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Ahybrid variationalmodel combinedfirst- and second-order total variation for image reconstruction from its finite number of noisy
compressive samples is proposed in this paper. Inspired bymajorization-minimization scheme, we develop an efficient algorithm to
seek the optimal solution of the proposed model by successively minimizing a sequence of quadratic surrogate penalties. Both the
nature and magnetic resonance (MR) images are used to compare its numerical performance with four state-of-the-art algorithms.
Experimental results demonstrate that the proposed algorithm obtained a significant improvement over related state-of-the-art
algorithms in terms of the reconstruction relative error (RE) and peak signal to noise ratio (PSNR).

1. Introduction

Traditional approaches to sampling signals or images follow
the basic principle of the Nyquist-Shannon sampling theo-
rem; the sampling rate must be at least twice of the frequency
bandwidth. In many practical applications, including image
and video cameras, MRI scanners, and radar receivers,
requirements of high resolution imaging lead to very high
Nyquist sampling rate which brings a series of realistic
difficult problems in the field of data conversion (e.g., analog-
digital conversion), storage, and transmission.The technique
called compressive sensing (CS), which goes against con-
ventional wisdoms in data acquisition, has recently been
developed to overcome those problems.

CS theory designs nonadaptive sampling techniques that
condense the information in sparse or compressible images
into a small amount of data and yet reconstruct them accu-
rately.The general framework of compressive sensing consists
of two phases: encoding and decoding. In the encoding phase,
a sparse or compressible image u ∈ 𝑅𝑁1×𝑁2 is encoded into
noisy compressive samples by

y = Φu + n. (1)

Here, Φ ∈ 𝐶
𝑀×𝑁 is the sensing matrix (𝑀 is the number

of measurements and 𝑁 = 𝑁
1
× 𝑁
2
is the number of

total pixels, 𝑀 ≪ 𝑁), y ∈ 𝐶
𝑀 is the compressive

samples of original image u, and n is Gaussian white noise
with standard deviation 𝜎. While in the decoding phase,
a nonlinear recovery algorithm is used to reconstruct the
original image u from compressive samples y [1–3]. One
common approach is to formulate the CS decoding as the
following optimization problem [4]:

û = argminu
󵄩
󵄩
󵄩
󵄩
y − Φu󵄩󵄩󵄩

󵄩

2

2
+ 𝜆R (u) , (2)

where R(u) is the regularization term and 𝜆 is a tunable
regularization parameter that trades off the fidelity term
‖y − Φu‖2

2
and the regularization termR(u). One of popular

choices of the regularization term is the total variation (TV)
regularizer defined by the 𝑙

1
norm of the image gradient

[5, 6]:

R
1 (u) = ∫

Ω

|∇u| 𝑑𝑥 𝑑𝑦. (3)

Total variation regularization was firstly introduced by
Rudin et al. [7] to cope with image denoising problem in
1992. Their approach had a significant impact in the area of
inverse problems in image processing. Since then, various



2 Mathematical Problems in Engineering

improvements have been proposed by the community, for
example, adaptive TV regularization [8, 9], nonlocal TV
regularization [10], and anisotropic and directional TV reg-
ularization [11–13]. TV regularization is widely used in image
processing problems mainly due to its good properties such
as convexity, invariance to image shifts, high-accuracy of
recovery piecewise constant images, and desirable ability
to preserve edges. However, it also has some limitations.
The penalization of 𝑙

1
norm of gradient usually encourages

the recovery of images in a piecewise-constant form, thus,
resulting in reconstructed images with patchy of painting
like staircase artifacts [14, 15]. To reduce the staircase effect
and give better denoising performance, several higher-order
TV regularization schemes were reported in the context of
image denoising over the last few years [14–18]. However,
the higher-order regularizers are prone to causing blurring
across sharp edges, since they prefer to suppress large partial
gradients. To complement each other for most nature images,
it is thus needed to further improve the image restoration
capability by combining first- and higher-order methods into
one framework.

