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Mathematical Problems in Engineering has retracted the
article titled “Combined Location-Inventory Optimization
of Deteriorating Products Supply Chain Based on CQMIP
under Stochastic Environment” published in Mathematical
Problems in Engineering in 2018 [1]. �e article was found
to contain significant material from another article titled
“A Conic Integer Programming Approach to Stochastic
Joint Location-Inventory Problems” published in Operations
Research in 2012 by different authors [2], which was not
cited.

Several parts are copied word by word from the other
article [2]. In addition, Figure 2 in [1] is similar to Figure 1
in [2], while the results in Figures 3, 4, and 5 in [1] appear
to be the same as Figures 2, 3, and 4, respectively, in [2].
Moreover, there are close similarities in the equations and
tables. Finally, the results in the Table 1 in [1] and Table 3 in
[2] are very closely correlated, despite supposedly not using
the same model.

�e Mathematical Problems in Engineering authors clar-
ified that their article is different from the other one as
they designed a combined location-inventory model for
deteriorating products under capacitated facilities, stochas-
tic lead time, multiple products, and correlated retailers’
stochastic demands assumptions. Mathematical Problems in
Engineering asked the authors to provide evidence that they
conducted these simulations, e.g., code and raw outputs.
�e authors said the data are already included in the article
and no additional data can be provided, and they provided
code.

�e Editorial Board found that the code and equations
provided by the authors did not help determine whether the
results are original. Accordingly, we asked their institutions
to formally investigate.
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The design and optimization of combined location-inventory model for deteriorating products are a main focus in supply
chain management. There were many combined location-inventory design models in this field, but these models are under the
assumptions of adequate capacity facilities, invariable lead time, unique product, and uncorrelated retailer’s demands. These
assumptions have a big gap in the practical situation. In this paper, we design a combined location-inventory model for
deteriorating products under capacitated facilities, stochastic lead time, multiple products, and correlated retailers’ stochastic
demands assumptions. These constraints are near to actual supply chain circumstance. The problem is modeled as conic quadratic
mix-integer programming (CQMIP) to minimize the total expected cost. We explain how to formulate these problems as conic
quadratic mixed-integer problems, and in order to obtain better computational results we use extended cover cuts. Simultaneously
we compare our method with the previous Lagrange methods; the result is that the new CQMIP method can get better solution.

1. Introduction

Design and optimization of the combined location-inventory
for deteriorating products are extremely important. Dete-
rioration is defined as “the damage, spoilage, dryness, etc.
that results in a decrease of usefulness of the original one”
[1]. Deteriorating products are classified as two kinds. The
products that have a maximum usable lifetime are seen
as “perishable products,” like foodstuffs, green vegetables,
human blood, and photographic film. And the products that
have no shelf-life at all are seen as “decaying products,” like
alcohol, gasoline, and radioactive substances [2].

Deteriorating products about a third of sales at retailers,
combined location-inventory design and optimization of the
deteriorating products become a attention point.These prob-
lems are more difficult than combined location-inventory
design and optimization of products with an infinite lifetime.
We will consider minimizing the total expected cost under
satisfying customer demand. In many cases, the holding

cost and transportation cost per unit or per unit time
for deteriorating products are not fixed. The cost of each
unit deteriorating product is alterable; it depends on time,
inventory level, storage location, and so forth. Therefore, the
combined location-inventory system’s costs of deteriorating
products are more complex. The influence of deteriorating
products on the environment is a real and big problem; more
and more academic researchers are paying attention to these
deteriorating products supply chain.

There are numerous challenges and opportunities for
deteriorating products supply chain. However, few rigorous
and general supply chain models have been developed.
Therefore, it is worthwhile and necessary to research dete-
riorating products supply chain. There are impacts on the
economy and positive effects on health. At present, few
works consider combined location-inventory in deteriorating
products supply chain design and optimization.Themajority
of studies on deteriorating products are limited to inventory
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level or location level, rarely involved in combined location-
inventory aspect. Hence, this paper considers a combined
deteriorating supply chain design and optimization problem;
we design a combined location-inventory model for deterio-
rating products. In our model, in order to make the model
more realistic we consider capacitated facilities, stochas-
tic lead time, multiple products, and correlated retailer’s
demands.

