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The objective of this study is to investigate lane-changing characteristics in freeway off-ramp areas using Shanghai Naturalistic
Driving Study (SH-NDS) data, considering a four-lane freeway stretch in various traffic conditions. In SH-NDS, the behavior of
drivers is observed unobtrusively in a natural setting for a long period of time. We identified 433 lane-changing events with valid
time series data from the whole dataset. Based on the logit model developed to analyze the choice of target lanes, a likelihood
analysis of lane-changing behavior was graphed with respect to three traffic conditions: free flow, medium flow, and heavy flow.The
results suggested that lane-changing behavior of exiting vehicles is the consequence of the balance between route plan (mandatory
incentive) and expectation to improve driving condition (discretionary incentive). In higher traffic density, the latter seems to play
a significant role. Furthermore, we found that lane-change from the slow lane to the fast lane would lead to higher speed variance
value, which indicates a higher crash risk.The findings contribute to a better understanding on drivers’ natural driving behavior in
freeway off-ramp areas and can provide important insight into road network design and safety management strategies.

1. Introduction

Innovative technologies and traffic data sources provide
great potential to extend advanced strategies and methods
in road safety research. Advances in traffic safety modeling
and analysis will play an important role in reducing road
crashes and improving traffic operations. Lane-changing’s
adverse impact on traffic safety has been investigated and
confirmed. Recent studies in traffic management have shown
that lane-changing maneuvers are a major source of traffic
disturbance on a multilane freeway [1]. Such maneuvers
are also critical to road safety as 40% of freeway accidents
happened in ramp areas, particularly in off-ramp sections
[2]. A better understanding of lane-change events can also
improve design of the human-machine interface in driving
assistance systems.

Up to now, lane-changing characteristics and influencing
factors in urban roads or freeways have been studied from
the perspectives of driver behavior [3] and road and traffic
conditions [4, 5]. In these studies, lane-changes can be
classified as either mandatory or discretionary according to

driving incentives [6]. Generally traffic outflows do manda-
tory lane-changing (e.g., off-ramp or to avoid a block), while
through traffic conduct discretionary lane-changing when
drivers perceive that driving conditions in the target lane are
better. So far there has been little research on the modeling
of integrated mandatory and discretionary lane-changing
strategies in freeway off-ramp areas.

Traffic on the fast lane must change to the shoulder lane
before exiting a ramp on a freeway. Usually mandatory lane-
changing to the shoulder lane is performed by the departure
vehicles far enough before the off-ramp area. However, in
actual traffic conditions, queue-jumping behavior occurs
frequently when approaching an off-ramp and significantly
affects traffic capacity and stability, which is neglected in
most simulation programs. Furthermore, trade-offs between
mandatory and discretionary incentives are limited. For
example, when considering a mandatory lane-changing to
exit a ramp, a driver may decide to overtake a heavy vehicle
in front first (e.g., executing a discretionary lane-change first).
Advances in data collection technologies, (e.g., the naturalis-
tic driving system), giving access to high-resolution vehicular
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data, provide an opportunity for us to fully understand
the highly complex lane-changing procedure, particularly
the trade-off decisions. Thus, it is valuable to conduct a
comprehensively empirical study on lane-changing decision-
making in freeway off-ramp areas.

