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A novel differential infectivity epidemic model with stage structure is formulated and studied. Under biological motivation, the
stability of equilibria is investigated by the global Lyapunov functions. Some novel techniques are applied to the global dynamics
analysis for the differential infectivity epidemic model. Uniform persistence and the sharp threshold dynamics are established; that
is, the reproduction number determines the global dynamics of the system. Finally, numerical simulations are given to illustrate
the main theoretical results.

1. Introduction

Mathematical model that reflects the characteristics of an
epidemic to some extent can help us to understand better
how the disease spreads in the community and can investigate
how changes in the various assumptions and parameter
values affect the course of epidemic. In [1], Hyman et al.
proposed a differential infectivity model that accounted for
differences in infectiousness between individuals during the
chronic stages and the correlation between viral loads and
rates of developing AIDS. They assumed that the susceptible
population was homogeneous and neglected variations in
susceptibility, risk behavior, and many other factors asso-
ciated with the dynamics of HIV spread. Ma et al. [2]
presented several differential infectivity epidemic models
under different assumptions.

In the real world, some epidemics, such as malaria,
dengue, fever, gonorrhea, and bacterial infections, may have
a different ability to transmit the infections in different ages.
For example, measles and varicella always occur in juveniles,
while it is reasonable to consider the disease transmission
in adult population such as typhus and diphtheria. In recent
years, epidemic models with stage structure have been stud-
ied in many papers [3–10].

In this paper, we formulate a differential infectivity
epidemic model with stage structure. The proof of global

stability of the endemic equilibrium utilizes a graph-
theoretical approach [11–22] to the method of Lyapunov
functions. Let 𝑆1 and 𝑆2 denote the immature susceptible and
mature susceptible populations, respectively. The infectious
population 𝐼 was subdivided into 𝑛 subgroups 𝐼1, 𝐼2, . . . , 𝐼𝑛.𝑝1𝑘 and𝑝2𝑘 denote the probabilities of an immature infectious
individual and a mature infectious individual enter subgroup𝑘, respectively, where ∑𝑛𝑘=1 𝑝1𝑘 = ∑𝑛𝑘=1 𝑝2𝑘 = 1. The disease
incidence in the 𝑘th subgroup can be calculated as∑2𝑖=1 𝑝𝑖𝑘∑𝑛𝑗=1 𝛽𝑖𝑗𝑆𝑖𝐺𝑗(𝐼𝑗), where 𝛽𝑖𝑗 is the transmission
coefficient between compartments 𝑆𝑖 and 𝐼𝑗. 𝐺𝑗(𝐼𝑗) includes
some special incidence functions in the literature. For
instance, 𝐺𝑗(𝐼𝑗) = 𝐼𝑗/(1 + 𝛼𝑗𝐼𝑗) (saturation effect). Since we
do not assume that recovered individuals return into the
susceptible class, the recovered class does not need to be
explicitly modeled. Then, we obtain the following model:

̇𝑆1 = 𝜑 (𝑆1) − 𝑛∑
𝑗=1

𝛽1𝑗𝑆1𝐺𝑗 (𝐼𝑗) − 𝑎𝑆1,
̇𝑆2 = 𝑎𝑆1 − 𝑛∑

𝑗=1

𝛽2𝑗𝑆2𝐺𝑗 (𝐼𝑗) − 𝑑2𝑆2,
̇𝐼𝑘 = 2∑
𝑖=1

𝑝𝑖𝑘 𝑛∑
𝑗=1

𝛽𝑖𝑗𝑆𝑖𝐺𝑗 (𝐼𝑗) − 𝑚𝑘𝐼𝑘, 𝑘 = 1, 2, . . . , 𝑛,
(1)
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where 𝜑(𝑆1) = 𝑏−𝑑1𝑆1 with 𝑏 being the recruitment constant
and 𝑑1 being the natural death rate. 𝑎 is the conversion rate
from an immature individual to a mature individual. 𝑑2 is the
natural death rate of the mature susceptible class. 𝑚𝑘 = 𝑑𝐼𝑘 +𝛾𝑘, where 𝑑𝐼𝑘 is the death rate of 𝐼 population in subgroup 𝑘
and 𝛾𝑘 is the recovery rate in the 𝑘th subgroup. All parameter
values are assumed to be nonnegative and 𝑏, 𝑎,𝑚𝑘, 𝑑1, 𝑑2 > 0.

The organization of this paper is as follows. In Section 2,
we prove somepreliminary results for system (1). In Section 3,
the main theorem of this paper is stated and proved. In
Section 4, numerical simulations which support our theoret-
ical analysis are given.

