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Noise is ubiquitous in a system and can induce some spontaneous pattern formations on a spatially homogeneous domain. In
comparison to the Reaction-Diffusion System (RDS), Stochastic Reaction-Diffusion System (SRDS) is more complex and it is very
difficult to deal with the noise function. In this paper, we have presented amethod to solve it and obtained the conditions of how the
Turing bifurcation and Hopf bifurcation arise through linear stability analysis of local equilibrium. In addition, we have developed
the amplitude equation with a pair of wave vector by using Taylor series expansion, multiscaling, and further expansion in powers
of small parameter. Our analysis facilitates finding regions of bifurcations and understanding the pattern formation mechanism of
SRDS. Finally, the simulation shows that the analytical results agree with numerical simulation.

1. Introduction

The pattern formation was first investigated and interpreted
by Turing sixty years ago [1]. Othmer and Scriven [2]
proposed that the Turing instability which is initially stable
steady-state of a dynamical system can become unstable if we
consider diffusion in the system. It is also possible in network-
organized systems which is important for understanding of
multicellular morphogenesis. Recently Turing bifurcation,
amplitude equation, and secondary bifurcation have become
more significant to study the pattern formation [3–5]; Lee
and Cho found that the shape and type of Turing patterns
depend on dynamical parameters and external periodic
forcing [6]. Moreover, Peña and Pérez-Garćıa showed that
slightly squeezed hexagons are locally stable in a full range
of distorted angles [7]. The domain coarsening process is
strongly affected by the spatial separation between groups
created by the Turing pattern formation process [8] and the
robustness problem is also investigated [9]. The effects of
cross-diffusion, the phenomenon in which a gradient in the
concentration of one species induces the change of other
species, on pattern formation in Reaction-Diffusion Systems

have been discussed in many theoretical papers [10]. Fanelli
et al. [11] showed that cross-diffusion can destabilize uniform
equilibrium which is stable for the kinetic and self-diffusion
reaction systems. On the other hand, cross-diffusion can also
stabilize a uniform equilibrium which is stable for the kinetic
systembut unstable for the self-diffusion reaction system [12].
In conclusion, spatial patterns in Reaction-Diffusion Systems
have attracted the interest of experimentalists and theorists
during the last few decades. However, until now, no general
theoretical analysis has been proposed for the possible role of
noise in dissipative pattern formation.

Noise is a ubiquitous phenomenon in nature and is always
deemed to play a very important role in natural synthetic
system [13]. Coherence resonance and stochastic resonance in
a noise-driven gene network regulated by small RNA [14, 15].
Viney and Reece [16] treated noise as adaptive and suggested
that applying evolutionary rigour to the study of noise is
necessary to fully understand organismal phenotypes. Scar-
soglio et al. [17] presented different stochastic mechanisms
of spatial pattern formation with a variable as noise-induced
phenomena. Hori and Hara provided a mechanistic basis of
Turing pattern formation that is induced by intrinsic noise

Hindawi
Advances in Mathematical Physics
Volume 2017, Article ID 9648538, 9 pages
https://doi.org/10.1155/2017/9648538

https://doi.org/10.1155/2017/9648538


2 Advances in Mathematical Physics

and derived an efficient computation tool to examine the
spatial power spectrum of the intrinsic noise [18]. Sun et al.
[19] revealed that noise can make the regular circle pattern
to be a target wave-like pattern by numerical simulations. A
stochastic version of the Brusselator model is proposed and
studied via the system size expansion [20] and themesoscopic
equations governing the dynamics were derived and used to
special models [21]. Many studies have been presented in
these research areas [22–28], as practice shows that theory
on Turing bifurcation and pattern formation in dynamical
system was rarely studied.

It is known that amplitude equation is not only a promis-
ing tool to investigate the RDS but also the main focus of the
pattern dynamics [29, 30]. However, the amplitude equation
is a complex process [31], and only a few systems have been
chosen in the past for amplitude equation [32–35]. In this
paper, we studied pattern selection of amplitude equation
with a pair of wave vector by using the standard multiple
scale analysis [36, 37]. Previously, the researchers did not take
into account the effect of noise when deriving the amplitude
equation but we will include it.