In this paper, we propose a novel method based on
conic quadratic mixed-integer programming, which is more
flexible and global. We use optimization software CPLEX
to solve this problem. The experimental results show that,
compared to Lagrangian relaxation, however, our method
has many advantages. And this research work provides an
effective reference for managers of deteriorating products
supply chain.

The remainder of this paper is organized as follows.
In Section 2, we review the main researches in combined
location-inventory models of supply chain. The notation
and modeling assumptions are described in Section 3. In
Section 4, a CQMIP model is presented for the com-
bined location-inventory of deteriorating products. Numer-
ical results together with related analyzes are presented in
Section 5. Section 6 concludes this paper and briefly discusses
future research directions.

2. Literature Review

Supply chain design and optimization are critical and dif-
ficult. It involves not only facility location but also facility
inventory.Most of existing supply chain design and optimiza-
tion models separately consider location decision and inven-
tory decision, with no regard for the interaction between
decision of location and decision of inventory. In order to
reach efficient cost savings, the major cost components of
location and inventory should be considered in combination,
rather than separately.Thus, the idea of considering inventory
costs while making facility location decisions of a supply
chain has been developed during the past decade by different
researchers. These models concurrently consider decisions
at both the strategic location decisions level and the tactical
inventory decisions level. Snyder et al. [3] proposed a stochas-
tic location-inventory model with uncertainty. Shen and Qi
[4] proposed a combined location-inventory routing deci-
sions model. Ozsen et al. [5], directed at limited capacities for
facilities, proposed an integrated location-inventory model.
In these works, because of inventory consideration, the
objective function is nonlinear. These models were complex,
usually with integer decision variables, nonlinear costs, and
constraints. So they proposed many heuristic algorithms for
different special cases. Shen et al. [6] proposed a column
generation method for this problem. Daskin et al. [7] and
Shen and Daskin [8] all used Lagrangian relaxation method
to solve this class of problems. Miranda and Garrido [9]
considered facility location and inventory control decisions
and presented an integrated model; the solution method
involves Lagrangian relaxation and subgradient method.
Erlebacher and Meller [10] proposed a two-stage heuristic
algorithm to estimate the number of DCs. Dasci and Verter

[11] introduced concave technology selection cost into the
objective function of a multiproduct location model. Asl-
Najafi et al. [12] considered a dynamic closed-loop location-
inventory problem and designed a hybridmetaheuristic algo-
rithm based on multiobjective particle swarm optimization
(MOPSO) and nondominated sorting genetic algorithm-II
(NSGA-II) to solve the problem. Zhang and Unnikrishnan
[13] presented a location-inventory model with uncertain
demands, which is based on integer nonlinear programming
and can be transformed to conic quadratic mixed-integer
programming, and used CPLEX software solve this problem.
Diabat et al. [14] presented a joint location-inventory model
based on uncertain demands and lead times, the use of
which can determine not only the location and number of
distribution centers but also the size, and adopted a hybrid
algorithm to solve the presented model; this algorithm arose
from simulated annealing and direct search. Vahdani et al.
[15] considered a model based on mixed-integer nonlin-
ear programming for a location-inventory problem, which
assumed that the demands of retailers are correlated, and
presented two metaheuristic algorithms, including genetic
algorithm and simulated annealing to solve this problem.

Because the feature of the deteriorating products, there is
a strict time restrict about deteriorating products. The prod-
uct will lose its value rapidly, which can lead to extra waste
and costs and loss potential market share. With increasing
time-sensitivity for deteriorating products, timely delivery is
becoming a strategy. A great number of tactics for time com-
petition have been proposed; several methods were utilized
for time-dependent supply chain design and optimization.
Rich andHines [16] proposedmathematicalmodeling, which
focuses on time reduction for a single specific process. Guide
Jr. et al. [17] discussed profit maximization in reverse sup-
ply chains for deteriorating return. Blackburn and Scudder
[18] developed a cost minimization model for one specific
deteriorating product supply chain, concerning the declining
value of the product over time. Wang et al. [19] discussed
inventory policies for a deteriorating product but based on
a simple supply chain system consisting of one producer, one
distributor, and only one retailer. Arntzen et al. [20] proposed
mixed-integer linear programming model to minimize the
weighted combination of total cost and activity days, but the
unit processing activity days are fixed, with no regard for the
facility capacities.