2. Preliminaries

We assume the following.
(A1) 𝐺𝑘 is continuous and Lipschitz on [0, +∞), 𝐺𝑘(𝑥)/𝑥

is nonincreasing on (0, +∞), and
𝛿𝑘 = lim
𝑥→0

𝐺𝑘 (𝑥)𝑥 > 0 exists. (2)

From our assumptions, it is clear that system (1) has
a unique solution for any given initial data (𝑆1(0), 𝑆2(0),𝐼1(0), . . . , 𝐼𝑛(0)) with 𝑆1(0) > 0, 𝑆2(0) > 0, and 𝐼𝑘(0) > 0
for 𝑘 = 1, 2, . . . , 𝑛 and the solution remains nonnegative. We
see that system (1) exits in a disease-free equilibrium 𝑃0 =(𝑆01, 𝑆02, 0, . . . , 0), where 𝑆02 = 𝑎𝑆01/𝑑2. Let 𝑚 = min{𝑑1, 𝑑2,𝑚1, . . . , 𝑚𝑛}. Then, we derive from (1) that the region,

Γ = {(𝑆1, 𝑆2, 𝐼1, . . . , 𝐼𝑛) ∈ R
𝑛+2
+ : 𝑆1 ≤ 𝑆01, 𝑆2 ≤ 𝑆02, 𝑆1

+ 𝑆2 + 𝑛∑
𝑘=1

𝐼𝑘 ≤ 𝑏𝑚} ,
(3)

is a forward invariant compact absorbing set with respect to
(1). Also let Γ∘ denote the interior of Γ. The next generation
matrix for system (1) is

Q fl [∑2𝑖=1 𝑝𝑖𝑘𝛽𝑖𝑗𝑆0𝑖 𝛿𝑗𝑚𝑘 ]
𝑛×𝑛

=
[[[[[[[[
[

∑2𝑖=1 𝑝𝑖1𝛽𝑖1𝑆0𝑖 𝛿1𝑚1 ⋅ ⋅ ⋅ ∑2𝑖=1 𝑝𝑖1𝛽𝑖𝑛𝑆0𝑖 𝛿𝑛𝑚1... d
...

∑2𝑖=1 𝑝𝑖𝑛𝛽𝑖1𝑆0𝑖 𝛿1𝑚𝑛 ⋅ ⋅ ⋅ ∑2𝑖=1 𝑝𝑖𝑛𝛽𝑖𝑛𝑆0𝑖 𝛿𝑛𝑚𝑛

]]]]]]]]
]
.

(4)

Then, we define the basic reproduction number as the
spectral radius of 𝑄, 𝑅0 = 𝜌(Q). A square matrix is said to be
reducible, if there is a permutation matrix 𝑃, such that 𝑃󸀠𝐴𝑃
is a block upper triangular matrix; otherwise it is irreducible.

3. Main Results

In the section, we will study the global asymptotical stability
of equilibria of system (1).

Theorem 1. Assume that (A1) holds and B = [∑2𝑖=1 𝑝𝑖𝑘𝛽𝑖𝑗] is
irreducible.

(1) If 𝑅0 ≤ 1, then 𝑃0 is globally asymptotically stable in Γ.
(2) If 𝑅0 > 1, then 𝑃0 is unstable and system (1) admits at

least one endemic equilibrium in Γ∘.
Proof. Let S = (𝑆1, 𝑆2), S0 = (𝑆01, 𝑆02), I = (𝐼1, 𝐼2, . . . , 𝐼𝑛), and
Q(S, I) = (∑2𝑖=1(𝑝𝑖𝑘𝛽𝑖𝑗𝑆𝑖𝐺𝑗(𝐼𝑗))/𝑚𝑘𝐼𝑗)𝑛×𝑛. Notice that B is
irreducible, and thenQ is also irreducible. Hence, there exists𝜔𝑘 > 0, 𝑘 = 1, 2, . . . , 𝑛, such that

(𝜔1, 𝜔2, . . . , 𝜔𝑛) 𝜌 (Q) = (𝜔1, 𝜔2, . . . , 𝜔𝑛)Q. (5)

Define 𝐿 = ∑𝑛𝑘=1(𝜔𝑘𝐼𝑘/𝑚𝑘). Then

𝐿̇ = 𝑛∑
𝑘=1

𝜔𝑘 [[
∑2𝑖=1 𝑝𝑖𝑘∑𝑛𝑗=1 𝛽𝑖𝑗𝑆𝑖𝐺𝑗 (𝐼𝑗)𝑚𝑘 − 𝐼𝑘]]

= (𝜔1, 𝜔2, . . . , 𝜔𝑛) [Q (S, I) I𝑇 − I𝑇]
≤ (𝜔1, 𝜔2, . . . , 𝜔𝑛) [QI𝑇 − I𝑇]
= [𝜌 (Q) − 1] (𝜔1, 𝜔2, . . . , 𝜔𝑛) I𝑇.

(6)

We see that the only compact invariant subset of the set where𝐿̇ = 0 is the singleton {𝑃0}. By LaSalle’s Invariance Principle,𝑃0 is globally asymptotically stable in Γ if 𝑅0 ≤ 1.
If 𝑅0 > 1, by continuity, we obtain that 𝐿̇ = (𝜔1, 𝜔2, . . . ,𝜔𝑛)[Q(S, I)I𝑇 − I𝑇] > 0 in a neighborhood of 𝑃0 in Γ∘. This

implies that 𝑃0 is unstable. From a uniform persistence result
of [23] and a similar argument as in the proof of Proposition3.3 of [24], we can deduce that the instability of 𝑃0 implies
the uniform persistence of system (1) in Γ∘. This together
with the uniform boundedness of solutions of system (1) in Γ∘
implies that system (1) has an endemic equilibrium in Γ∘ (see
Theorem 2.8.6 of [25] or Theorem D.3 of [26]). The proof is
completed.