Besides the study of patterns, it can offer useful informa-
tion on the underlying processes causing possible changes
in the system. In order to better understand the reaction
diffusion model, first, we proposed to study the pattern
formation with noise based on the theory. In this paper, we
obtained some interesting results explaining biologicalmech-
anism in a modified system. Moreover, we also investigated
the relationship between the Reaction-Diffusion System and
noise, revealing how the dynamics of the model regulation
is affected by noise which provides a way to investigate the
mechanism of pattern formation.

The paper is organized as follows. In Section 2, we present
the general reaction diffusion with noise and derive the
condition of Hopf bifurcation and Turing bifurcation. In
Section 3, we derive the amplitude equation from Reaction-
Diffusion System with noise. In Section 4, we utilize an
example to illustrate the application of these ideas and
using simulations validate theoretical results and present
some interesting pattern dynamical phenomena. Finally, we
summarize our results and conclude.

2. Turing Bifurcation with SRDS

Since we know that noise plays an important role in the non-
linear systems, some promising results have been presented
[11, 12, 32]. However, most people investigated noise by sim-
ulation and seldom put forward the theoretical conclusion,
especially on pattern formation. In this paper, we study the
effect of noise on pattern formation by deriving the Turing
bifurcation, to know how it affects the pattern formation.The
general diffusion form with noise is as follows:

𝜕𝑢𝜕𝑡 = 𝑓 (𝑢, V) + 𝑑1∇2𝑢 + 𝑑2𝑅1 (𝑢, V) 𝜉1,
𝜕V𝜕𝑡 = 𝑔 (𝑢, V) + 𝑑3∇2V + 𝑑4𝑅2 (𝑢, V) 𝜉2,

(1)

where 𝜉 is the noise and ∇2 is the Laplace operator; 𝑑1, 𝑑3
and 𝑑2, 𝑑4 are diffusion parameters and noise magnitude,
respectively.

For convenience, we just consider 𝑅1(𝑢, V) = 𝑢 − 𝑢0,𝑅2(𝑢, V) = V − V0, 𝜉1 = (1/√2𝜋𝜎)𝑒−(𝑢−𝑢0)2/2𝜎2 , 𝜉2 = (1/√2𝜋𝜎)𝑒−(V−V0)2/2𝜎2 as random variable in this system. In order
to obtain the stability of this spatially uniform solution, we
consider a perturbation of the form in the following:

𝑃 (𝑡) = (𝑢 (𝑡)
V (𝑡)) = (𝑢 (𝑡) − 𝑢0

V (𝑡) − V0
) . (2)

In the convergence domain, we can obtain the linear
system of stochastic system as (3) at (𝑢0, V0) which satisfy𝑓(𝑢0, V0) = 0, 𝑔(𝑢0, V0) = 0.

𝜕𝑢𝜕𝑡 = 𝑎11𝑢 + 𝑎12V + 𝑑1∇2𝑢 + 𝑑21𝑢,
𝜕V𝜕𝑡 = 𝑎21𝑢 + 𝑎22V + 𝑑3∇2V + 𝑑41V,

(3)

where the matrix 𝑎 is the partial derivative of 𝑓(𝑢, V), 𝑔(𝑢, V)
at (𝑢0, V0) and 𝑑21 = 𝑑2(1/√2𝜋𝜎), 𝑑41 = 𝑑4(1/√2𝜋𝜎).

For convenience, we can get the linearized system govern-
ing the dynamics of 𝑃 is defined by

𝑃𝑡 = 𝐴𝑃 + 𝐷Δ𝑃, (4)

where the coefficient matrix is given by

𝐴 = (𝐴11 𝐴12𝐴21 𝐴22) ,
𝐷 = (𝑑1 0

0 𝑑3) ,
(5)

where
A11 = 𝑎11 + 𝑑21,
𝐴12 = 𝑎12,
𝐴22 = 𝑎22 + 𝑑41,
𝐴21 = 𝑎21.