The major lane-changing modeling methods consist of
two distinct forms: lane-change decision model and lane-
change influence model. For lane-changing decisions, Gipps
introduced the original lane-changing model on urban roads
which considered traffic signals, obstructions, and heavy
vehicles [7], then several refined models based on Gipps
were developed and extended to freeways [8, 9]. Ahmed et
al. [10] employed random utility theory in lane-changing
behaviormodeling and a lane-changing choice was defined as
a sequence of three steps: decision to consider a lane-change,
choice of left or right lane, and search for an acceptable gap
to execute the decision. Ahmed [11] extended the mandatory
LC model to accommodate congested traffic, where forced
merging behavior frequently occurs because of lacking of
normally acceptable gaps. Toledo [12] developed a discrete
choice framework to model integrated lane-changes and
estimated the parameters. Other analysis methods of lane-
changing behavior include risk-based models [13], as well
as intelligent algorithms such as artificial neural networks
[14] and fuzzy inference [15]. For example, Balal et al. [16]
applied a fuzzy inference system to model a driver’s binary
decision to or not to execute a discretionary freeway lane-
change. Research on the lane-changing behavior indicates
that slower preceding vehicles would in many situations
tempt the following drivers to consider overtaking, and 95%
of drivers would choose to do lane-changing only if the rear
spacing on the target lane is bigger than 15 meters and speeds
are higher than the following vehicles on the target lane
[17, 18]. Zheng [19] categorizes the major LC models in the
literature into two groups: models that aim to capture the
LC decision-making process andmodels that aim to quantify
LC’s impact on traffic.

Under the condition of dense traffic, a vehicle attempting
a lane-change needs cooperation from at least one following
vehicle in the target lane. Hidas [9] developed a cooperative
lane-changing model based on a “driver courtesy” concept.
By comprehensively reviewing previous works, Kesting et
al. [20] proposed the model MOBIL (Minimizing Overall
Braking Induced by Lane-changes) to address cooperative
lane-changing of intelligent vehicles. Based onMOBIL, other
researchers further studied intelligent lane-changing models
[19]. On the empirical side, the studies of lane-changing
behavior were far less extensive than those of longitudinal
behavior (such as car following) due to the lack of compre-
hensive vehicle trajectory data. The emergence of connected
vehicle technology offers some great opportunities.

Previous studies rely on theoretical calculation, traffic
simulation, or driving simulator and field experiment to col-
lect lane-changing behavior data. To overcome the restriction
of driving simulation and field experiment such as short test
horizon and limited controlled settings [21], the 100-car Nat-
uralistic Driving Study (NDS) was the first large-scale NDS
conducted in the US [22, 23], followed by the 60-Taxi NDS in

Japan [24].TheUDRIVENaturalistic Driving Study was con-
ducted from 2012 to 2016 in seven countries in Europe [25].
Naturalistic Driving Study, undertaken in natural conditions
(no interference, no appearance of researchers, and during
daily driving) [26, 27], provides the opportunity to observe
the actual driving process with an unobtrusive high-precision
data acquisition system. In comparison to the intensive efforts
on driver behavior and microsimulation, lane-changing
modeling using naturalistic driving data is still a relatively
undeveloped area. Frequent and substantial lane-changes
based on individual decisions and preferences can certainly
affect traffic flow and road safety. Improper lane-changing has
been identified as a main source of congestion and collisions
[28]. It is a challenging task to fully understand the mech-
anism for lane-changes at freeway exits and it requires data
of heterogeneous traffic conditions with varying degrees of
driver behavior and perception.

However, real-time lane-changing characteristics cannot
be obtained in most of the existing studies. Limited investi-
gations have been made to identify hazardous lane-changing
behavior; thus few of the models can be applied in real-
time driving assistance systems. Lane-changing risk has been
investigated as a surrogate safety measure to predict crash
potentials in a mesoway. Typically, traffic data from loop
detectors has been utilized to predict potential lane-changing
related crashes and studies indicated that difference in occu-
pancy of adjacent lanes was significantly associated with the
crash potential [29]. Individual vehicular information was
extracted for a surrogate index of crash risk and results
showed the measure was effective in predicting traffic crash
occurrence [30, 31]. Thus, naturalistic driving data provide
the opportunity for researchers to fully investigate the safety
factors in lane-changing.

The ongoing Shanghai Naturalistic Driving Study (SH-
NDS) is a joint effort by Tongji University, General Motor
China and Virginia Tech Transportation Institute.The objec-
tive of the SH-NDS is to investigate how drivers interact with
vehicle, roadway, traffic conditions, and traffic control devices
in China. Also SH-NDS offers the opportunity to inves-
tigate similarities and differences between Chinese drivers
and drivers from other countries. Typically, a naturalistic
observation vehicle was equipped with devices that continu-
ously monitor various aspects of driving behavior, including
information about vehicle movements (e.g., acceleration and
deceleration, position on the road, and driving speed), about
the driver (e.g., eye, head and hand movements), and about
the direct environment (e.g., time headway, traffic density,
road, and weather conditions).