ByTheorem 1, we have the idea that if B = [∑2𝑖=1 𝑝𝑖𝑘𝛽𝑖𝑗] is
irreducible, (A1) holds and 𝑅0 > 1, and then system (1) exists
in endemic equilibrium𝑃∗ in Γ∘. Let𝑃∗ = (𝑆∗1 , 𝑆∗2 , 𝐼∗1 , . . . , 𝐼∗𝑛 ),
and then the components of 𝑃∗ satisfy

𝜑 (𝑆∗1 ) = 2∑
𝑖=1

𝑛∑
𝑗=1

𝛽𝑖𝑗𝑆∗𝑖 𝐺𝑗 (𝐼∗𝑗 ) + 𝑑2𝑆∗2 , (7)

𝑎𝑆∗1 = 𝑛∑
𝑗=1

𝛽2𝑗𝑆∗2𝐺𝑗 (𝐼∗𝑗 ) + 𝑑2𝑆∗2 , (8)

2∑
𝑖=1

𝑝𝑖𝑘 𝑛∑
𝑗=1

𝛽𝑖𝑗𝑆∗𝑖 𝐺𝑗 (𝐼∗𝑗 ) = 𝑚𝑘𝐼∗𝑘 . (9)

Since 𝜑 is strictly decreasing on [0, +∞), we have
[𝜑 (𝑆1) − 𝜑 (𝑆∗1 )] (𝑝1𝑘 − 𝑝1𝑘𝑆∗1𝑆1 ) ≤ 0. (10)
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For convenience of notations, set

𝛽𝑘𝑗 = 2∑
𝑖=1

𝑝𝑖𝑘𝛽𝑖𝑗𝑆∗𝑖 𝐺𝑗 (𝐼∗𝑗 ) , 1 ≤ 𝑘, 𝑗 ≤ 𝑛,

𝐵 =
[[[[[[[[[[
[

∑
𝑙 ̸=1

𝛽1𝑙 −𝛽21 ⋅ ⋅ ⋅ −𝛽𝑛1
−𝛽12 ∑

𝑙 ̸=2

𝛽2𝑙 ⋅ ⋅ ⋅ −𝛽𝑛2
... ... d

...
−𝛽1𝑛 −𝛽2𝑛 ⋅ ⋅ ⋅ ∑

𝑙 ̸=𝑛

𝛽𝑛𝑙

]]]]]]]]]]
]

.
(11)

Then, 𝐵 is also irreducible. It follows from Lemma 2.1 of [11]
that the solution space of linear system,

𝐵k = 0, (12)

has dimension 1, with a basis

k fl (V1, V2, . . . , V𝑛)𝑇 = (𝑐1, 𝑐2, . . . , 𝑐𝑛)𝑇 , (13)

where 𝑐𝑘 denotes the cofactor of the 𝑘th diagonal entry of 𝐵.
Note that from (12) we have

𝑛∑
𝑗=1

𝐵𝑘𝑗V𝑘 = 𝑛∑
𝑗=1

𝐵𝑗𝑘V𝑗, 𝑘 = 1, 2, . . . , 𝑛. (14)

From (14), we have
𝑛∑
𝑘=1

V𝑘
𝑛∑
𝑗=1

2∑
𝑖=1

𝑝𝑖𝑘𝛽𝑖𝑗𝑆∗𝑖 𝐺𝑗 (𝐼𝑗) = 𝑛∑
𝑘,𝑗=1

2∑
𝑖=1

𝑝𝑖𝑗𝛽𝑖𝑘𝑆∗𝑖 V𝑗𝐺𝑘 (𝐼𝑘)

= 𝑛∑
𝑘=1

[
[
𝑛∑
𝑗=1

2∑
𝑖=1

𝑝𝑖𝑗𝛽𝑖𝑘𝑆∗𝑖 𝐺𝑘 (𝐼∗𝑘 ) V𝑗]]
𝐺𝑘 (𝐼𝑘)𝐺𝑘 (𝐼∗𝑘 )

= 𝑛∑
𝑘=1

[
[
𝑛∑
𝑗=1

(𝛽𝑗𝑘V𝑗)]]
𝐺𝑘 (𝐼𝑘)𝐺𝑘 (𝐼∗𝑘 )

= 𝑛∑
𝑘=1

[
[
𝑛∑
𝑗=1

(𝛽𝑘𝑗V𝑘)]]
𝐺𝑘 (𝐼𝑘)𝐺𝑘 (𝐼∗𝑘 )

= 𝑛∑
𝑘=1

V𝑘
𝑛∑
𝑗=1

2∑
𝑖=1

𝑝𝑖𝑘𝛽𝑖𝑗𝑆∗𝑖 𝐺𝑗 (𝐼∗𝑗 ) 𝐺𝑘 (𝐼𝑘)𝐺𝑘 (𝐼∗𝑘 ) .