In the existing literature on deteriorating products, for
describing either the decrease in quantity or the degener-
ation in quality, exponential time decay has been utilized.
Regarding the decrease in quantity, Nahmias [21] and Yu and
Nagurney [22] discussed perishable inventory optimization.
Tijskens and Polderdijk [23] and Akkerman et al. [24]
discussed the degeneration in quality but assumed that all the
products deteriorate at the same rate.

3. Model Assumptions and Notations

The structure of the integrated supply chain is as in Figure 1.
It is a three-level supply chain under the single-sourcing
assumption; it has a centralmanufacturer, a set of distribution
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Figure 1: The three-level supply chain network.

centers (DCs) that store and distribute supplies, and the
retailers.

We used parameters and notations for the CQMIPmodel
as follows:

Sets 𝐿: set of deteriorating products, indexed by 𝑙𝐼: set of retailers, indexed by 𝑖𝐽: set of potential distribution center locations,
indexed by 𝑗

Demands𝜇𝑖𝑙: the daily demand at retailer 𝑖 for deteriorating
product 𝑙𝛿𝑖𝑙: standard deviation of daily demand at retailer 𝑖 for
deteriorating product 𝑙𝑉𝑙: variance-covariance matrix of retailers daily
demand about deteriorating product 𝑙

Costs 𝑓𝑗: fixed cost of DC located at retailer site 𝑗 per unit
time𝑑𝑖𝑗𝑙: cost per unit to transport deteriorating product 𝑙
between site 𝑖 and 𝑗𝐹𝑗𝑙: fixed cost of placing an order deteriorating prod-
uct 𝑙 at DC 𝑗𝐹𝑙: fixed cost of placing an order deteriorating product𝑙 at central manufacturer𝑎𝑗𝑙: per unit cost to transport deteriorating product 𝑙
from the central manufacturer to DC 𝑗𝑔𝑗𝑙: fixed cost of per unit transport deteriorating
product 𝑙 from the central manufacturer to DC 𝑗ℎ𝑙: unit inventory holding cost per unit of deteriorat-
ing product 𝑙 per unit time𝐷𝑙: fixed disposing cost of deteriorating product 𝑙 after
it becomes putrid

Weights𝛽𝑙: weight factor associated with the transportation
cost for the deteriorating product 𝑙𝜃𝑙: weight factor associated with the inventory cost for
the deteriorating product 𝑙

Other Parameters𝑥𝑙: days worked per unit time for the deteriorating
product 𝑙𝛼𝑙: service level of deteriorating product 𝑙𝑧𝛼𝑙 : standard normal deviation associated with 𝛼𝑙𝐿𝑗𝑙: lead time in days for deteriorating product 𝑙 at DC𝑗𝜎𝐿𝑗𝑙 : standard deviation of lead time in days for
deteriorating product 𝑙 at DC 𝑗𝑡𝑗: time of transportation of deteriorating product
from the central manufacturer to DC 𝑗𝑡𝑖𝑗: time of transportation of deteriorating product
from site 𝑗 to site 𝑖𝑡𝑙: maximum usable lifetime of deteriorating product𝑙𝑐𝑗: maximum inventory capacity of DC 𝑗𝑁𝑙0: quantity of deteriorating product 𝑙 at DC 𝑗𝜆𝑙: decay rate of deteriorating product 𝑙

Decision Variables𝑦𝑖𝑗𝑙 = 1: if demand for deteriorating product 𝑙 of
retailer 𝑖 is assigned to DC at retailer site 𝑗𝑦𝑖𝑗𝑙 = 0: if demand for deteriorating product 𝑙 of
retailer 𝑖 is not assigned to DC at retailer site 𝑗𝑥𝑗 = 1: if DC is located at retailer site 𝑗𝑥𝑗 = 0: if DC is not located at retailer site 𝑗𝑄𝑗𝑙: the reorder number of deteriorating product 𝑙 at
DC 𝑗.

We also consider the following assumptions:

(1) Each retailer is supplied from unique DC.

(2) Each DC has nonlinear capacity constraints.

(3) Deteriorating products are transported directly from
DCs to retailers.

(4) Objective function is nonlinear.

(5) Although the demand of retailer 𝑖 for deteriorating
product 𝑙 is stochastic, there is a correlation between
different retailers’ demands.