(6)

In the standard way, we assume that 𝑃 take the form as

𝑃 = (𝑐1𝑐2) 𝑒𝜆𝑡+𝑖𝑘𝑟 (7)

and get the characteristic equation from system (4) as follows:󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜆𝑘 − 𝐴11 + 𝑘2𝑑1 −𝐴12−𝐴21 𝜆𝑘 − 𝐴22 + 𝑘2𝑑3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 0. (8)

Finally, we solve the characteristic equation and obtain the
eigenvalues

𝜆2𝑘 − Tr𝑘𝜆 + 𝛿 (𝑘2) = 0
𝜆𝑘 = 12 (Tr𝑘 ± √Tr2𝑘 − 4𝛿𝑘) , (9)
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where

Tr𝑘 = 𝐴11 + 𝐴22 − 𝑘2 (𝑑1 + 𝑑3)
= 𝑎11 + 𝑑21 + 𝑎22 + 𝑑41 − 𝑘2 (𝑑1 + 𝑑3) ,

Tr0 = 𝐴11 + 𝐴22 = 𝑎11 + 𝑑21 + 𝑎22 + 𝑑41
𝛿 (𝑘2) = 𝐴11𝐴22 − 𝐴12𝐴21 − (𝐴11𝑑3 + 𝐴22𝑑1) 𝑘2

+ 𝑑1𝑑3𝑘4
= 𝑎11𝑎22 + 𝑎11𝑑41 + 𝑑21𝑎22 + 𝑑21𝑑41 − 𝑎12𝑎21

− (𝑎11𝑑3 + 𝑑21𝑑3 + 𝑎22𝑑1 + 𝑑1𝑑41) 𝑘2
+ 𝑑1𝑑3𝑘4

det (𝑃) = 𝛿0
= 𝑎11𝑎22 + 𝑎11𝑑41 + 𝑑21𝑎22 + 𝑑21𝑑41 − 𝑎12𝑎21.

(10)

Based on the bifurcation theory, we obtain new condi-
tions of bifurcation with noise.

(1)Hopf bifurcation occurs in theReaction-Diffusion Sys-
tem (3) which should satisfy the following critical conditions
here:

(i) 𝑎11 + 𝑑21 + 𝑎22 + 𝑑41 = 0,
(ii) 𝑎11𝑎22 + 𝑎11𝑑41 + 𝑑21𝑎22 + 𝑑21𝑑41 − 𝑎12𝑎21 > 0,
(iii) Re(𝜆𝑘) is not a constant.
(2) Turing bifurcation (diffusion-driven instability)

occurs in the Reaction-Diffusion System (3) which should
satisfy the following conditions here:

(i) 𝑎11 + 𝑑21 + 𝑎22 + 𝑑41 < 0,
(ii) 𝑎11𝑎22 + 𝑎11𝑑41 + 𝑑21𝑎22 + 𝑑21𝑑41 − 𝑎12𝑎21 > 0,
(iii) 𝑎11𝑑3 + 𝑑21𝑑3 + 𝑎22𝑑1 + 𝑑41𝑑1 > 0,
(iv) 𝑎11𝑑3 + 𝑑21𝑑3 + 𝑎22𝑑1 + 𝑑41𝑑1 >2√𝑑1𝑑3(𝑎11𝑎22 + 𝑎11𝑑41 + 𝑑21𝑎22 + 𝑑21𝑑41 − 𝑎12𝑎21).

And the critical condition where 𝑘 ̸= 0 is
𝑎11𝑎22 + 𝑎11𝑑41 + 𝑑21𝑎22 + 𝑑21𝑑41 − 𝑎12𝑎21

− (𝑎11𝑑3 + 𝑑21𝑑3 + 𝑎22𝑑1 + 𝑑1𝑑41) 𝑘2 + 𝑑1𝑑3𝑘4
= 0.

(11)

3. Amplitude Equation with a Pair
of Wave Vector

For amodifiedmodel [38] with the external stimulus 𝛾𝑢V, the
following is obtained:

𝜕𝑢𝜕𝑡 = 𝑢 − 𝑢3 − 𝛼V − 𝛾𝑢V + 𝑑1∇2𝑢 + 𝑑2𝑅1 (𝑢, V) 𝜉1,
𝜕V𝜕𝑡 = 𝑢 − 𝛽V + 𝑑3∇2V + 𝑑4𝑅2 (𝑢, V) 𝜉2.