(15)

We further make the following assumption.
(A2) 𝐺𝑘 is strictly increasing on [0, +∞), and
𝐺𝑘 (𝑥𝑘) 𝐼𝑘𝐺𝑘 (𝐼𝑘) 𝑥𝑘 +

𝐺𝑘 (𝐼𝑘)𝐺𝑘 (𝑥𝑘) −
𝐼𝑘𝑥𝑘 ≤ 1, 𝑘 = 1, 2, . . . , 𝑛, (16)

where 𝑥𝑘 > 0 is chosen in an arbitrary way and equality holds
if 𝐼𝑘 = 𝑥𝑘.
Theorem 2. Assume that (A1) and (A2) hold, ∑𝑛𝑘=1 V𝑘(𝑝1𝑘 −𝑝2𝑘) ≥ 0, and B = [∑2𝑖=1 𝑝𝑖𝑘𝛽𝑖𝑗] is irreducible. If 𝑅0 > 1, then𝑃∗ is globally asymptotically stable in Γ∘ and thus is the unique
endemic equilibrium.

Proof. Consider a Lyapunov functional

𝑉 = 𝑛∑
𝑘=1

V𝑘 [ 2∑
𝑖=1

𝑝𝑖𝑘 (𝑆𝑖 − 𝑆∗𝑖 − 𝑆∗𝑖 ln 𝑆𝑖𝑆∗𝑖 )
+ ∫𝐼𝑘
𝐼∗
𝑘

𝐺𝑘 (𝑥) − 𝐺𝑘 (𝐼∗𝑘 )𝐺𝑘 (𝑥) 𝑑𝑥] .
(17)

Differentiating 𝑉 along the solution of system (1), we obtain

𝑉̇ = 𝑛∑
𝑘=1

V𝑘
{{{𝑝1𝑘 [𝜑 (𝑆1) − 𝑎𝑆1] + 𝑝2𝑘 [𝑎𝑆1 − 𝑑2𝑆2]

− 𝑚𝑘𝐼𝑘 − 𝑝1𝑘𝑆∗1𝑆1 [
[𝜑 (𝑆1) −

𝑛∑
𝑗=1

𝛽1𝑗𝑆1𝐺𝑗 (𝐼𝑗) − 𝑎𝑆1]]
− 𝑝2𝑘𝑆∗2𝑆2 [

[𝑎𝑆1 −
𝑛∑
𝑗=1

𝛽2𝑗𝑆2𝐺𝑗 (𝐼𝑗) − 𝑑2𝑆2]]
− 𝐺𝑘 (𝐼∗𝑘 )𝐺𝑘 (𝐼𝑘) [[

2∑
𝑖=1

𝑝𝑖𝑘 𝑛∑
𝑗=1

𝛽𝑖𝑗𝑆𝑖𝐺𝑗 (𝐼𝑗) − 𝑚𝑘𝐼𝑘]]
}}}

= 𝑛∑
𝑘=1

V𝑘
{{{𝜑 (𝑆1) (𝑝1𝑘 −

𝑝1𝑘𝑆∗1𝑆1 )

+ 𝑑2𝑆∗2 (𝑝2𝑘 − 𝑝2𝑘𝑆2𝑆∗2 ) + 2∑
𝑖=1

𝑝𝑖𝑘 𝑛∑
𝑗=1

𝛽𝑖𝑗𝑆∗𝑖 𝐺𝑗 (𝐼𝑗)
+ 𝑚𝑘𝐺𝑘 (𝐼∗𝑘 ) 𝐼𝑘𝐺𝑘 (𝐼𝑘) − 𝑚𝑘𝐼𝑘
+ 𝑎𝑆∗1 [𝑝1𝑘 − 𝑝1𝑘𝑆1𝑆∗1 + 𝑝2𝑘𝑆1𝑆∗1 − 𝑝2𝑘𝑆1𝑆∗2𝑆∗1 𝑆2 ]
− 𝐺𝑘 (𝐼∗𝑘 )𝐺𝑘 (𝐼𝑘) [[

2∑
𝑖=1

𝑝𝑖𝑘 𝑛∑
𝑗=1

𝛽𝑖𝑗𝑆𝑖𝐺𝑗 (𝐼𝑗)]]
}}} .

(18)

From (7), we know that

𝜑 (𝑆∗1 ) (𝑝1𝑘 − 𝑝1𝑘𝑆∗1𝑆1 )
= ( 2∑
𝑖=1

𝑛∑
𝑗=1

𝛽𝑖𝑗𝑆∗𝑖 𝐺𝑗 (𝐼∗𝑗 ) + 𝑑2𝑆∗2)(𝑝1𝑘 − 𝑝1𝑘S∗1𝑆1 ) .
(19)
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It follows from (8), (9), and (19) that

𝑉̇ = 𝑛∑
𝑘=1

V𝑘
{{{[𝜑 (𝑆1) − 𝜑 (𝑆

∗
1 )] (𝑝1𝑘 − 𝑝1𝑘𝑆∗1𝑆1 )

+ 𝑑2𝑆∗2 (𝑝2𝑘 − 𝑝2𝑘𝑆2𝑆∗2 ) + 2∑
𝑖=1

𝑝𝑖𝑘𝛽𝑖𝑗𝑆∗𝑖𝑗𝐺𝑗 (𝐼∗𝑗 )