(6) Lead times of deteriorating products are independent
and orders not crossed.

(7) The lead time of deteriorating product is stochastic.

(8) Every deteriorating product has a lifetime; product
value decreases over time.

(9) The environmental conditions associated with each
deteriorating product are fixed, such as temperature
and transportation.
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4. CQMIP Model

At least one of the variables is unknown in our model; we
assume they follow some probability distribution. Stochastic
supply chain optimization and design problems were usually
described as integer ormixed-integer nonlinear optimization
problems. In our paper, we will propose a combined location-
inventory model based on conic quadratic mixed-integer
programming. In this section, the conic quadratic mixed-
integer programming (CQMIP) optimization problem is
described first. Then, we use conic quadratic mixed-integer
programming model of complex deteriorating product sup-
ply chain optimization and design problems.

4.1. CQMIP Optimization Problem. Now we refer to Ben-
Tal and Nemirovski [25] and Alizadeh and Goldfarb [26]
who define conic quadratic mixed-integer programming
(CQMIP) optimization problem:

min 𝑎𝑥
s.t. 𝐴 𝑖𝑥 + 𝑏𝑖2 ≤ 𝑐𝑖 𝑥 + 𝑑𝑖, 𝑖 = 1, . . . , 𝑝, (1)

where 𝑥 ∈ 𝑍𝑛 × 𝑅𝑚, ‖ ⋅ ‖2 is the Euclidean norm, and all the
parameters are rational numbers. Let 𝑐 = 0, 𝐴 𝑖 = 𝑏𝑖 = 0; we
can obtain convex quadratic constraint.

4.2. CQMIP Model. In this section, we are going to con-
sider the multiple deteriorating products combined location-
inventory model with inventory capacity constraint, corre-
lated retailers’ stochastic demands, stochastic lead times, and
maximum usable lifetime.

Based on the above assumptions, the multiple deteriorat-
ing products combined location-inventorymodel is indicated
in problem (𝑃) as follows:

min ∑
𝑗∈𝐽

(𝑓𝑗𝑥𝑗 +∑
𝑙∈𝐿

(∑
𝑖∈𝐼

∧𝑑𝑖𝑗𝑙𝑦𝑖𝑗𝑙 + ∧𝐹𝑗𝑙∑𝑖∈𝐼 𝜇𝑖𝑙𝑦𝑖𝑗𝑙𝑄𝑗𝑙 + 𝜃ℎ𝑙𝑄𝑗𝑙2 + ∧𝑞𝑗𝑙√𝑦
.𝑗𝑙
(𝐿𝑗𝑙𝑉𝑙 + 𝜎2𝐿𝑗𝑙𝑀𝑙) 𝑦.𝑗𝑙 +∑

𝑖∈𝐼

𝑁𝑖0 (1 − 𝑒−𝜆𝑙(𝑡𝑗+𝑡𝑖𝑗𝑦𝑖𝑗𝑙+𝐿𝑗𝑙)) (𝐹𝑖 + 𝐷𝑖))) , (𝑃)
s.t. ∑

𝑙∈𝐿

(𝐿𝑗𝑙∑
𝑖∈𝐼

𝜇𝑖𝑙𝑦𝑖𝑗𝑙 + 𝑄𝑗𝑙 + 𝑧𝛼𝑙𝑘𝑙√𝑦
.𝑗𝑙
(𝐿𝑗𝑙𝑉𝑙 + 𝜎2𝐿𝑗𝑙𝑀𝑙) 𝑦.𝑗𝑙) ≤ 𝐶𝑗𝑥𝑗, 𝑗 ∈ 𝐽, (2)

(𝑡𝑗 + 𝐿𝑗𝑙 + 𝑦𝑖𝑗𝑙𝑡𝑖𝑗) ≤ 𝑡𝑙, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, (3)

∑
𝑗∈𝐽

𝑦𝑖𝑗𝑙 = 1, 𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, (4)