(12)

In this paper, we expanded (12) at equilibrium (0, 0)
by using the Taylor expansion and then we truncated the
expansion at third order; it is found that only third order𝑢𝑒−𝑢2 = 𝑢 − 𝑢3 + ⋅ ⋅ ⋅ will be included and higher order will
not affect the amplitude equation in the process. And it can
be written as

𝜕𝑢𝜕𝑡 = 𝑢 − 𝑢3 − 𝛼V − 𝛾𝑢V + 𝑑21𝑢 − 𝑑22𝑢3 + 𝑑1∇2𝑢,
𝜕V𝜕𝑡 = 𝑢 − 𝛽V + 𝑑41V − 𝑑42V3 + 𝑑3∇2V.

(13)

In the following, we use multiple scale analysis to derive the
amplitude equations with a pair of wave vector when |𝑘| = 𝑘𝑐.
Denote 𝛽 as the controlled parameters. When the controlled
parameter is larger than the critical value of Turing point, the
solutions of the systems (13) can be expanded as

𝑐 = 𝑐0 + 𝑍e𝑖𝑘𝑐𝑟 + 𝑍𝑒−𝑖𝑘𝑐𝑟. (14)

Close to onset 𝛽 = 𝛽𝑐, one has that 𝜕𝑍/𝜕𝑡 = 𝑠𝑍 + 𝐹(𝑍).
Based on the center manifold near the Turing bifurcation

point, it can be concluded that amplitude 𝑍 satisfies 𝜕𝑍/𝜕𝑡 =𝐹(𝑍, 𝑍).
From the standard multiple scale analysis, up to the third

order in the perturbations, the spatiotemporal evolution of
the amplitudes can be described as

𝜏0 𝜕𝑍𝜕𝑡 = 𝜇𝑍 + 𝑏𝑍 + 𝑐𝑍2 + 𝑑 |𝑍|2 + 𝑒𝑍2 + 𝑓𝑍3
+ 𝑔 |𝑍|2 𝑍 + ℎ |𝑍|2 𝑍 + 𝑖𝑍3 + 𝑂 (𝑍4) .

(15)

Due to spatial translational symmetry, we have the following
equation:

𝜏0𝑒𝑖𝜙 𝜕𝑍𝜕𝑡 = 𝑒𝑖𝜙𝜇𝑍 + 𝑒−𝑖𝜙𝑏𝑍 + 𝑒𝑖2𝜙𝑐𝑍2 + 𝑑 |𝑍|2
+ 𝑒−𝑖2𝜙𝑒𝑍2 + 𝑒𝑖3𝜙𝑓𝑍3 + 𝑒𝑖𝜙𝑔 |𝑍|2 𝑍
+ 𝑒−𝑖𝜙ℎ |𝑍|2 𝑍 + 𝑒−𝑖3𝜙𝑖𝑍3 + 𝑂 (𝑍4) .

(16)

Comparing (15) with (16) and from the center manifold
theory, we know that amplitude equation does not include
the amplitude with unstable mode. As a result, we have the
following equations:

𝜏0 𝜕𝑍𝜕𝑡 = 𝜇𝑍 − 𝑔 |𝑍|2 𝑍. (17)

In the following, we will give the expressions of 𝜏0, 𝜇, and𝑔. Let system (13) be written as

𝜕𝑐𝜕𝑡 = 𝐿𝑐 + 𝑁 (𝑐, 𝑐) , (18)

where

𝑐 = (𝑢
V
) (19)
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is the variable,