In this paper, we propose a hybrid compressive sensing
method using a new hybrid TV measure by a combined
first- and second-order TV penalty for recovering a piecewise
smooth image containing all possible sharper edges from
limited compressive samples. To seek the optimal solution
of the proposed model, we develop an efficient image recon-
struction algorithm by using the majorization-minimization
scheme. The novelty in this work is that our hybrid TV
regularization method is able to utilize the best properties
of first- and second-order TV regularization and manage to
overcome the weaknesses of both.

The rest of the paper is organized as follows. Section 2
provides a brief review of second-order TV regularization
method for CS image reconstruction problem. In Section 3,
we give a detailed description of our hybrid TV-based
CS construction model and corresponding optimization
algorithm. Experimental results and performance analysis
are given in Section 4. Finally, Section 5 concludes this
paper.

2. Second-Order TV Penalty

In this section, we reinterpret classic TV regularizer and
extend it to second-order TV regularizer. We denote first-
order directional derivative of u along the unit vector e

𝜃
=

(cos 𝜃, sin 𝜃) as u
𝜃,1
, which can be expressed as the linear

combination of horizontal and vertical directional derivatives
as follows:

u
𝜃,1
(𝑥, 𝑦) = u

𝑥
cos 𝜃 + u

𝑦
sin 𝜃 = [cos 𝜃, sin 𝜃]

[
[
[
[

[

𝜕u
𝜕𝑥

𝜕u
𝜕𝑦

]
]
]
]

]

.

(4)

Similarly, for the second-order directional derivative u
𝜃,2
,

we have

u
𝜃,2
(𝑥, 𝑦) = [cos2𝜃, 2 cos 𝜃 sin 𝜃, sin2𝜃]

[
[
[
[
[
[
[
[
[

[

𝜕
2u
𝜕𝑥
2

𝜕
2u

𝜕𝑥𝜕𝑦

𝜕
2u
𝜕𝑦
2

]
]
]
]
]
]
]
]
]

]

. (5)

In order to extend the standard TV scheme to higher-
order TV regularizer, we reinterpret the TV regularizer as a
group separable 𝑙

1
− 𝑙
2
mixed norm of directional derivatives

of the specified image. To do this, we rewrite gradient
magnitude as follows:

|∇u| = √ 󵄨
󵄨
󵄨
󵄨
u
𝑥

󵄨
󵄨
󵄨
󵄨

2
+

󵄨
󵄨
󵄨
󵄨
󵄨
u
𝑦

󵄨
󵄨
󵄨
󵄨
󵄨

2

= √
1

𝜋

∫

2𝜋

0

󵄨
󵄨
󵄨
󵄨
u
𝑥
cos 𝜃󵄨󵄨󵄨

󵄨

2
𝑑𝜃 +

1

𝜋

∫

2𝜋

0

󵄨
󵄨
󵄨
󵄨
󵄨
u
𝑦
sin 𝜃󵄨󵄨󵄨󵄨

󵄨

2

𝑑𝜃

= (

1

𝜋

(∫

2𝜋

0

󵄨
󵄨
󵄨
󵄨
u
𝑥
cos 𝜃󵄨󵄨󵄨

󵄨

2
𝑑𝜃 + 2∫

2𝜋

0

u
𝑥
u
𝑦
cos 𝜃 sin 𝜃𝑑𝜃

+∫

2𝜋

0

󵄨
󵄨
󵄨
󵄨
󵄨
u
𝑦
sin 𝜃󵄨󵄨󵄨󵄨

󵄨

2

𝑑𝜃))

1/2

= √
1

𝜋

∫

2𝜋

0

󵄨
󵄨
󵄨
󵄨
󵄨
u
𝑥
cos 𝜃 + u

𝑦
sin 𝜃󵄨󵄨󵄨󵄨

󵄨

2

𝑑𝜃

= √
1

𝜋

∫

2𝜋

0

󵄨
󵄨
󵄨
󵄨
u
𝜃,1

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜃.