The objective of this study is to investigate lane-changing
characteristics in freeway off-ramp areas using SH-NDS data,
considering a four-lane freeway stretch in various traffic
conditions. This paper is organized as follows. Section 2
presents data collection and sampling; a description of the
model structure is presented after that. The homogeneity
and heterogeneity analysis as well as the safety assessment
of lane-changing are discussed in Section 3. The last part
concludes with remarks on the potential scope of future
studies.
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Figure 1: Four camera views in SH-NDS data acquisition system: forward view (left), in-cabin driver face view (upper left), instrument panel
and steering wheel view (upper right), and rear view (bottom right).
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Figure 2: The procedure of data collection and extraction.

2. Method

2.1. Shanghai Naturalistic Driving Study Data. In this Shang-
hai naturalistic observation study, driving behavior was
observed unobtrusively in a natural setting for a long period
of time. A total of 60 drivers from the Shanghai metropolitan
area have been involved since the end of 2012. They are
between 35 and 50 years old, holding valid driving licenses,
and with more than five years’ driving experience. Partici-
pants were required to drive no less than 40 kilometers per
day on average. Each participant drove the assigned vehicle,
and every day the route was determined by themselves
according to the needs of work and nonwork, without the
presence of any researcher.

The instrumented vehicles were fitted with unobtrusive
data acquisition systems consisting of GPS, high frequency
video camera, triple axis accelerometer, Doppler radar, and
lane offset system. The vehicle data acquisition system
recorded data when the car was running and in-motion. The
resultant dataset consisted of approximately 750,000 km of
driving data (comprising more than 80,000 hours of video
data). Each driver was assigned to one of five instrumented
vehicles and drove the car for three months. After a partici-
pant completed her/his time in this study, a different driver

was assigned to the test car until the data collection process
was completed for all participants.

Original naturalistic driving data are characterized by
a large number of parameters. In this dataset, there are
more than 10,000 CSV files which contain the information
acquired from single trips. For the purpose of this study,
lane-changing data in freeway off-ramp areas were chosen
as (1) vehicle trajectory data and motion characteristics (e.g.,
speed, acceleration) in a selected freeway off-ramp segment;
(2) neighboring traffic around the objective, which refers to
surrounding vehicles’ motion information within the scope
of instrumented radar; (3) videos recorded by four in-vehicle
cameras during the full process of ramp exiting, as shown in
Figure 1, consisting of forward and rear views, steering wheel
view, and driver’s face.

The procedure of data collection and extraction is shown
in Figure 2. The first task was data cleaning. In this paper,
on the basis of a large number of field data analyses, an
outliers monitoring method was proposed based on a self-
learning Pauta criterion [32], which is the method of three
times standard deviation to eliminate outliers. The outlier
correction method was based on linear interpolation. The
second step is to extract departure samples in the freeway
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Figure 3: Schematic illustration of a study area.

off-ramp sections.We consider a four-lane stretch of freeway.
Figure 3 is an illustration of the study area. Aftermatching the
driving path to real road sections in GIS according to actual
longitude and latitude data during the trips, we framed the
range of the off-ramp in all the freeway exits in the dataset
by calibrating the longitude and latitude position of points A
to D. To ensure that all selected off-ramp events are under
the same road conditions, we set up the criteria: a straight
four-lane freeway stretch, distance of adjacent exits no less
than 4 km, and being in fine weather conditions. Missing
data due to limitations of the data collection were also
accounted.