𝐿 = (𝑑21 + 1 + 𝑑1∇2 −𝛼
1 𝑑41 − 𝛽 + 𝑑3∇2) (20)

is the linear operator, and

𝑁 = (𝛾𝑢V − 𝑢3 − 𝑑22𝑢3−𝑑42V3 ) (21)

is the nonlinear term, where 𝑑22 = (1/2𝜎2)𝑑21 and 𝑑42 =(1/2𝜎2)𝑑41.
We need to investigate the dynamical behavior when 𝛽 is

close to 𝛽𝑐, and then we expand 𝛽 as

𝛽𝑐 − 𝛽 = 𝜀𝛽1 + 𝜀2𝛽2 + ⋅ ⋅ ⋅ , (22)

where 𝜀 is a small enough parameter. We expand 𝑐 and 𝑁 as
the series form of 𝜀:

𝑐 = (𝑢1
V1

) 𝜀 + (𝑢2
V2

) 𝜀2 + ⋅ ⋅ ⋅ (23)

and 𝑁 in the Appendix.
Linear operator 𝐿 can be expanded as

𝐿 = 𝐿𝑐 + (𝛾𝑐 − 𝛾)𝑀 (24)

and 𝐿𝑐 and 𝑀 in the Appendix.
Let

𝑇0 = 𝑡,
𝑇1 = 𝜀𝑡,
𝑇2 = 𝜀2𝑡,

...
(25)

and 𝑇𝑖 is a dependent variable. For the derivation of time, we
have that

𝜕𝜕𝑡 = 𝜀 𝜕𝜕𝑇1 + 𝜀2 𝜕𝜕𝑇2 + ⋅ ⋅ ⋅ . (26)

The solutions of systems (13) have the following form:

𝑐 = (𝑢
V
) = (𝑥

𝑦) 𝑒𝑖𝑘𝑐𝑟 + 𝑐.𝑐. (27)

This expression implies that the bases of the solutions
have nothing to do with time and the amplitude 𝑊 is a
variable that changes slowly. As a result, it can be written
generally as the following equation:

𝜕𝑊𝜕𝑡 = 𝜀𝜕𝑊𝜕𝑇1 + 𝜀2 𝜕𝑊𝜕𝑇2 + ⋅ ⋅ ⋅ . (28)

Substituting the above equations into (24) and expanding
(24) according to different orders of 𝜀, we can obtain three
equations as follows:

𝜀 : 𝐿𝑐 (𝑢1
V1

) = 0,
𝜀2 : 𝐿𝑐 (𝑢2

V2
) = 𝑁1,

𝜀3 : 𝐿𝑐 (𝑢3
V3

) = 𝑁2

(29)

and 𝑁1, 𝑁2 in the Appendix.
We first consider the case of the first order of 𝜀. Since 𝐿𝑐 is

the linear operator of the system close to the onset, (𝑢1, V1)𝑇 is
the linear combination of the eigenvectors that corresponds
to the zero eigenvalue since that

(𝑢1
V1

) = (𝑥1𝑦1)𝑊𝑒𝑖𝑘𝑐𝑟 + 𝑐.𝑐. (30)

Let 𝑥1 = 𝑝 by assuming 𝑦1 = 1; then,
(𝑢1
V1

) = (𝑝
1) (𝑊𝑒𝑖𝑘𝑐𝑟 + 𝑐.𝑐.) , (31)

where 𝑝 in the Appendix and𝑊 is the amplitude of the mode𝑒𝑖𝑘𝑐𝑟.
Now, we consider the case of the second order of 𝜀2.

According to the Fredholm solubility condition [32], the
vector function of the right hand of the above equation must
be orthogonal with the zero eigenvectors of operator 𝐿+𝑐 . And
the zero eigenvectors of adjoint operator 𝐿+𝑐 are

(1
𝑞) 𝑒−𝑖𝑘𝑐𝑟 (32)

and 𝑞 in the Appendix.
It can be obtained from the orthogonality condition that

𝜏0 𝜕𝜕𝑇1 (𝑊) = 𝛽1𝑊. (33)

By using the same methods, we deduce

(𝑢2
V2

) = (𝑎0𝑏0) + (𝑎1𝑏1) 𝑒𝑖𝑘𝑐𝑟 + (𝑎𝑖𝑖𝑏𝑖𝑖) 𝑒𝑖2𝑘𝑐𝑟 (34)

and coefficients in the Appendix.
For the case of the third order of 𝜀3, replace 𝑢1, V1, 𝑢2, and