(6)

Hence, TV regularizer defined in (3) can be expressed
as a functional involving the directional derivatives of u as
follows:

R
1 (u) = ∫

Ω

|∇u| 𝑑𝑥 𝑑𝑦 = ∫
Ω

√
1

𝜋

∫

2𝜋

0

󵄨
󵄨
󵄨
󵄨
u
𝜃,1

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜃 𝑑𝑥 𝑑𝑦. (7)

Based on the above reinterpretation, we introduce
second-order TV regularizer by replacing first-order direc-
tional derivative u

𝜃,1
in (7) with second-order directional

derivative u
𝜃,2
, thus we have

R
2 (u) = ∫

Ω

√
1

𝜋

∫

2𝜋

0

󵄨
󵄨
󵄨
󵄨
u
𝜃,2

󵄨
󵄨
󵄨
󵄨

2
𝑑𝜃 𝑑𝑥 𝑑𝑦. (8)
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Substituting (5) into (8), we can rewrite the second-order
TV regularizerR

2
(u) as follows:

R
2 (u)

= ∫

Ω

(

1

𝜋

∫

2𝜋

0

󵄨
󵄨
󵄨
󵄨
󵄨
u
𝑥𝑥
cos2𝜃 + 2 cos 𝜃 sin 𝜃u

𝑥𝑦

+ u
𝑦𝑦
sin2𝜃󵄨󵄨󵄨󵄨

󵄨

2

𝑑𝜃)

1/2

𝑑𝑥 𝑑𝑦

= ∫

Ω

1

2

√3u2
𝑥𝑥
+ 4u2
𝑥𝑦
+ 3u2
𝑦𝑦
+ 2u
𝑥𝑥
u
𝑦𝑦
𝑑𝑥 𝑑𝑦.

(9)

Since the second-order TV regularizer sums the square
magnitude of the directional derivatives of the image along
all directions and orientations, this penalty is invariant to
rotations and translations and is also convex. The second-
order derivatives are steerable which enables us to obtain
analytical expressions for the new regularizer as the standard
TV regularizer. Furthermore, the minimization of second-
order TV regularizer will preserve the strong directional
derivatives and attenuate the small ones at other direc-
tions; thus, it can provide better preservation along line-like
features.

3. The Proposed Variational Approach for
Image Compressive Sensing

3.1. Hybrid TV-Based Reconstruction Model. Combining
first-order and second-order TV regularizers, we present a
hybridTV regularizationmodel to reconstruct original image
from its noisy compressive samples. Given noisy compressive
samples y and sensingmatrixΦ, the proposed reconstruction
model can be formulated as

û = argminu
󵄩
󵄩
󵄩
󵄩
y − Φu󵄩󵄩󵄩

󵄩

2

2
+ 𝜆R

1 (u) + 𝜇R2 (u) , (10)

where 𝜆 and 𝜇 are two positive parameters that control
contribution of the fidelity term and two regularization
terms.

In the first-order TV regularization method, images
are often assumed to be piecewise-constant, while the
second-order TV regularization method implicitly adopts a
piecewise-linear assumption. The piecewise-linear approxi-
mation of images usually yields a lesser approximation error
than piecewise-constant representation. Therefore, assuming
that the images under consideration can be better decom-
posed into piecewise-constant and piecewise-linear func-
tions, we expect the combination of first- and second-order
regularization to be more accurate in terms of reconstruction
quality.

3.2. Discretization of Hybrid TV Regularizer. Let us now
consider the discrete formulation of two regularization terms
in (10). A discrete version can be obtained by considering that
the image u has been uniformly sampled. At this point, we
switch the notation and start assuming that u denote vector

containing all these pixels arranged in column lexicographic
ordering.

Using local first-order differences to approximate the two
orthogonal components of the gradient, we obtain a discrete
version of first-order TV regularizer. Consider

R
1 (u) =

𝑁

∑

𝑖=1

√(𝐷
ℎ

𝑖
u)2 + (𝐷V

𝑖
u)2, (11)

where 𝐷ℎ
𝑖
and 𝐷V

𝑖
are operators corresponding to horizontal

and vertical first-order differences at pixel 𝑖, respectively, and
the summation ∑𝑁

𝑖=1
takes over all pixels. Similarly, we can

write discrete version of second-order TV regularizer as

R
2 (u)

=

𝑁

∑

𝑖=1

√
3

4

(𝐷
ℎℎ

𝑖
u)2 + (𝐷ℎV

𝑖
u)2 + 3

4

(𝐷
VV
𝑖
u)2 + 1

2

𝐷
ℎℎ

𝑖
u𝐷VV
𝑖
u.