2.2. Identification of Lane-Changing Samples. Lane-changing
behavior can be identified by one or more of the following
episodes. (1) Driver initiates a steering input to change the
direction of the vehicle. (2)The vehicle begins to move later-
ally relative to the lane. (3)The vehicle leaves the current lane
at least temporarily [33]. To determine the initiation point
of a lane-changing action, a search algorithm was adopted,
in which lane offset position and steering wheel angle were
applied as indexes to extract data associated with lane-change
events. In addition, data analyzers manually inspected video
of the triggered driving episodes and identified any valid lane-
changes in qualified freeway off-ramp segments.

In general, the target lane of a lane-changing maneuver
is the lane the driver perceives as best to be in, depending
upon the prevalent driving conditions and her/his trip plan.
In this study, the target lane is defined as the lane next to
the vehicle. One of the lane offset position parameters is LO,
which indicates the offset between the vehicle center line and
the center line of the current lane, detected by the lane offset
system. For example, as shown in Figure 4, a positive value of
LO means the vehicle is offset to the right side of the current
lane center, and a negative LO implies a left offset from the
lane center line. Furthermore, once the test vehicle’s center
line crosses the current lane boundary (either the left or the
right side), instrumented sensors automatically identify the
new lane’s center line; therefore the sign of LO value will
turn to the opposite and appears as a sudden change. Thus
single and serial lane-changing behavior can be differentiated
according to the sudden change of the LO values. Steering
wheel angle is taken as secondary index for verification.
Totally 433 valid lane-changing samples were extracted from
the dataset.
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Figure 4: An example of LO values in the dataset.

2.3. Preliminary Analysis of Lane-Changing Data. Figure 5
presents a typical scenario among the 433 samples. For
convenience, the left-most lane is defined as the 1st lane and
the right-most lane is defined as the 4th lane.

To explore the spatial distribution of lane-changing
behavior in freeway off-ramp areas, we classified the 433 lane-
changing events into three groups: changing from Lane 1 to
Lane 2, from Lane 2 to Lane 3, and from Lane 3 to Lane
4. According to the initial position of a lane-change event,
cumulative frequency can be plotted to show spatial attributes
of lane-changes in different lanes (see Figure 6). The 𝑥-axis
expresses the distance from an initial lane-changing position
to the ramp. It can be shown that the number of lane-changes
needed in order to exit the ramp is significantly correlated to
the distance from initial lane-changing point to ramp. Based
on the statistics of the samples, 85 percentile of lane-changes
were made in the range, respectively, 2,300m to 470m in
Lane 1, 1,800m to 415m in Lane 2, and 1,200m to 290m in
Lane 3, as presented in Figure 7.

2.4. Modeling Lane-Changing Decisions. When test vehicles
are driving on Lane 1 or Lane 4, drivers can only change in
a single direction; hence, we finally selected 319 valid lane-
changing actions starting from either Lane 2 or Lane 3. For
the purpose of this study, variables influencing the target lane
choice in freeway off-ramp areas are explained in Table 1.

Here, we followed Ahmed [11] and Toledo [12]’s LCD
discrete choice framework. The target lane (TL) choice
denotes the immediate lane of the test driver, depending on
the driving route information and traffic environment. Due
to the nature of the binary outcome, the target lane choice
set includes two alternatives: either change to the left lane
(LL) or the right lane (RL). To explain drivers’ choice of these
two alternatives, the concept of utility is used for measuring
the satisfaction degree of changing to a target lane in specific
traffic condition and driving route.The utility of LC for driver
𝑛 is defined as in

𝑈𝑖𝑛 = ∑𝛽
𝑖𝑋𝑖𝑛 + V𝑛𝛼

𝑖 + 𝜀𝑖𝑛, (1)
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Figure 5: The lane-changing process in freeway off-ramp areas.

where 𝑈𝑖𝑛 is the utility for driver 𝑛; 𝑖 ∈ TL = {LL,RL}; 𝑋𝑖𝑛
is a vector of explanatory variables; 𝛽𝑖 is the corresponding
coefficient to 𝑋𝑖𝑛; and 𝜀𝑖𝑛 is the random error term for
a given individual, as well as across individuals. V𝑛 is an
individual specific random term that can represent observ-
able/unobservable characteristics. 𝛼𝑖 are the parameters of V𝑛.
It may be noted that, due to the limitation of data collection,
in estimation not all the 𝛼𝑖 values can be identified.