𝑦𝑖𝑗𝑙 ≤ 𝑥𝑗, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, (5)𝑄𝑗𝑙 ≥ 0, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, (6)

where
∧𝑑𝑖𝑗𝑙 = 𝛽𝑙𝑥𝑙(𝑑𝑖𝑗𝑙 + 𝑎𝑗𝑙)𝜇𝑖𝑙 is the cost of transportation

product 𝑙 to retail site 𝑖. ∧𝐹𝑙 = (𝐹𝑗𝑙 + 𝛽𝑙𝑔𝑗𝑙)𝑥𝑙, ∧𝑞𝑗𝑙 =𝑧𝛼𝑙𝜃𝑙√𝐿𝑗𝑙ℎ𝑙, 𝑦.𝑗𝑙 = ( 𝑦1𝑗𝑙...
𝑦𝐼𝑗𝑙

) is the assignment decision matrix

for the 𝑗th DC for the deteriorating product 𝑙. 𝑉𝑙 is variance-
covariancematrix of daily demand at retailers to deteriorating
product 𝑙. And

𝑀𝑙 = (
(

𝜇21𝑙 𝜇1𝑙𝜇2𝑙 ⋅ ⋅ ⋅ 𝜇1𝑙𝜇𝐼𝑙𝜇2𝑙𝜇1𝑙 𝜇22𝑙 ⋅ ⋅ ⋅ 𝜇2𝑙𝜇𝐼𝑙... ... ...𝜇𝐼𝑙𝜇1𝑙 𝜇𝐼𝑙𝜇2𝑙 ⋅ ⋅ ⋅ 𝜇2𝐼𝑙
)
)

. (7)

𝑒−𝜆𝑙(𝑡𝑗+𝑡𝑖𝑗𝑦𝑖𝑗𝑙+𝐿𝑗𝑙) is a survival probability of deteriorating prod-
uct 𝑙. The quantity surviving of deteriorating product 𝑙 at
the end of the time interval follows a binomial distribution
with parameters 𝑛 = 𝑁𝑙 and 𝑝 = 𝑒−𝜆𝑙(𝑡𝑗+𝑡𝑖𝑗𝑦𝑖𝑗𝑙+𝐿𝑗𝑙). Hence,

𝑁𝑙𝑒−𝜆𝑙(𝑡𝑗+𝑡𝑖𝑗𝑦𝑖𝑗𝑙+𝐿𝑗𝑙) express the expected surviving quantity.
The objective of themodel is tominimize total expected costs
of location, inventory, transportation, and loss of deteriorat-
ing product value. The first objective term 𝑓𝑗𝑥𝑗 is fixed cost
of DC located at retailer site 𝑗 per unit time. The second
objective term is the sum of transportation costs, inventory
costs, and the loss of deteriorating product value. Constraint
(2) defines the capacity of each DC. Constraint (3) ensures
that each deteriorating product can be delivered in usable
lifetime period. Constraint (4) ensures that each retailer with
demand for deteriorating product is supplied only by one
DC. Constraint (5) illustrates that DC can provide service
for retailers only when potential DC becomes a real DC.
Constraint (6) defines the range of the reorder number of
deteriorating product 𝑙 at DC 𝑗.

By introducing auxiliary variables 𝑡𝑗𝑙, 𝑧𝑗𝑙 for each 𝑗 and𝑙, 𝑡𝑗𝑙 is defined by constraint (14), and 𝑧𝑗𝑙 is defined by
constraint (15). Now we, based on the above formulation,
give conic quadratic mixed-integer programming model
(CQMIP):

min ∑
𝑗∈𝐽

(𝑓𝑗𝑥𝑗 +∑
𝑙∈𝐿

(∑
𝑖∈𝐼

∧𝑑𝑖𝑗𝑙𝑦𝑖𝑗𝑙 + 𝜃ℎ𝑙 𝑧𝑗𝑙2 + ∧𝑞𝑗𝑙𝑡𝑗𝑙 +∑
𝑖∈𝐼

𝑁𝑖0 (1 − 𝑒−𝜆𝑙(𝑡𝑗+𝑡𝑖𝑙𝑦𝑖𝑗𝑙+𝐿𝑗𝑙)) (𝐹𝑖 + 𝐷𝑖))) , (8)
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s.t. ∑
𝑙∈𝐿

(𝐿𝑗𝑙∑
𝑖∈𝐼

𝜇𝑖𝑙𝑦𝑖𝑗𝑙 + 𝑄𝑗𝑙 + 𝑡𝑗𝑙) ≤ 𝐶𝑗𝑥𝑗, 𝑗 ∈ 𝐽, (9)