(12)

Here 𝐷
ℎℎ

𝑖
, 𝐷VV
𝑖
, and 𝐷

ℎV
𝑖

are operators corresponding
to, respectively, horizontal-horizontal, vertical-vertical,
horizontal-vertical second-order differences at pixel 𝑖.

For the sake of simplicity, we denote

𝜂
𝑖

1
(u) ≜ (𝐷ℎ

𝑖
u)
2

+ (𝐷
V
𝑖
u)2,

𝜂
𝑖

2
(u) ≜ 3

4

(𝐷
ℎℎ

𝑖
u)
2

+ (𝐷
ℎV
𝑖
u)
2

+

3

4

(𝐷
VV
𝑖
u)2 + 1

2

𝐷
ℎℎ

𝑖
u𝐷VV
𝑖
u.
(13)

Thus, (10) can be rewritten as

û = argminu
󵄩
󵄩
󵄩
󵄩
y − Φu󵄩󵄩󵄩

󵄩

2

2
+ 𝜆

𝑁

∑

𝑖=1

√𝜂
𝑖

1
(u) + 𝜇

𝑁

∑

𝑖=1

√𝜂
𝑖

2
(u). (14)

3.3. An Efficient Algorithm. In this subsection, we derive
an efficient optimization algorithm which belongs to the
class of majorization-minimization (MM) approaches [19,
20] to solve proposed model (10). The MM approaches have
been introduced to solve optimization problems that are
too difficult to solve directly. These schemes reformulate the
original problem as the solution to a sequence of surrogate
problems. Optimizing the surrogate functions will drive
the objective function downward until a local optimum is
reached.

Let 𝐹(x) be the cost function to be minimized. Instead
of minimizing 𝐹(x) directly, the MM approaches solve a
sequence of surrogate problems {𝑄

𝑘
(x), 𝑘 = 0, 1, 2, . . .}

which are solved easier than 𝐹(x). As the result, a sequence
of {x
𝑘
, 𝑘 = 1, 2, . . .} obtained by

x
𝑘+1
= argminx 𝑄

𝑘 (x) (15)
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Lena   Pepper Barbara Brain

Figure 1: Test images.

(a) (b) (c)

(d) (e) (f)

Figure 2: Reconstructed results of “Lena” image from noisy and undersampled Fourier data (noise level: 30 dB, sampling ratio: 25%). (a)
Actual image; (b) TVAL3; (c) RecPF; (d) hybrid TVL1; (e) second-order TV; (f) our method.

are then applied to estimate the solution of𝐹(x). In (15),𝑄
𝑘
(x)

is the majorizer of function 𝐹(x) at a fixed point x
𝑘
which

satisfies the following two properties:

(a) 𝑄𝑘 (x) ≥ 𝐹 (x) , ∀x, (16)

(b) 𝑄𝑘 (x𝑘) = 𝐹 (x𝑘) . (17)

To develop aMM-based algorithm, we derive a quadratic
majorizer for the proposed hybrid TV regularizer.The choice
of a quadratic majorizer is motivated by the fact that the
minimization of a quadratic function amounts to solving a
system of linear equations, a task for which there are excellent
methods available in the literature. We define the following
majorizer:
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𝑄
𝑘 (u) =

𝑁

∑

𝑖=1

(𝜆√𝜂
𝑖

1
(u
𝑘
) + 𝜇√𝜂

𝑖

2
(u
𝑘
))

+

𝑁

∑

𝑖=1

(

𝜆

2

𝜂
𝑖

1
(u) − 𝜂𝑖

1
(u
𝑘
)

√𝜂
𝑖

1
(u
𝑘
)

+

𝜇

2

𝜂
𝑖

2
(u) − 𝜂𝑖

2
(u
𝑘
)

√𝜂
𝑖

2
(u
𝑘
)

)

+
󵄩
󵄩
󵄩
󵄩
y − Φu󵄩󵄩󵄩

󵄩

2

2
.