Under the assumption that individual 𝑛 chooses an
alternative that maximizes his/her satisfaction, alternative 𝑖 is
chosen if and only if𝑈𝑖𝑛 ≥ 𝑈𝑗𝑛. Assuming the term 𝜀𝑖𝑛 follows
an IID Gumbel distribution, the probability of individual 𝑛
choosing alternative 𝑖 can be expressed by a logit model as

𝑃𝑛 (TL = 𝑖) =
exp (𝑉𝑖𝑛 | V𝑛)

∑𝑗∈TL exp (𝑉
𝑗
𝑛 | V𝑛)
, (2)

85%

15%

1-2
2-3
3-4

3000 2500 2000 1500 1000 500 03500
Distance to the off-ramp (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

iv
e f

re
qu

en
cy

Figure 6: Cumulative frequency graph of lane-changing longitudi-
nal position on different lanes.
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Figure 7: Range based on the 85 percentiles of lane-changing
actions in each lane.

where 𝑉𝑖𝑛 | V𝑛 are the conditional systematic utilities of the
choice alternatives.

As mentioned in the previous section, lane-change utility
functions depend on explanatory variables including driving
route information, traffic environment, as well as driver
characteristics. Due to the sampling criteria, the sample size
of left lane-change (LL) choices is relatively small. Thus, LL
was defined as alternative 𝑌 = 1. Although driver charac-
teristics (e.g., driving style) naturally have significant impacts
on various aspects of lane-changing decisions, data are not
available inmost field tests; nevertheless, their parameters can
be captured by the individual specific term V𝑛 [6, 12].

3. Results

3.1. Model Estimation. Several model diagnostics were used
to checkmodel goodness-of-fit and the statistical significance
for each explanatory variable. A total of 20 variables were
initially tested in the logit model and only 6 of them were
found to be statistically significant. The final logit model was
estimated with six explanatory variables as shown in Table 2.
Whereas GT𝑙 (Gap Time to the front vehicle on the left
lane) was statistically significant at only the 90% confidence
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Table 1: Potential factors contributing to the lane change.

Category Factor Data source

(1) Trip plan

Numbers of lane changes needed in order to exit the
ramp Determined by video of front view

Relative distance to the off-ramp at the initial point of a
lane-changing event Calculated from the time series data

(2) Traffic environment

Density and speed of traffic in the lane, distribution of
heavy vehicles, driving regulations, and so on Video camera and Doppler radar

Relative speed and gaps of the subject vehicle with
respect to surrounding cars

We use Gap Time (GT) as index to reflect
neighboring conditions GT = 𝐷/ΔV

(3) Driver and vehicle characteristics Demographic variables, physical conditions, driving
experience Questionnaire

Table 2: Model estimation results.

Variable Descriptions Definitions Estimate 𝑝 value
∗𝛿(ΔCL) The number of lane-changes required to be in the correct lane 𝛿(ΔCL) = 1 or 𝛿(ΔCL) = 2 −1.986 <0.001
∗𝑆 The distance to the point where the driver needs to be off-ramp unit: m 0.003 <0.001
∗𝑀𝑟 The front vehicle type on the right lane heavy vehicles = 1; others = 0 1.802 <0.001
∗GT𝑚 Gap Time to the front vehicle in current lane

𝑑𝑛𝑚
V𝑚 − V𝑛

−0.094 <0.001

GT𝑙 Gap Time to the front vehicle on the left lane
𝑑𝑛𝑙

V𝑙 − V𝑛
0.053 0.078

∗GT𝑟 Gap Time to the front vehicle on the right lane
𝑑𝑛𝑟

V𝑟 − V𝑛
−0.058 0.002

Number of observations 319
log likelihood −91.8

AIC 197.6
Note.∗ means that the variable is significant at 95% level. In China heavy vehicles cannot drive on fast lanes; thus only vehicle type on right-sidewas considered.

level, all other five independent variables were statistically
significant at the 95% level with 𝑝 value less than 0.05.