⋅ (𝐺𝑘 (𝐼∗𝑘 ) 𝐼𝑘𝐺𝑘 (𝐼𝑘) 𝐼∗𝑘 +
𝐺𝑗 (𝐼𝑗)𝐺𝑗 (𝐼∗𝑗 ) −

𝐼𝑘𝐼∗
𝑘

)
+ 𝑛∑
𝑗=1

𝛽1𝑗𝑆∗1𝐺𝑗 (𝐼∗𝑗 ) (𝑝1𝑘 − 𝑝1𝑘𝑆∗1𝑆1 )

+ (𝑑2𝑆∗2 + 𝑛∑
𝑗=1

𝛽2𝑗𝑆∗2𝐺𝑗 (𝐼∗𝑗 ))
⋅ [2𝑝1𝑘 − 𝑝1𝑘𝑆∗1𝑆1 − 𝑝1𝑘𝑆1𝑆∗1 + 𝑝2𝑘𝑆1𝑆∗1 − 𝑝2𝑘𝑆1𝑆∗2𝑆∗1 𝑆2 ]
− 𝐺𝑘 (𝐼∗𝑘 )𝐺𝑘 (𝐼𝑘) [[

2∑
𝑖=1

𝑝𝑖𝑘 𝑛∑
𝑗=1

𝛽𝑖𝑗𝑆𝑖𝐺𝑗 (𝐼𝑗)]]
}}} .

(20)

From (10), (15), and (16), we obtain

𝑉̇ ≤ 𝑛∑
𝑘=1

V𝑘
{{{𝑑2𝑆
∗
2 (𝑝2𝑘 − 𝑝2𝑘𝑆2𝑆∗2 ) + 2∑

𝑖=1

𝑝𝑖𝑘𝛽𝑖𝑗𝑆∗𝑖𝑗𝐺𝑗 (𝐼∗𝑗 )

+ 𝑛∑
𝑗=1

𝛽1𝑗𝑆∗1𝐺𝑗 (𝐼∗𝑗 ) (𝑝1𝑘 − 𝑝1𝑘𝑆∗1𝑆1 ) + (𝑑2𝑆∗2
+ 𝑛∑
𝑗=1

𝛽2𝑗𝑆∗2𝐺𝑗 (𝐼∗𝑗 ))[2𝑝1𝑘 − 𝑝1𝑘𝑆∗1𝑆1 − 𝑝1𝑘𝑆1𝑆∗1
+ 𝑝2𝑘𝑆1𝑆∗1 − 𝑝2𝑘𝑆1𝑆∗2𝑆∗1 𝑆2 ] − 𝐺𝑘 (𝐼∗𝑘 )𝐺𝑘 (𝐼𝑘) [[

2∑
𝑖=1

𝑝𝑖𝑘

⋅ 𝑛∑
𝑗=1

𝛽𝑖𝑗𝑆𝑖𝐺𝑗 (𝐼𝑗)]]
}}} = 𝑛∑
𝑘=1

V𝑘
{{{𝑑2𝑆
∗
2 (𝑝2𝑘 + 2𝑝1𝑘

− 𝑝1𝑘𝑆∗1𝑆1 − 𝑝1𝑘𝑆1𝑆∗1 + 𝑝2𝑘𝑆1𝑆∗1 − 𝑝2𝑘𝑆1𝑆∗2𝑆∗1 𝑆2 − 𝑝2𝑘𝑆2𝑆∗2 )
+ 𝑛∑
𝑗=1

𝛽2𝑗𝑆∗2𝐺𝑗 (𝐼∗𝑗 )
⋅ [2𝑝1𝑘 + 𝑝2𝑘 − 𝑝1𝑘𝑆∗1𝑆1 − 𝑝1𝑘𝑆1𝑆∗1 + 𝑝2𝑘𝑆1𝑆∗1 − 𝑝2𝑘𝑆1𝑆∗2𝑆∗1 𝑆2 ]
+ 𝑛∑
𝑗=1

𝛽1𝑗𝑆∗1𝐺𝑗 (𝐼∗𝑗 ) (2𝑝1𝑘 − 𝑝1𝑘𝑆∗1𝑆1 )

− 𝐺𝑘 (𝐼∗𝑘 )𝐺𝑘 (𝐼𝑘) [[
2∑
𝑖=1

𝑝𝑖𝑘 𝑛∑
𝑗=1

𝛽𝑖𝑗𝑆𝑖𝐺𝑗 (𝐼𝑗)]]
}}} = − 𝑛∑

𝑘=1

V𝑘 (𝑝1𝑘

− 𝑝2𝑘)(𝑑2𝑆∗2 + 𝑛∑
𝑗=1

𝛽2𝑗𝑆∗2𝐺𝑗 (𝐼∗𝑗 ))(𝑆∗1𝑆1 +
𝑆1𝑆∗1 )