(18)

Using the inequality√𝑎 ≤ √𝑎󸀠 +(𝑎−𝑎󸀠)/(2√𝑎󸀠), we have

𝑄
𝑘 (u) ≥

󵄩
󵄩
󵄩
󵄩
y − Φu󵄩󵄩󵄩

󵄩

2

2
+ 𝜆

𝑁

∑

𝑖=1

√𝜂
𝑖

1
(u) + 𝜇

𝑁

∑

𝑖=1

√𝜂
𝑖

2
(u), (19)

for any u, with equality for u
𝑘
.

Equation (19) means that majorizer 𝑄
𝑘
(u) satisfies the

two properties (16) and (17). So, the solution of optimization
problem (14) can be obtained by finding the minimizer of
𝑄
𝑘
(u), 𝑘 = 0, 1, 2, . . .. Consider

u
𝑘+1
= argminu 𝑄

𝑘 (u) , (20)

Notice that, for fixed 𝑘, the terms 𝜂𝑖
1
(u
𝑘
) and 𝜂𝑖

2
(u
𝑘
) in (18)

are simply additive constants which can be ignored since they
do not affect the solution of the optimization problem. Thus,
problem (20) is equivalent to

u
𝑘+1
= argminu

𝜆

2

𝑁

∑

𝑖=1

𝜂
𝑖

1
(u)

√𝜂
𝑖

1
(u
𝑘
)

+

𝜇

2

𝑁

∑

𝑖=1

𝜂
𝑖

2
(u)

√𝜂
𝑖

2
(u
𝑘
)

+
󵄩
󵄩
󵄩
󵄩
y − Φu󵄩󵄩󵄩

󵄩

2

2
.

(21)

Let 𝐷ℎ and 𝐷V denote the horizontal and vertical global
finite difference matrices with size𝑁 ×𝑁 such that𝐷ℎu and
𝐷

Vu are the vectors of all horizontal and vertical first-order
differences of image u. We then have

𝜆

2

𝑁

∑

𝑖=1

𝜂
𝑖

1
(u)

√𝜂
𝑖

1
(u
𝑘
)

=

𝜆

2

𝑁

∑

𝑖=1

(𝐷
ℎ

𝑖
u)
2

+ (𝐷
V
𝑖
u)2

√𝜂
𝑖

1
(u
𝑘
)

= (𝐷
ℎ

1
u, . . . , 𝐷ℎ

𝑁
u, 𝐷V
1
u, . . . , 𝐷V

𝑁
u)

×
(
(

(

𝑤
(1)

1

d

𝑤
(1)

𝑁

𝑤
(1)

1

d

𝑤
(1)

𝑁

)
)

)

×

(
(
(
(
(
(
(
(
(

(

𝐷
ℎ

1
u
...

𝐷
ℎ

1
u

𝐷
V
1
u
...

𝐷
V
1
u

)
)
)
)
)
)
)
)
)

)

= (𝐷
1
u)𝑇Λ𝑘

1
𝐷
1
u

= u𝑇𝐷𝑇
1
Λ
𝑘

1
𝐷
1
u,

(22)

where

𝐷
1
= [

𝐷
ℎ

𝐷
V
] ,

𝑤
(1)

𝑖
=

𝜆

2√𝜂
𝑖

1
(u
𝑘
)

, 𝑖 = 1, 2, . . . , 𝑁,

Λ
𝑘

1
= diag {w(1)

𝑘
;w(1)
𝑘
} ,

(23)

here, w(1)
𝑘

is a column vector whose 𝑖th component is 𝑤(1)
𝑖
.