V2 by their expression

𝐿𝑐 (𝑢2
V2

) = 𝐵 = 𝐶 (35)

and 𝐵, 𝐶 in the Appendix. Using the Fredholm solubility
condition again, we can obtain

𝜏0 𝜕𝑏1𝜕𝑇1 + 𝜏0 𝜕𝑊𝜕𝑇2 = 𝛽1V2 + 𝛽2V1 − 𝑔 |𝑊|2𝑊. (36)
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Figure 1: (a)The bifurcation space diagram. (b)The bifurcation space diagram based on (38) when 𝛼 = 3, 𝛾 = 1, 𝑑1 = 1, 𝑑3 = 1, 𝜎 = 1/2, and𝛽 = 2.

And then we substitute system (28) and (33) into (24) to
simplify [32]; we obtain the expressions of the coefficients of𝜏0, 𝑔, and 𝜇 in the Appendix.

And

𝑍𝑖 = 𝜀𝑊𝑖 + 𝜀2𝑏𝑖 + ⋅ ⋅ ⋅ . (37)

So the equation of amplitude is as follows:

𝜏0 𝜕𝑍𝜕𝑡 = 𝜇𝑍 − 𝑔 |𝑍|2 𝑍. (38)

Here, we will investigate the dynamics of amplitude equation
by using the linear stability analysis [30, 32] and study the
different pattern. The dynamical systems (38) possess two
kinds of solution as follows.

(i) The stationary solution 𝑍 = 0 is stable for 𝜇 < 0 and
unstable for 𝜇 > 0.

(ii) The solution 𝑍 = √𝜇/𝑔 is only unstable for 𝜇 < 0.
4. Simulation

As the examples of Reaction-Diffusion System with noise, we
use the following:

𝜕𝑢𝜕𝑡 = 𝑓 (𝑢, V) + 𝑑1∇2𝑢 + 𝑑2𝑅1 (𝑢, V) 𝜉1,
𝜕V𝜕𝑡 = 𝑔 (𝑢, V) + 𝑑3∇2𝑢 + 𝑑4𝑅2 (𝑢, V) 𝜉2,

(39)

where 𝑅1(𝑢, V) = 𝑢 − 𝑢0, 𝑅2(𝑢, V) = V − V0, 𝑓(𝑢, V) = 𝑢 − 𝑢3 −𝛼V − 𝛾𝑢V, and 𝑔(𝑢, V) = 𝑢 − 𝛽V, and obtain the characteristic
equation at (𝑢0, V0) = (0, 0). Here, we denote 𝛼 = 3, 𝛾 = 1,

𝑑1 = 1, 𝑑3 = 1, and 𝜎 = 1/2 and get the critical value of Hopf
bifurcation when 𝛽 = 1 + 2𝑑2/√2𝜋 + 2𝑑4/√2𝜋 and Turing
bifurcation when 𝛽 = −2𝑑2/√2𝜋+ 2𝑑4/√2𝜋+ 2√3− 1 based
on the bifurcation theory in Section 2.

Themodel is simulated numerically in two spatial dimen-
sions and employ the zero-flux boundary conditions in (39).
We set time step and space step as 0.02 and 1, respectively.
Thebifurcation space divide the space into four domains (Fig-
ure 1(a)). On bottom domain, locating below two bifurcation
spaces, the system lies in the steady state (Figure 3(d)). The
middle domain are regions of pure Turing and pure Hopf in
stabilities (Figures 3(b) and 3(c)). On the top, two bifurcation
spaces interact (Figure 3(a)). It is found that noise contribute
to Turing bifurcation and Hopf bifurcation.

In addition, We find 𝜏0 = −1.0721, 𝑔 = −31.5212, 𝛽𝑐 =2.3843, and 𝛽 = 2 when 𝑑2 = 0.2, 𝑑4 = 0.1 and 𝜏0 = 0.1149,𝑔 = 3.5556,𝛽𝑐 = 1.7560, and𝛽 = 2when𝑑2 = 1,𝑑4 = 0.1.We
get the stability of amplitude equation (Figure 1(b)) and the
corresponding pattern formation (Figures 2(a) and 2(b)). In
a nutshell, noise plays an important role in the type of pattern
formation and the stability in the system, which provides a
new way to investigate the mechanism of pattern formation.