+ 𝑛∑
𝑘=1

V𝑘
{{{𝑑2𝑆
∗
2 [𝑝2𝑘 + 2𝑝1𝑘

− 𝑝2𝑘 (𝑆∗1𝑆1 +
𝑆1𝑆∗2𝑆∗1 𝑆2 +

𝑆2𝑆∗2 )] +
𝑛∑
𝑗=1

𝛽2𝑗𝑆∗2𝐺𝑗 (𝐼∗𝑗 )[[2𝑝1𝑘

+ 𝑝2𝑘 − 𝑝2𝑘(𝑆∗1𝑆1 +
𝑆1𝑆∗2𝑆∗1 𝑆2 +

𝑆2𝐺𝑘 (𝐼∗𝑘 )G𝑗 (𝐼𝑗)𝑆∗2𝐺𝑘 (𝐼𝑘) 𝐺𝑗 (𝐼∗𝑗 ))]]
+ 𝑛∑
𝑗=1

𝛽1𝑗𝑆∗1𝐺𝑗 (𝐼∗𝑗 )

⋅ [[2𝑝1𝑘 − 𝑝1𝑘(
𝑆∗1𝑆1 +

𝑆1𝐺𝑘 (𝐼∗𝑘 ) 𝐺𝑗 (𝐼𝑗)𝑆∗1𝐺𝑘 (𝐼𝑘) 𝐺𝑗 (𝐼∗𝑗 ))]]
}}} š 𝐵1.

(21)

By∑𝑛𝑘=1 V𝑘(𝑝1𝑘−𝑝2𝑘) ≥ 0 and the arithmetic-geometricmean,
we easily see that

𝐵1 ≤ − 𝑛∑
𝑘=1

V𝑘 (2𝑝1𝑘 − 2𝑝2𝑘)(𝑑2𝑆∗2

+ 𝑛∑
𝑗=1

𝛽2𝑗𝑆∗2𝐺𝑗 (𝐼∗𝑗 )) + 𝑛∑
𝑘=1

V𝑘
{{{{{
𝑑2𝑆∗2 [𝑝2𝑘 + 2𝑝1𝑘

− 3𝑝2𝑘] + 𝑛∑
𝑗=1

𝛽2𝑗𝑆∗2𝐺𝑗 (𝐼∗𝑗 )

⋅ [[
[
2𝑝1𝑘 + 𝑝2𝑘 − 3𝑝2𝑘 [[

𝐺𝑘 (𝐼∗𝑘 ) 𝐺𝑗 (𝐼𝑗)𝐺𝑘 (𝐼𝑘) 𝐺𝑗 (𝐼∗𝑗 )]]
1/3]]
]

+ 𝑛∑
𝑗=1

𝛽1𝑗𝑆∗1𝐺𝑗 (𝐼∗𝑗 )

⋅ [[
[
2𝑝1𝑘 − 2𝑝1𝑘 [[

𝐺𝑘 (𝐼∗𝑘 ) 𝐺𝑗 (𝐼𝑗)𝐺𝑘 (𝐼𝑘) 𝐺𝑗 (𝐼∗𝑗 )]]
1/2]]
]
}}}}}

= 𝑛∑
𝑘=1

V𝑘
{{{{{
𝑛∑
𝑗=1

𝛽2𝑗𝑆∗2𝐺𝑗 (𝐼∗𝑗 )[[[
3𝑝2𝑘
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− 3𝑝2𝑘 [[
𝐺𝑘 (𝐼∗𝑘 ) 𝐺𝑗 (𝐼𝑗)𝐺𝑘 (𝐼𝑘) 𝐺𝑗 (𝐼∗𝑗 )]]

1/3]]
]
+ 𝑛∑
𝑗=1

𝛽1𝑗𝑆∗1𝐺𝑗 (𝐼∗𝑗 )

⋅ [[
[
2𝑝1𝑘 − 2𝑝1𝑘 [[

𝐺𝑘 (𝐼∗𝑘 ) 𝐺𝑗 (𝐼𝑗)𝐺𝑘 (𝐼𝑘) 𝐺𝑗 (𝐼∗𝑗 )]]
1/2]]
]
}}}}}

š 𝐵2.
(22)

We can rewrite 𝐵2 as

𝐵2 = 𝑛∑
𝑘=1

V𝑘
{{{{{
3 𝑛∑
𝑗=1

𝑝2𝑘𝛽2𝑗𝑆∗2𝐺𝑗 (𝐼∗𝑗 )

⋅ [[
[
1 − [[

𝐺𝑘 (𝐼∗𝑘 ) 𝐺𝑗 (𝐼𝑗)𝐺𝑘 (𝐼𝑘) 𝐺𝑗 (𝐼∗𝑗 )]]
1/3

+ ln[[
𝐺𝑘 (𝐼∗𝑘 ) 𝐺𝑗 (𝐼𝑗)𝐺𝑘 (𝐼𝑘) 𝐺𝑗 (𝐼∗𝑗 )]]

1/3]]
]

+ 2 𝑛∑
𝑗=1

𝑝1𝑘𝛽1𝑗𝑆∗1𝐺𝑗 (𝐼∗𝑗 )

⋅ [[
[
1 − [[

𝐺𝑘 (𝐼∗𝑘 ) 𝐺𝑗 (𝐼𝑗)𝐺𝑘 (𝐼𝑘) 𝐺𝑗 (𝐼∗𝑗 )]]
1/2

+ ln[[
𝐺𝑘 (𝐼∗𝑘 ) 𝐺𝑗 (𝐼𝑗)𝐺𝑘 (𝐼𝑘) 𝐺𝑗 (𝐼∗𝑗 )]]

1/2]]
]

− 2∑
𝑖

𝑛∑
𝑗=1

𝑝𝑖𝑘𝛽𝑖𝑗𝑆∗𝑖 𝐺𝑗 (𝐼∗𝑗 ) ln[[
𝐺𝑘 (𝐼∗𝑘 ) 𝐺𝑗 (𝐼𝑗)𝐺𝑘 (𝐼𝑘) 𝐺𝑗 (𝐼∗𝑗 )]]

}}}}}
.