Driving route information variables are important in this
model.The effect of the path selection is represented by 𝛿(ΔCL)
and 𝑆 which capture the number of lane-changes required to
be in the correct lane and the distance to the point where the
driver needs to be in a specific position (an exit). In line with
expectation the estimated coefficient of this 𝛿(ΔCL) is negative,
which means the utility of a LL choice decreases with the
number of lane-changes the driver needs to perform in order
to complete the desired path plan. In contrast, the utility can
be magnified when the distance to the off-ramp increases,
where the coefficient of 𝑆 is positive.

Another group of variables capture surrounding driving
conditions on drivers’ lane-changing decisions.These consist
of the relative speed and spacing with respect to the vehicles
in front in the current lane, in the lanes to the left and to the
right of the test vehicle. A positive and significant coefficient
of𝑀𝑟 captures drivers’ tendency to avoid following a heavy
vehicle, as heavy vehicles generally drive at lower speed
and require greater braking distance. Both significant and
negative coefficients of GT𝑚 and GT𝑟 indicate that when
traffic neighboring conditions in the current and right lanes
meet drivers’ expectation, the left lane is generally not their
preference.

GT𝑙 is only statistically significant at 90% level and has a
positive estimated coefficient. A possible explanation can be

correlated with generally better level-of-service in Lane 1 (fast
lane) and Lane 2 on the left. Driver characteristics such as age
and gender did not play a significant role in lane-changing
in this experiment. Contrary to priori expectations, gap time
to the lagging vehicle on an adjacent lane did not have a
significant effect on lane-changes in the estimation.This may
reflect the trade-offs between mandatory and discretionary
considerations in an off-ramp segment. In order to check
model prediction accuracy, a classification matrix was used
to compare predicted outcomes to the observed outcomes.
According to it, the model successfully predicted 86.21%
of the lane-changing behavior in off-ramp areas, which
confirms that the logit model gave a good fit to the dataset.

3.2. Analysis of the Target Lane-Changing Probability Dis-
tribution. Ramps have been regarded as a major source of
conflicts and congestion on freeways [34]. Near off-ramp
areas are potential locations for bottleneck formation when
the fraction of vehicles attempting to change to the lanes
that are connected to their destinations is high. A diverging
operation involves two interactive traffic streams: the freeway
traffic and the ramp traffic. Two aspects need to be taken into
account while studying lane-changing at ramps: the incentive
and safety. This part discusses both types of characteristics in
our experiment.

As discussed, important explanatory variables affecting
the target lane choices came from route plan and neighboring
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Figure 8: Lane-changing prob. sketch diagram in freeway off-ramp
areas.

conditions. However, for a section of road, especially with
a specific driving scenario (e.g., off-ramp), general traffic
attributes, such as density and speed of traffic in the segment,
also play a role for the lane-changes. Using time series DAS
data, the information is available for estimation at discrete
points on the test freeway segment. In a likelihood function of
lane-changing behavior, a distribution of the distances from
3 kmupstream to the off-ramppoint was studied. For the sake
of simplicity, we classified traffic into three levels: free flow,
medium flow, and heavy flow.

We aim to quantify various traffic flows’ impact on lane-
changing. As shown in Figure 8, covering the three different
traffic flow conditions, the lower right and top left corners
with respect to the fast lane near the off-ramp and the shoul-
der lane far upstream of the off-ramp in a driving scenario
have relatively low probability values. Correspondingly, the
majority of mandatory lane-changes happened in the light
gray area mainly along the three minor diagonals. In other
words, we found the most likely lane-changing trajectory
where drivers choose to change from lane 2 to lane 3 and at the
last moment divert to lane 4 before arriving at the off-ramp,
as displayed in Figure 5.