(𝑡𝑗 + 𝐿𝑗𝑙 + 𝑦𝑖𝑗𝑙𝑡𝑖𝑗) ≤ 𝑡𝑙, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, (10)

∑
𝑗∈𝐽

𝑦𝑖𝑗𝑙 = 1, 𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, (11)

𝑦𝑖𝑗𝑙 ≤ 𝑥𝑗, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, (12)𝑄𝑗𝑙 ≥ 0, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, (13)

√𝑦
.𝑗𝑙
(𝐿𝑗𝑙𝑉𝑙 + 𝜎2𝐿𝑗𝑙𝑀𝑙) 𝑦.𝑗𝑙 ≤ 𝑡𝑗𝑙, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, (14)

∑
𝑖∈𝐼

𝐻𝑗𝑙𝜇𝑖𝑦2𝑖𝑗𝑙 + (𝑄𝑗𝑙 − 𝑧𝑗𝑙2 )2 − 𝑧2𝑗𝑙4 ≤ 0, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, (15)

𝑡𝑗𝑙, 𝑧𝑗𝑙 ≥ 0, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿, (16)

where𝐻𝑗𝑙 = ∧𝐹𝑗𝑙/(𝜃ℎ𝑙/2).
Variable 𝑡𝑗𝑙 is used to substitute the term√𝑦
.𝑗𝑙
(𝐿𝑗𝑙𝑉𝑙 + 𝜎2𝐿𝑗𝑙𝑀𝑙)𝑦.𝑗𝑙, and we can prove that problem (𝑃)

is equivalent to CQMIP.

4.3. Extended Cover Cuts. We use optimization software
CPLEX to solve CQMIP problem. In order to get a better
solutionwe strengthen the formulations (CQMIP) with cover
inequalities, utilize the left side of inequality (14) to substitute𝑡𝑗𝑙, and then we receive the nonlinear 0-1 constraint knapsack
result:

∑
𝑙∈𝐿

(√𝑦
.𝑗𝑙
(𝐿𝑗𝑙𝑉𝑙 + 𝜎2𝐿𝑗𝑙𝑀𝑙) 𝑦.𝑗𝑙 + 𝐿𝑗𝑙∑

𝑖∈𝐼

𝜇𝑖𝑙𝑦𝑖𝑗𝑙) ≤ 𝑐𝑗. (17)

For inequality (17), define a set function 𝑓(𝑠) that is from
set 2𝐼 to set 𝑅:

𝑓 (𝑠) = ∑
𝑙∈𝐿

(√𝑦
.𝑗𝑙
(𝐿𝑗𝑙𝑉𝑙 + 𝜎2𝐿𝑗𝑙𝑀𝑙) 𝑦.𝑗𝑙 + 𝐿𝑗𝑙𝜇 (𝑠)) . (18)

Using submodularity of set function𝑓(𝑠), we can gain the
extended cover cuts for the submodular knapsack set 𝑌:

𝑌 = {𝑦 ∈ {0, 1}|𝐼| : 𝑓 (𝑦) ≤ 𝑐} = {𝑦 ∈ {0, 1}|𝐼| :
∑
𝑙∈𝐿

(√𝑦
.𝑗𝑙
(𝐿𝑗𝑙𝑉𝑙 + 𝜎2𝐿𝑗𝑙𝑀𝑙) 𝑦.𝑗𝑙 + 𝐿𝑗𝑙∑

𝑖∈𝐼

𝜇𝑖𝑙𝑦𝑖𝑗𝑙)
≤ 𝑐} .

(19)

Because the validity of the cover inequality depends on
not only the submodular knapsack set 𝑌 but also the cover

set, define a cover set as follow: 𝑆 ⊆ 𝐼, which is called a cover
set for 𝑌 if ∑𝑙∈𝐿(√𝑦

.𝑗𝑙
(𝐿𝑗𝑙𝑉𝑙 + 𝜎2𝐿𝑗𝑙𝑀𝑙)𝑦.𝑗𝑙 + 𝐿𝑗𝑙𝜇(𝑠)) > 𝑐𝑥.

Narayanan [27] shows that for cover set 𝑆, cover inequal-
ity ∑𝑖∈𝑆 𝑦𝑖 ≤ |𝑠| − 1 is valid for 𝑌. We will utilize this cover
inequality in our computations.