(23)

Using the fact that 1 − 𝑥 + ln𝑥 ≤ 0, where equality holds if
only if 𝑥 = 1, we obtain
𝐵2
≤ − 𝑛∑
𝑘=1

V𝑘
2∑
𝑖

𝑛∑
𝑗=1

𝑝𝑖𝑘𝛽𝑖𝑗𝑆∗𝑖 𝐺𝑗 (𝐼∗𝑗 ) ln[[
𝐺𝑘 (𝐼∗𝑘 ) 𝐺𝑗 (𝐼𝑗)𝐺𝑘 (𝐼𝑘) 𝐺𝑗 (𝐼∗𝑗 )]]

= 𝑛∑
𝑘,𝑗=1

V𝑘𝛽𝑘𝑗 ln 𝐺𝑘 (𝐼𝑘) 𝐺𝑗 (𝐼
∗
𝑗 )𝐺𝑘 (𝐼∗𝑘 ) 𝐺𝑗 (𝐼𝑗) .

(24)

In the following, we will show that

𝐻𝑛 fl 𝑛∑
𝑘,𝑗=1

V𝑘𝛽𝑘𝑗 ln 𝐺𝑘 (𝐼𝑘) 𝐺𝑗 (𝐼
∗
𝑗 )𝐺𝑘 (𝐼∗𝑘 ) 𝐺𝑗 (𝐼𝑗) ≡ 0. (25)

We first give the proof of (25) for 𝑛 = 2, which would give a
reader the basic yet clear ideas without being hidden by the
complexity of terms caused by larger values of 𝑛. When 𝑛 = 2,
we have 𝐻2 = ∑2𝑘,𝑗=1 V𝑘𝛽𝑘𝑗 ln(𝐺𝑘(𝐼𝑘)𝐺𝑗(𝐼∗𝑗 )/𝐺𝑘(𝐼∗𝑘 )𝐺𝑗(𝐼𝑗)).

Formula (13) gives V1 = 𝛽21 and V2 = 𝛽12 in this case.
Expanding𝐻2 yields
𝐻2
= 𝛽21𝛽11 ln 𝐺1 (𝐼1) 𝐺1 (𝐼∗1 )𝐺1 (𝐼∗1 ) 𝐺1 (𝐼1)
+ 𝛽12𝛽22 ln 𝐺2 (𝐼2) 𝐺2 (𝐼∗2 )𝐺2 (𝐼∗2 ) 𝐺2 (𝐼2)
+ 𝛽21𝛽12 ln 𝐺1 (𝐼1) 𝐺2 (𝐼∗2 )𝐺1 (𝐼∗1 ) 𝐺2 (𝐼2)
+ 𝛽12𝛽21 ln 𝐺2 (𝐼2) 𝐺1 (𝐼∗1 )𝐺2 (𝐼∗2 ) 𝐺1 (𝐼1)

= 𝛽12𝛽21 [ln 𝐺1 (𝐼1) 𝐺2 (𝐼∗2 )𝐺1 (𝐼∗1 ) 𝐺2 (𝐼2) + ln
𝐺2 (𝐼2) 𝐺1 (𝐼∗1 )𝐺2 (𝐼∗2 ) 𝐺1 (𝐼1)]

= 0.

(26)

For more general 𝑛, by a similar argument as in the
proof of ∑𝑛𝑘,𝑗=1 V𝑘𝛽𝑘𝑗 ln(𝐸∗𝑘𝐸𝑗/𝐸𝑘𝐸∗𝑗 ) ≡ 0 in [16], we obtain∑𝑛𝑘,𝑗=1 V𝑘𝛽𝑘𝑗 ln(𝐺𝑘(𝐼𝑘)𝐺𝑗(𝐼∗𝑗 )/𝐺𝑘(𝐼∗𝑘 )𝐺𝑗(𝐼j)) ≡ 0.