Similarly, for the second term in (21), we have

𝜇

2

𝑁

∑

𝑖=1

𝜂
𝑖

2
(u)

√𝜂
𝑖

1
(u
𝑘
)

=

𝜇

2

𝑁

∑

𝑖=1

((

3

4

(𝐷
ℎℎ

𝑖
u)
2

+ (𝐷
ℎV
𝑖
u)
2

+

3

4

(𝐷
VV
𝑖
u)2

+

1

2

𝐷
ℎℎ

𝑖
u𝐷VV
𝑖
u)(√𝜂𝑖

1
(u
𝑘
))

−1

)

= (𝐷
ℎℎu, 𝐷ℎVu, 𝐷VVu)

×

1

4

(

3 diag {w(2)
𝑘
} 0 diag {w(2)

𝑘
}

0 4 diag {w(2)
𝑘
} 0

diag {w(2)
𝑘
} 0 3 diag {w(2)

𝑘
}

)

×(

𝐷
ℎℎu
𝐷
ℎVu
𝐷

VVu
)

= (𝐷
2
u)𝑇Λ𝑘

2
𝐷
2
u

= u𝑇𝐷𝑇
2
Λ
𝑘

2
𝐷
2
u,

(24)
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(a) (b) (c)

(d) (e) (f)

Figure 3: Zoom into a region of images shown in Figure 2 (the region is marked in Figure 2(a) by the red box).

where 𝐷
2
= [𝐷

ℎℎ
; 𝐷
ℎV
; 𝐷

VV
], 𝐷ℎℎ, 𝐷ℎV and 𝐷VV are three

second-order difference matrices with size𝑁 ×𝑁 such that

𝐷
ℎℎu = (

𝐷
ℎℎ

1
u

...
𝐷
ℎℎ

1
u
), 𝐷

ℎVu = (
𝐷
ℎV
1
u

...
𝐷
ℎV
1
u
),

𝐷
VVu = (

𝐷
VV
1
u

...
𝐷

VV
1
u
),

(25)

and the weighting matrix Λ𝑘
2
is a block matrix defined by

Λ
𝑘

2
=

1

4

(

3 diag {w(2)
𝑘
} 0 diag {w(2)

𝑘
}

0 4 diag {w(2)
𝑘
} 0

diag {w(2)
𝑘
} 0 3 diag {w(2)

𝑘
}

) ,

(26)

here w(2)
𝑘

is a column vector whose 𝑖th component is

𝑤
(2)

𝑖
=

𝜇

2√𝜂
𝑖

2
(u
𝑘
)

, 𝑖 = 1, 2, . . . , 𝑁. (27)

Substituting (22) and (24) into (21), we can rewrite (21) in
the more compact form as follows:

u
𝑘+1
= argminu u𝑇𝐷𝑇

1
Λ
𝑘

1
𝐷
2
u + u𝑇𝐷𝑇

2
Λ
𝑘

2
𝐷
2
u + 󵄩󵄩󵄩

󵄩
y − Φu󵄩󵄩󵄩

󵄩

2

2
.

(28)

Since the objective function in optimization (28) is a
quadratic function, according to the theory of variational
methods, u

𝑘+1
is the solution to the following Euler-Lagrange

equation:

(𝐷
𝑇

1
Λ
𝑘

1
𝐷
1
+ 𝐷
𝑇

2
Λ
𝑘

2
𝐷
2
+ Φ
𝑇
Φ)u = Φ𝑇𝑦. (29)

System (29) can be solved efficiently using the conjugate
gradient (CG) algorithm.

In summary, the proposed algorithm for our hybrid TV
model (10) is composed of four steps.

Step 1. Input 𝑦, Φ, 𝜆, 𝜇, 𝜀 (𝜀 > 0 is a tolerance). Set 𝑘 = 0.
Initialize 𝑢

0
= Φ
𝑇
𝑦.

Step 2.

(a) Compute Λ𝑘
1
according to (23) for fixed u

𝑘
.

(b) Compute Λ𝑘
2
according to (26) and (27) for fixed u

𝑘
.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Reconstructed results of “Brain” image from noisy and undersampled Fourier data (noise level: 40 dB, sampling ratio: 20%). (a)
Actual image; (b) TVAL3; (c) RecPF; (d) hybrid TVL1; (e) second-order TV; (f) our method.