5. Numerical Experiments and
Sensitivity Analysis

In this section, we make numerical analysis to computational
results about CQMIP formulations of the combined location-
inventory problems in the deteriorating products supply
chain and compare our computational results with the earlier
Lagrangian relaxation method.

There are three data sets in our experiment: 18-node, 80-
node, and 150-node date set. In Table 1, we give the results
obtained by running CQMIP, compared with Lagrangian
relaxation method. The results indicate that our method
performs quite well in this experiment, reaching optimum
solution faster than Lagrangian relaxation method.

In our method, we add extended cover inequalities; in
Table 2, we give the results obtained by adding extended cover
inequalities. We can find that, with capacity decrease, the
problem becomes more difficult, but, adding extended cover
inequalities, we can find that the solution time is reduced and
the number of nodes is also reduced.

Now we examine the influence of correlated retailers’
stochastic demands on the combined location-inventory
problems in the deteriorating products supply chain. We
utilize 18-node data set to illustrate the effect of retailers’
stochastic demand correlation. In Figure 2, the retailers’
demands are uncorrelated, and the links show retailer assign-
ments in the optimal solution. Four DCs are opened in
Beijing, Shanghai, Guangzhou, and Chengdu, and the total
expected cost is 180090. Now we add correlation to the
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Table 1: Comparing CQMIP and Lagrangian relaxation.

Retailers Lagrangian relaxation CQMIP
Objective Nodes CPU time Objective Nodes CPU time(1) 18 587654 0 1 587654 0 0(2) 18 598765 1168 12 598765 0 0(3) 18 623456 2315 20 623456 7 0(4) 18 640782 4308 36 640782 8 0(5) 18 648790 3879 35 648790 9 0(6) 18 652184 65478 638 652184 40 0(7) 18 667892 79805 784 667892 102 0(8) 18 670100 34276 216 66987 198 0(9) 18 696538 87694 895 696538 178 0(10) 18 876390 104567 926 874568 201 0(11) 80 322590 0 3 322590 0 1(12) 80 327689 8956 78 327689 0 1(13) 80 328905 134200 1105 317896 28 5(14) 80 329054 38700 349 329054 5 6(15) 80 331056 495600 3998 329889 0 2(16) 80 334578 80675 709 334578 6 4(17) 80 338976 65213 563 338976 0 1(18) 80 345079 89765 780 345079 2 2(19) 80 357895 1765893 13004 356978 6 5(20) 80 359876 809764 6754 356574 300 17(21) 150 458678 0 11 458678 0 3(22) 150 469598 76534 675 469598 0 3(23) 150 471023 97863 834 471023 0 3(24) 150 474598 109843 875 474598 0 3(25) 150 476890 187945 1540 476890 0 3(26) 150 478904 235649 1960 478904 0 3(27) 150 479065 307865 2675 479065 0 4(28) 150 479981 859176 6898 479981 0 4(29) 150 480234 478650 3870 480234 0 4(30) 150 482056 342796 2678 482056 0 4

Table 2: The influence of capacity on solving CQMIP.

CPLEX CPLEX + cuts
DC capacity
(% demand) Nodes CPU time Nodes CPU time Cover cuts

(extended cover cuts)
19.5 4090 70 3160 83 1573(0)
19 24316 324 6578 208 656(0)
18.5 10235 208 9878 179 589(0)
18 11934 206 7865 180 548(0)
17.5 27867 406 9654 369 497(0)
16.5 2898 78 5430 67 572(0)
16.3 7865 150 5587 106 576(0)
16.29 167543 2056 32789 784 579(0)

demands of the retailers, to see how correlation will change
the solution. We assume the correlation between retailers is
up to 80%; in this case the total expected cost is 186595. The
current solution is no longer optimal, but the inventory level
and subsequent costs are lower.

We consider positive correlation between retailers;
Figure 3 shows the total expected cost is a function of
the retailers’ demands correlation; the total expected cost
increases monotonically. Moreover, Figure 3 shows the
number of opened DCs is a function of the retailers’
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Figure 2: The effect of correlated retailers’ demand on the supply chain.
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Figure 3: The total expected cost and the number of opened DCs are all function of the retailer stochastic demands correlation.

demands correlation; from this we can conclude that the
retailers’ positive demands correlation reduces the risk of
location.