From (21), (22), and (24), we see that if 𝑉̇ = 0, then
𝑆𝑖 = 𝑆∗𝑖 , 𝑖 = 1, 2. (27)

If (27) holds, it follows from (1) that

0 = 𝜑 (𝑆∗1 ) − 𝑛∑
𝑗=1

𝛽1𝑗𝑆∗1𝐺𝑗 (𝐼𝑗) − 𝑎𝑆∗1 ,

0 = 𝑎𝑆∗1 − 𝑛∑
𝑗=1

𝛽2𝑗𝑆∗2𝐺𝑗 (𝐼𝑗) − 𝑑2𝑆∗2 .
(28)

Then, we obtain that

̇𝐼𝑘 = 𝑝1𝑘 (𝜑 (𝑆∗1 ) − 𝑎𝑆∗1 ) + 𝑝2𝑘 (𝑎𝑆∗1 − 𝑑2𝑆∗2 ) − 𝑚𝑘𝐼𝑘,
𝑘 = 1, 2, . . . , 𝑛. (29)

This implies that

lim
𝑡→+∞

𝐼𝑘 = 𝑝1𝑘 (𝜑 (𝑆∗1 ) − 𝑎𝑆∗1 ) + 𝑝2𝑘 (𝑎𝑆∗1 − 𝑑2𝑆∗2 )𝑚𝑘
= 𝐼∗𝑘 .

(30)

By the characteristics of𝑉, we obtain the idea that the largest
invariant subset of the set where 𝑉̇ = 0 is the singleton {𝑃∗}.
By LaSalle’s Invariance Principle,𝑃∗ is globally asymptotically
stable for 𝑅0 > 1. This completes the proof.
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Figure 1: Dynamical behavior of system (31) with parameter values in (32) and Case 1. 𝑅0 ≈ 0.55. The initial conditions are 𝑆1(0) = 100,𝑆2(0) = 80, 𝐼1(0) = 1, and 𝐼2(0) = 2. We see that the disease dies out in both subgroups.

4. Numerical Examples

In the section, numerical simulations are presented to sup-
port and complement the theoretical findings. We consider
the following model:

̇𝑆1 = 𝜑 (𝑆1) − 2∑
𝑗=1

𝛽1𝑗𝑆1𝐺𝑗 (𝐼𝑗) − 𝑎𝑆1,
̇𝑆2 = 𝑎𝑆1 − 2∑

𝑗=1

𝛽2𝑗𝑆2𝐺𝑗 (𝐼𝑗) − 𝑑2𝑆2,
̇𝐼1 = 𝑝11 2∑

𝑗=1

𝛽1𝑗𝑆1𝐺𝑗 (𝐼𝑗) + 𝑝21 2∑
𝑗=1

𝛽2𝑗𝑆2𝐺𝑗 (𝐼𝑗) − 𝑚1𝐼1,
̇𝐼2 = 𝑝12 2∑

𝑗=1

𝛽1𝑗𝑆1𝐺𝑗 (𝐼𝑗) + 𝑝22 2∑
𝑗=1

𝛽2𝑗𝑆2𝐺𝑗 (𝐼𝑗) − 𝑚2𝐼2,

(31)

where 𝐺𝑗(𝐼𝑗) = 𝐼𝑗/(1 + 𝛼𝑗𝐼𝑗). Clearly, (A1) and (A2) hold. We
fix the parameters as follows:

𝑏 = 100,
𝑑1 = 0.001,
𝑑2 = 0.3,
𝑎 = 0.5,
𝛼1 = 𝛼2 = 0.1,
𝑚1 = 0.5,
𝑚2 = 0.6,

𝑝11 = 𝑝22 = 0.6,
𝑝12 = 𝑝21 = 0.4.

(32)

Then, we have 𝑃0 ≈ (199.6008, 332.6680, 0, 0).
Case 1. If 𝛽11 = 𝛽21 = 0.001, 𝛽12 = 𝛽22 = 0.0001, then
we obtain 𝑅0 ≈ 0.55. By Theorem 1, the disease dies out
in both subgroups. Numerical simulation illustrates this fact
(see Figure 1).

Case 2. If 𝛽11 = 𝛽21 = 0.01, 𝛽12 = 𝛽22 = 0.001, then we
have 𝑅0 ≈ 5.53, 𝑃∗ ≈ (171.0530, 222.9491, 32.0764, 28.1767),
V1 = 𝛽21 = ∑2𝑖=1 𝑝𝑖2𝛽𝑖1𝑆∗𝑖 𝐺1(𝐼∗1 ) ≈ 154.06, V2 = 𝛽12 =∑2𝑖=1 𝑝𝑖1𝛽𝑖2𝑆∗𝑖 𝐺2(𝐼∗2 ) ≈ 73.81, and ∑2𝑘=1 V𝑘(𝑝1𝑘 − 𝑝2𝑘) ≈16.05. By Theorem 2, the disease persists in both subgroups.
Numerical simulation illustrates this fact (see Figure 2).

5. Conclusions

A differential infectivity epidemic model with stage structure
has been used to describe the spreading of such a disease. We
have focused on the theoretical analysis of the equilibriums.
Using a graph-theoretic approach to themethod of Lyapunov
functions, we have proved the global stability of the endemic
equilibrium. We have established uniform persistence and
the sharp threshold. The work has potential extensions and
improvements, which remains to be discussed in the future.
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Figure 2: Dynamical behavior of system (31) with parameter values in (32) and Case 1. 𝑅0 ≈ 5.53. The initial conditions are 𝑆1(0) = 100,𝑆2(0) = 80, 𝐼1(0) = 1, and 𝐼2(0) = 2. We see that the disease persists in both subgroups.
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