Our approach is innovative in the sense that the spa-
tial and traffic attributes with respect to cumulative lane-
changing rates can bemeasured in a quantitative and simulta-
neous manner. As the density is low, drivers start to carry out
right lane-changing at earlier points. An explanation of this
phenomenon can be that, in free flow, drivers are more likely
to change lane to the right in advance without decreasing
the feeling of comfort. Another interesting finding is that
the more dense the traffic, the higher the wish to claim
a position in the fast lane first. This implies that a driver
postponing a response to a mandatory LC may have a higher
propensity to perform discretionary LC. This can explain
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why, for an increasing density, a growth of lane-changes
from the middle to the fast lane was found in the upstream
stretch. The possible reason for these results is that when
traffic density increases, vehicles at the upstream locations
are more likely influenced by the pressure of surrounding
vehicles and thus prefer to keep driving in the current lane
or make a discretionary lane-change to the left. Hence they
carry out right lane-changing actions for exiting only when
approaching the off-ramp.

Furthermore, a lane-changing action will leave a gap in
the original lane which may be used as gap to merge into by
another vehicle.This casemay happenmore in higher density
situations where vehicles are waiting for a gap and use this
as soon as it becomes available. For some unobserved reason
rather than the immediate traffic situations, a driver may
decide on a particular lane-changing action [35], where there
might be a trade-off between mandatory and discretionary.
So if the fast lane for some reason is more attractive for the
drivers, more vehicles change towards this fast lane. Even if
it gets busier, the reason to go there can be still valid, and
so drivers still move there in a dense situation. This theory
is consistent with the results of the model estimates. Figure 9
displays spatial attributes (lateral and longitudinal distances
to off-ramp) with respect to cumulative frequency of lane-
changes.

3.3. SafetyAssessment of Lane-Changing. Moreover, improper
lane-changing action would result in potential safety hazards,
such as rear-end crashes and sideswipe crashes. To put the
lane-changing choice model into practice, safety assessment
has been made to evaluate the potentially hazardous lane-
changing behavior in this study.

There is a growing body of evidence to suggest a number
of road safety benefits are associated with reduced speed
variability between vehicles and reductions in 85th percentile
speeds [36]. Specifically, increased speed variation may dis-
turb homogenised traffic flow and increase the likelihood of
conflict situations caused by human behavior [37].

Inspired by the findings, we applied the surrogate safety
index Speed Variance (SV) of the following vehicle in the
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the lagging vehicle on the target lane.

target lane to assess the lane-changing behavior. The funda-
mental hypothesis concerning lane-changes is that any vehi-
cle obeys a basic rule that lane-changing could be conducted
only at least cost in speed reduction of neighboring vehicles;
that is, a vehicle would change lane only if neighboring
vehicles in the target lane would not have to slow down too
much because of the lane-changing. Interestingly, in SH-NDS
data, drivers are often cautious when they attempt to change
lanes, especially under higher traffic density.

The SV value was calculated as

SV = 𝑉𝑡 − 𝑉0
𝑡
, (3)

where𝑉𝑡 denotes the speed of the lagging vehicle in the target
lane when the test vehicle starts to change lane; 𝑉0 denotes
the speed of the lagging vehicle in the target lane when the
test vehicle has completed its action; 𝑡 denotes the period of a
lane-changing event. A cumulative frequency diagram of the
SV values is displayed in Figure 10.

According to Figure 10, a large majority of lagging vehi-
cles will not be impacted by the lane-changing events. In such
circumstances, lane-change maneuvers are not supposed to
interfere with the motion of neighboring vehicles on the
adjacent lane. In contrast, under a more congested traffic
and aggressive lane-changing scenario, the lagging vehicles
have to decelerate to avoid a potential rear-end or sideswipe
collision. In an extreme case, when the SV values are great
enough, the driver of the lagging vehicle may feel a surge of
anxiety. Figure 10 also indicates that lane-changes from the
slow lane to the fast lane lead to slightly higher SV values.
This result is consistent with the expectation that, when the
vehicle’s running speed is higher, a bigger spacing between
the preceding vehicle and the lagging vehicle is required for a
safe lane-change. The threshold values of SV were selected to
identify the risky lane-changing actions based in the dataset.
The 85 percentile value of the SV values can be utilized
as the threshold in normal road conditions [38, 39]. Lane-
changes from the slow lane to the fast lane (e.g., Lane 3
to Lane 2) relate to a slightly greater 85 percentile speed
variation value than lane-changes from the fast lane to the
slow lane (e.g., lane 2 to lane 3) (1.324 versus 1.297). This
result is consistentwith the expectation andwith other related