Step 3. Solve Euler-Lagrange equation (29) using CG algo-
rithm, obtain u

𝑘+1
.

Step 4. Terminate if relative change ‖u
𝑘+1
− u
𝑘
‖
2
/‖u
𝑘
‖
2
< 𝜀.

Otherwise, set 𝑘 = 𝑘 + 1 and go to Step 2.

Here, we make one comment about implementation of
this algorithm. In Step 3, since the linear system of equations
cannot be solved analytically due to its huge dimension
(𝑀𝑁 × 𝑀𝑁 for an 𝑀 × 𝑁 image), we take 𝐷𝑇

1
Λ
𝑘

1
𝐷
1
+

𝐷
𝑇

2
Λ
𝑘

2
𝐷
2
+ Φ
𝑇
Φ as an operator and solve the system by CG

algorithm in our implementation.

4. Experimental Results

In this section, we present some numerical results to illustrate
the performance of our method. We compare our results
with those obtained by four state-of-the-art methods: (a)
TVAL3 [21]; (b) RecPF [22]; (c) Hybrid TVL1 [23]; and (d)
second-order TV [17]. MATLAB codes of those algorithms
are available at the following web sites:

http://www.caam.rice.edu/∼optimization/L1/TVAL3/
http://www.caam.rice.edu/∼optimization/L1/RecPF/

http://www.dssz.com/495330.html

http://www.engineering.uiowa.edu/∼jcb/Software/

HDTV/Software.html

To compare the performance fairly, all parameters of
those algorithms are set as the suggestion values by the
authors in [17, 21–23], respectively. The reconstruction per-
formance of eachmethod is evaluated in terms of two indica-
tors: the reconstruction relative error (RE) and peak signal to
noise ratio (PSNR).The relative error of reconstructed image
is defined as follows:

RE (x) = ‖x − x‖2
‖x‖2

, (30)

where x and x are the original and the reconstructed sig-
nal/image, respectively. Apparently, the lower the value of
relative error is, the better reconstructed performance will be.
The PSNR of reconstructed images is defined by

PSNR (x) = 10 log
10
(

𝑚 × 𝑛 × 255
2

‖x − x‖2
) , (31)
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(a) (b) (c)

(d) (e) (f)

Figure 5: Zoom into a region of images shown in Figure 4 (the region is marked in Figure 4(a) by the red box).

where x and x are the original and the reconstructed image,
respectively, and𝑚, 𝑛 is the size of image.

In our experiments, we consider a common task of
reconstructing an image from their undersampled Fourier
samples which is an important problem in magnetic res-
onance imaging (MRI). We generate our test sets using
four images (see Figure 1): three natural images and one
MR image. In each test, we acquire compressive samples by
first applying randomized partial discrete Fourier transform
(DFT) encoding and then adding Gaussian white noise with
different signal noise ratio (SNR) level (30 dB and 40 dB).The
encoding procedure can be formulated as

y = 𝑃Fu + n, (32)

where F represents Fourier transform matrix, 𝑃 ∈ 𝑅𝑀×𝑁 is
a selection matrix containing 𝑝 rows of the identity matrix of
order 𝑁, n ∈ 𝐶𝑁 is Gaussian white noise, and 𝑃F serves as
the sensing matrix.

The reconstructed images of “Lena” image with sampling
ratio 25% and noise level 30 dB are shown in Figure 2. We
note that the reconstructed image of TVAL3 is contaminated
by noise. The results of RecPF and Hybrid TVL1 provide

better performance than that of TVAL3 but with some loss of
fine details, for example, the texture in hair and hat regions.
Comparing the results of those five methods, we observe that
second-order TV and our method preserve fine details more
effectively than other three methods. From Figures 2(e) and
2(f), we can see that the result of our method have better
image quality than that of second-order TV.

