; and

(4) 𝐶3 is the portion of the circle |𝑧| = 𝑅, meeting 𝐶2 and
𝐶4.

The new contour is 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ 𝐶4 ∪ 𝐶5 in the
counterclockwise sense. This idea of deforming the contour
H is also done in [11].

The integrals along 𝐶1, 𝐶2, 𝐶4, and 𝐶5 are seen to be

𝑂(
(2 + 𝜖)

𝑦

(2𝜋 − 𝛿)
𝑥) . (66)

Itwill also be shown that these integrals go to 0 as𝑥 → ∞

provided that 𝑥 − 𝑦 ≥ 𝑥𝛼 where 0 < 𝛼 < 1. To see this, we
consider 𝐶1. For the other contours, the estimate can be seen
similarly.

Note that for 𝑧 in 𝐶1, we can choose 𝛿 so that

[1 − (𝑒
R𝑧 cos (I𝑧))

−1
]
2

< 1. (67)

From this and the assumptions thatR𝑧 < 𝜖 and 𝜖 < 1, it
follows that

𝑒
𝑧
− 1
 ≤ 𝑒

R𝑧
< 𝜖 <

2 + 𝜖

2 − 𝜖
< 2 + 𝜖. (68)

Thus,
𝑒
𝑧
− 1

𝑦
< (2 + 𝜖)

𝑦
. (69)

Consequently,


∫
𝐶1

(𝑒𝑧 − 1)
𝑦

𝑧𝑥+1
𝑑𝑧


≤ ∫
𝐶1

(2 + 𝜖)
𝑦

(2𝜋 − 𝛿)
𝑥+1
|𝑑𝑧| , (70)

where ∫
𝐶1
|𝑑𝑧| is the length of 𝐶1. With 𝐶1 the horizontal line

I𝑧 = −2𝜋 + 𝛿, the length of 𝐶1 is a linear function of the real
part of 𝑧, given by

𝑙 (𝐶1) = lim
𝑡→∞

(𝜖 − 𝑡) . (71)

Hence, we have

∫
𝐶1

(𝑒𝑧 − 1)
𝑦

𝑧𝑥+1
𝑑𝑧


≤

(2 + 𝜖)
𝑦

(2𝜋 − 𝛿)
𝑥+1

lim
𝑡→∞

(𝜖 − 𝑡)

<
lim𝑡→∞ (𝜖 − 𝑡)
(2𝜋 − 𝛿)

𝑥−𝑦 .

(72)

The last inequality follows from the fact that 2+𝜖 < 2𝜋−𝛿.
With the condition that 𝑥 − 𝑦 ≥ 𝑥𝛼, 0 < 𝛼 < 1, and the fact
that 2𝜋 − 𝛿 > 𝑒, it follows that the integral along 𝐶1 goes to 0
as 𝑥 → ∞. Thus, we have

{
𝑥 + 𝑟

𝑦 + 𝑟
}
𝑟

∼
𝑥!

𝑦!

1

2𝜋𝑖
∫
𝐶3

𝑒𝑟𝑧(𝑒𝑧 − 1)
𝑦

𝑧𝑥+1
𝑑𝑧. (73)

Using the method of Moser and Wyman [3], we obtain
the following asymptotic formula.

Theorem 9. The 𝑟-Stirling numbers of the second kind with
real arguments 𝑥 and 𝑦 have the following asymptotic formula:

{
𝑥 + 𝑟

𝑦 + 𝑟
}
𝑟

=
𝑥!

𝑦!

𝑒𝑟𝑅(𝑒𝑅 − 1)
𝑦

2𝑅𝑥√𝜋𝑦𝑅𝐻
[1 + 𝑂(

1

𝑦
)] (74)

valid for 𝑥 − 𝑦 → ∞ as 𝑥 → ∞, provided that 𝑥 − 𝑦 ≥ 𝑥𝛼
with 0 < 𝛼 < 1, where

𝐻 =
𝑟

2𝑦
+
𝑒𝑅 (𝑒𝑅 − 𝑅 − 1)

2(𝑒𝑅 − 1)
2
, (75)

and 𝑅 is the unique positive solution to the equation

𝑤[𝑟 − 𝑦(1 − 𝑒
−𝑤
)
−1
] − 𝑥 = 0, (76)

as a function of 𝑤.

Chelluri et al. [11] has made a modification of Moser and
Wyman formula and analysis. Using this analysis of Chelluri,
we can restate Theorem 9 as follows.

Theorem 10. The 𝑟-Stirling numbers of the second kind with
real arguments 𝑥 and 𝑦 have the following asymptotic formula:

{
𝑥 + 𝑟

𝑦 + 𝑟
}
𝑟

=
𝑥!

𝑦!

𝑒𝑟𝑅(𝑒𝑅 − 1)
𝑦

2𝑅𝑥√𝜋𝑦𝑅𝐻
[1 + 𝑂(

1

𝑥
)] (77)

valid for 𝑥 − 𝑦 → ∞ as 𝑥 → ∞, provided that 𝑥 − 𝑦 ≥ 𝑥1/3,
where

𝐻 =
𝑟

2𝑦
+
𝑒𝑅 (𝑒𝑅 − 𝑅 − 1)

2(𝑒𝑅 − 1)
2
, (78)
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and 𝑅 is the unique positive solution to the equation

𝑤[𝑟 − 𝑦(1 − 𝑒
−𝑤
)
−1
] − 𝑥 = 0, (79)

as a function of 𝑤.

As noted in (58), the (𝑟, 𝛽)-Stirling numbers can be
obtained using the 𝑟-Stirling numbers of the second kind
for complex arguments 𝑥, 𝑦, 𝑟, and 𝛽. This implies, using
Theorems 9 and 10, the following asymptotic formulas which
agree with the formula in (55) for the integral values of 𝑥 and
𝑦.

Corollary 11. The (𝑟, 𝛽)-Stirling numbers with real arguments
𝑥 and 𝑦 have the following asymptotic formulas:

𝑆𝛽,𝑟 (𝑥, 𝑦) =
𝛽𝑥−𝑦𝑥!

𝑦!

𝑒𝑟𝑅/𝛽(𝑒𝑅 − 1)
𝑦

2𝑅𝑥√𝜋𝑦𝑅𝐻
[1 + 𝑂(

1

𝑦
)] (80)

provided that 𝑥 − 𝑦 ≥ 𝑥𝛼 with 0 < 𝛼 < 1, and

𝑆𝛽,𝑟 (𝑥, 𝑦) =
𝛽𝑥−𝑦𝑥!

𝑦!

𝑒𝑟𝑅/𝛽(𝑒𝑅 − 1)
𝑦

2𝑅𝑥√𝜋𝑦𝑅𝐻
[1 + 𝑂(

1

𝑥
)] (81)

provided that 𝑥 − 𝑦 ≥ 𝑥1/3, where

𝐻 =
𝑟

2𝛽𝑦
+
𝑒𝑅 (𝑒𝑅 − 𝑅 − 1)

2(𝑒𝑅 − 1)
2

(82)

and 𝑅 is the unique positive solution to the equation

𝑤[
𝑟

𝛽
− 𝑦(1 − 𝑒

−𝑤
)
−1
] − 𝑥 = 0 (83)

as a function of 𝑤.
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[5] I. Mező, “A new formula for the Bernoulli polynomials,” Results
in Mathematics, vol. 58, no. 3-4, pp. 329–335, 2010.
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