works.Aquantitative analysis of the safety assessment of lane-
changes can contribute to the design of driving assistance
systems. Once the improper lane-changing behavior has been
identified, drivers can be alerted to the potential crash risk by
in-vehicle driving assistance devices.

4. Conclusions

Studies of lane-changing behavior have been far less extensive
than those of longitudinal driving behavior due to the lack
of comprehensive vehicle trajectory data. For example, for
the existing LC decision models, only a few have identified
factors and developed lane-changing rules based on video
evidence. Naturalistic driving study provides an opportunity
to understand how drivers naturally interact with vehicle,
roadway, and traffic environments. Naturalistic driving data
have made it both technically and economically feasible to
reviewkinematic information anddriving behavior in natural
surroundings on a large scale, through unobtrusive data
gathering equipment and without experimental control.

Researchers have shown that lane-change maneuvers are
primarily responsible for most of the traffic perturbations
on multilane freeways. Therefore better understanding of
lane-changing maneuvers is important in traffic studies, but
this problem has not been satisfactorily investigated yet.
In particular, in most off-ramp studies, lane-changes were
considered as mandatory where the driver must leave the
current lane. However, according to the data set of our
naturalistic driving experiment and the analysis of this study,
such classification of off-ramp lane-changing behavior seems
to ignore trade-offs between mandatory and discretionary
incentives. Applying a rigid lane-changing behavior model
may result in unrealistic traffic flow characteristics. Only lim-
ited empirical studies have been done to accurately estimate
the parameters of lane-changing models.

This study employed lane offset position and steering
wheel angle as indexes to extract lane-changing samples in
freeway off-ramp areas. Illustrated by the one-way four-lane
freeway stretch, a logit model was developed to model the
choice of target lanes. Parameters were estimated using vehi-
cle trajectory data and individual characteristics. Estimations
show that drivers’ lane selection is impacted both by trip path
variables and neighborhood traffic conditions. A likelihood
analysis of lane-changing actions was graphed with respect
to free flow, medium flow, and heavy flow.

The results suggest that lane-changing behavior of exiting
vehicles is the consequence of the balance between route plan
(mandatory incentive) and expectation to improve driving
condition (discretionary incentive). In higher traffic density,
the latter seems to play a significant role. The findings
reveal the mechanism of lane-changing behavior near an
off-ramp, which indicate the influencing factors as well as
drivers’ preferences in different traffic conditions. These can
help improve driveway management in off-ramp areas and
provide a reference for layout of guide signs.Therefore, traffic
practitioners can take appropriate action, such as average
speed enforcement andmanaged lane strategy, tomake traffic
smoother.
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Near off-ramp sections, a lane-changing event may cause
a harsh deceleration by the lagging vehicle and then may
disrupt traffic and increase crashes and collisions.We applied
the speed variance of the following vehicle in the target lane as
a safety surrogate index. Moreover, lane-changing from slow
lane to the fast lane would lead to a higher SV value. A series
of thresholds are listed for real-time lane-changing safety
assessment. It provides an opportunity to avoid potential
rear-end or sideswipe crash. Further work is being con-
ducted to study urban roadway stretches where the distance
between ramps is shorter. For a more realistic and robust
model, heterogeneity of vehicle composition in the roadway
and geometry-specific effects should also be considered.
Finally future studies need to also consider squeezed lane-
changing behavior and driver negotiation with different off-
ramps.

This is one of the first comprehensive studies using the
Shanghai Naturalistic Driving Study data. The findings con-
tribute to a better understanding of drivers’ natural driving
behavior in freeway off-ramp.This paper provides important
insights into road network design and transportation safety
strategies.
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