5. Conclusion

As we all know, noise could make a bistable system which
switches and regulates relevant mechanism [39]. Similarly, it
was presented in [40] to understand the biological pattern
formation and we presented the spatial pattern with different
noise intensities, which gave results supporting that noise
could make pattern formation switch (Figures 2(a) and 2(b))
for the Stochastic Reaction-Diffusion Systems. Later some
special biological models [21] have been studied and its
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Figure 2: Parameter values and initial perturbation, respectively: 𝛼 = 3, 𝛾 = 1, 𝑑1 = 1, 𝑑3 = 1, 𝜎 = 1/2, 𝑑4 = 0.1, 𝛽 = 2, sin(𝑥𝑦), and cos(𝑥𝑦).
(a) Pattern formation on the top domain when 𝑑2 = 0.2. (b) Pattern formation on the top domain when 𝑑2 = 1. Although the amplitude
equation is stable, the effect of noise is crucial.

biological mechanism was explained by the type of pattern
formation. For example, the system will exhibit a characteris-
tic excursion in phase space before the variables 𝑢 and V relax
back to their rest values [38].The only spot pattern existing in
Figure 2(b) means that the noise exceeds the maximum value
that a biological system could bear and makes the biological
system worse. Instead, the appropriate noise could keep
a biological system working towards better development.
For the Turing instability, the different pattern formation
occurs in different condition (Figure 3), especially, the pure
Turing domain (Figure 3(b)) and the pure Hopf domain
(Figure 3(c)), which shows that not only Turing bifurcation
but also Hopf bifurcation makes the system vary and decides
whether to relax back to their rest values, then keeping
good condition. The patterns discussed above show that
the distribution and interaction of ion density and electric
potential are caused by noise and diffusion. As a result, we
can control the distribution of ion by noise, diffusion, and so
on. Our research may help cure some diseases caused by the
conduction of electrical impulses along a nerve fiber in future.

To summarise, noise effects have been paid much atten-
tion due to its strong impact on pattern formation [19–25].
In this article, we presented the theoretical, analytical, and
numerical study of the Turing instability accompanied with
noise. We examined the effects of noise on pattern formation
and the interaction between Hopf bifurcation space and
Turing bifurcation space. It is found that the systems with
noise effect have rich spatial dynamics by performing a series
of numerical simulations. Thus we know that noise plays an
important role in Turing bifurcation and Hopf bifurcation.
Moreover, we derive the amplitude equation with a pair of
wave vector and analyze the stability. It should be noted
that noise contribute to the type of pattern formation and
the stability. For future study, we would use the theoretical
concepts to solve some other problems and find out a general
way to deal with it.

Appendix

𝑁 = (𝛾𝑢1V1𝜀2 + (𝛾𝑢1V2 + 𝛾V1𝑢2 − 𝑢31 − 𝑑22𝑢31) 𝜀3 + 𝑜 (𝜀4)
−𝑑42V31𝜀3 ) ,

𝐿𝑐 = (𝑑21 + 1 + 𝑑1∇2 −𝛼
1 𝑑41 − 𝛽𝑐 + 𝑑3∇2) ,

𝑀 = (0 0
0 1) ,

𝑁1 = 𝜕𝜕𝑇1 (
𝑢1
V1

) − 𝛽1𝑀(𝑢1
V1

) − (𝛾𝑢1V10 ) ,
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Figure 3: Parameter values and initial perturbation, respectively: 𝛼 = 3, 𝛾 = 1, 𝑑1 = 1, 𝑑3 = 1, 𝜎 = 1/2, 𝑑2 = 0.1, sin(𝑥𝑦), and cos(𝑥𝑦).
(a) Pattern formation on the top domain when 𝑑4 = 0.1, 𝛽 = 4. (b) Pattern formation on the right domain when 𝑑4 = 1, 𝛽 = 2. (c) Pattern
formation on the left domain when 𝑑4 = 0.1, 𝛽 = 2. (d) Pattern formation on the bottom domain when 𝑑4 = 1, 𝛽 = 2.