In our model we consider lead time is stochastic; now let
the standard deviation of the lead time be 0; Figure 4 shows
this particular case. Based on Figure 4, in order to explain
lead time variability, we add a third axis. The influence of
retailers’ correlation demands and stochastic lead times on
total cost is captured by Figure 4; we can find that when
retailers’ stochastic demands are correlated and/or stochastic
lead time standard deviation increases, the total cost of supply
chain will be increased.

Now let the number of opened DCs increase to 18, but
keep lead time standard deviation invariability; from Figure 5
we can conclude that with the retailers’ stochastic demands
correlation increase, there is an increase in the number of
opened DCs. We also conclude that the number of opened
DCs is a function of retailers’ stochastic demands correlation
and lead time standard deviation.
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Figure 4: The total expected cost of the supply chain is a function
of retailers’ stochastic demands correlation and lead time standard
deviation.
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Figure 5: The number of opened DCs is a function of retailers’ stochastic demands correlation and lead time standard deviation.
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Figure 6:The number of opened distribution centers varies with the
weight of transport cost 𝛽𝑙.

Nowwe examine the influence of 𝛽𝑙 and 𝜃𝑙 on the number
of opened distribution centers.We utilize 150-node data set to
illustrate the influence; in our experiment the values of 𝛽𝑙 are
0.001, 0.003, 0.012, 0.060, and 0.360, and the values of 𝜃𝑙 are
0.100, 0.300, 0.900, 2.700, and 4.100. From Figures 6 and 7
we can see that when the value of 𝛽𝑙 increases, the number of
opened distribution centers increased, and when the value of𝜃𝑙 increases, the number of opened distribution centers also
increased. Because 𝛽𝑙 increases equally to the corresponding
transportation cost increase, 𝜃𝑙 increases equally to the
corresponding inventory cost increase, so the fixed-location
cost has fewer impacts on the cost of the objective function;
this results in more distribution centers being opened.

From Figures 8 and 9 we can see that when 𝛽𝑙 increases,
the sum of total expected cost decreases, and when 𝜃𝑙
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Figure 7:The number of opened distribution centers varies with the
weight of inventory 𝜃𝑙.
increases, the sum of total expected cost increases. Figures 8
and 9 show the total expected cost as a function of 𝛽𝑙 and 𝜃𝑙.
Taking into account inventory decision and location decision
at the same time, it will bring a larger total expected cost
reduction.

6. Conclusions

In this paper, we propose a new method to model and
optimize combined location-inventory deteriorating prod-
ucts supply chain problem. We think capacity of facilities
are limited, lead time is random, the products are var-
ied, and retailers’ random demands are correlated. These
assumptions are more practical and near to actual supply
chain circumstance. We use conic quadratic mixed-integer
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Figure 8:The total expected cost varies with the weight of transport
cost 𝛽𝑙.
programming to model integrated location and inventory
problem of deteriorating products supply chain, and we used
optimization software CPLEX to solve this problem. Not only
does this new method obtain better computational solution
than previous Lagrange methods, but also our model is
useful to more general problems. Our method can be used
for inventory management problems, location management
problems, and even transportation management problems.
Conic quadratic mixed-integer programming also can be
used for service supply chain.

The research work provides an effective reference for
managers of deteriorating products supply chain. Consid-
ering the correlation of the demand of the retailers, it
can effectively reduce the inventory and reduce the cost of
excessive inventory. It can better control the location of the
distribution center and reduce the risks caused by improper
location selection. With stochastic lead time standard devia-
tion increase, the total cost of supply chain will increase. So
supply chain managers need to control the stochastic lead
time standard deviation in the right range. The number of
opened DCs is a function of retailers’ stochastic demands
correlation and lead time standard deviation, so supply chain
managers can effectively control the number of opened DCs
in virtue of retailers’ stochastic demands correlation and lead
time standard deviation.The abovemeasuresmake the supply
chain achieve the minimum expected total cost.

In our model, we only consider combined location-
inventory condition. In subsequent studies, we will continue
studying combined location-inventory model with vehicle
routing, applying conic integer programming approach to
model combined production and transportation case.
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Figure 9:The total expected cost varies with the weight of inventory𝜃𝑙.
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