𝑁2 = 𝜕𝜕𝑇1 (
𝑢2
V2

) + 𝜕𝜕𝑇2 (
𝑢1
V1

) − 𝛽1𝑀(𝑢2
V2

) − 𝛽2𝑀(𝑢1
V1

)(𝛾𝑢1V2 + 𝛾𝑢2V1 − 𝑢31 − 𝑑22𝑢31𝑑42V31 ) ,
𝑥1 = 𝑝𝑦1,
𝑝 = 𝛽𝑐 − 𝑑41 + 𝑑3𝑘2𝑐 ,
𝑞 = 𝑑1𝑘2𝑐 − 𝑑21 − 1,
𝑎0 = (𝑑41 − 𝛽𝑐) 𝑏0,
𝑏0 = 2 |𝑍|2 𝛾𝑝(𝑑21 + 1) (𝑑41 − 𝛽𝑐) − 𝛼 ,
𝑎1 = 𝑝𝑏1,
𝑎𝑖𝑖 = (𝛽𝑐 + 4𝑑3𝑘2𝑐 − 𝑑41) 𝑏𝑖𝑖,
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𝑏𝑖𝑖 = 𝛾𝑝 |𝑍|2(𝑑21 + 1 − 4𝑑1𝑘2𝑐) (𝛽𝑐 + 4𝑑3𝑘2𝑐 − 𝑑41) − 𝛼 ,
𝐵 = ((𝑑21 + 1)𝑋0 − 𝛼𝑌0 + ((𝑑21 + 1 − 𝑑1𝑘2𝑐)𝑋1 − 𝛼𝑌1) 𝑒𝑖𝑘𝑐𝑟 + ((𝑑21 + 1 − 4𝑑1𝑘2𝑐)𝑋11 − 𝛼𝑌11) 𝑒𝑖2𝑘𝑐𝑟 + 𝑐.𝑐

𝑋0 + (−𝛽𝑐 + 𝑑41) 𝑌0 + (𝑋1 − (𝛽𝑐 − 𝑑41 + 𝑑3𝑘2𝑐) 𝑌1) 𝑒𝑖𝑘𝑐𝑟 + (𝑋11 − (𝛽𝑐 − 𝑑41 + 4𝑑3𝑘2𝑐) 𝑌11) 𝑒𝑖2𝑘𝑐𝑟 + 𝑐.𝑐) ,
𝜏0 = 𝑝 + 𝑞𝑞 ,
𝑔𝑞 = −𝑎0 + 𝑎𝑖𝑖 + 𝑝𝑏0 + 𝑝𝑏𝑖𝑖|𝑍|2 + 𝑝3 + 𝑑22𝑝3 + 𝑑42𝑞,
𝜇 = 𝛽𝑐 − 𝛽,
𝐶 = 𝜕𝜕𝑇1 (

𝑢1
V1

) − 𝛽1( 0
𝑍𝑒𝑖𝑘𝑐𝑟 + 𝑐.𝑐.) − (𝛾𝑢1V10 ) .

(A.1)

Fredholm Solubility Condition.The perturbation equation has𝑂(1) : 𝐿𝑢0 = 0, 𝑂(𝜀𝑖) : 𝐿𝑢𝑖 = 𝑞𝑖, 𝑞𝑖 which is nonlinear
function about 𝑥0, . . . , 𝑥𝑖−1. In order to remove the resonance
term, 𝑞𝑖 cannot resonate with the nontrivial null space of
linear operator 𝐿, namely, 𝑢0. Then every linear operator
defines an adjoint operator𝐿∗.The consistency of the solution
of equation 𝐿𝑢 = 𝑞 requires 𝑢+𝑞 = 0, where 𝐿∗𝑢+ = 0, 𝑙∗𝑖𝑗 = 𝑙𝑗𝑖.
Simply put, Fredholm solubility condition is 𝑢+𝑞 = 0.
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