In order to highlight the differences, we zoom in the
region (marked by the red box in Figure 2(a)) of all the images
shown in Figure 2 and present the details in Figure 3. It
further demonstrates that second-order TV and our method
are superior to other three methods. Furthermore, it can
be seen from the regions marked by red boxes and green
arrows in Figures 3(e) and 3(f) that second-order TV provide
better preservation of smooth image regions and our method
provide better preservation of fine details.

Figure 4 compares the reconstructed results of “Brain”
image by different methods with sampling ratio 20% and
SNR level 40 dB. We can see that RecPF and Hybrid TVL1-
based reconstruction result in a little patchy artifact and
some loss of fine details. But on the whole, all five methods
provide very good reconstruction of image features, and it
is hard to tell which one is better. To make the difference
between those methods more evident, we zoom in the region
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(d) Brain, Noise level: 40 dB

Figure 6: Relative errors of various methods versus sampling ratio.

marked by the red box in Figure 4(a) of each image and show
them in Figure 5.The regions marked by green arrows clearly
demonstrate that ourmethod provides consistently improved
reconstructions.

To characterize the performance quantitatively, we show
the PSNRs of the reconstructed images at various sampling
ratios and SNR levels in Table 1. We observe that our method
provides the best overall SNR for most of the cases. Our
method obtains an improvement of around 0.35 dB on aver-
age over second-order TV method for “Lena” image recon-
struction, and 0.33 dB, 0.30 dB, and 0.42 dB for “Pepper”,
“Barbara”, and “Brain” images reconstructions, respectively.
Moreover, to show the influence of sampling ratio on the
performance of reconstruction, we plot relative errors of
reconstructed images with various sampling ratio (from 15%
to 50%, with interval 5%) in Figure 6. We can see that relative
errors of our method keep the lowest level among these
methods and ourmethod obtain notable improvementswhen
sampling ratio is less than 35%.

We compare the average central processing unit (CPU)
times of the different methods in Table 2. All experiments are
performed under Windows 7 and MATLAB V8.0 (R2012b)
running on a Lenovo workstation with an Intel (R) Xeon (R)
CPUW3520 at 2.67GHz and 4GB of memory.

From Table 2, we see that RecPF is faster than other four
algorithms. This is primarily because RecPF solves the TV
problem using shrinkage and fast Fourier transforms (FFT).
However, this technique can also be applied to accelerate our
algorithm, which we plan to pursue in the future.

5. Conclusion

This paper presents a hybrid variational model for image
compressive sensing. The model minimizes the sum of
three terms corresponding to least squares data fitting, first-
order TV and second-order TV. We propose an efficient
majorization-minimization algorithm to determine the solu-
tion of our model. We test our method with nature images
and MR image. Comparisons of the proposed regularization
method with four state-of-the-art algorithms demonstrate
the significant improvement in the quality of the recon-
structed images. Although achieving better performance
in terms of RE and PSNR, our algorithm is slower than
FFT-based method such as RecPF. How to accelerate the
algorithm is an important problem which we will investigate
in forthcoming research. We hope that our method is useful
in relevant areas of image compressive sensing such as
SAR/ISAR imaging and MR images reconstruction.
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Table 1: PSNRs of the reconstructed images.

Sampling ratio (%) 20 25 33 50
Noise level (dB) 30 40 30 40 30 40 30 40

Lena (256 × 256)
TVAL3 26.99 27.14 28.12 27.65 29.03 29.19 31.51 32.34
RecPF 29.93 30.92 30.76 32.06 32.01 34.06 34.03 37.94
Hybrid TVL1 30.12 31.13 30.97 32.26 32.24 34.43 34.26 38.41
Second-order TV 30.57 31.52 31.89 33.87 32.83 36.09 34.74 40.08
Our method 31.05 32.74 32.93 34.12 32.99 36.41 34.43 40.24

Pepper (256 × 256)
TVAL3 30.08 30.41 30.75 32.23 32.78 33.93 35.08 38.08
RecPF 30.92 31.95 31.72 33.79 33.01 35.68 34.91 39.25
Hybrid TVL1 31.10 32.29 31.93 34.10 33.24 36.05 35.06 39.65
Second-order TV 31.72 33.76 31.72 35.79 33.67 37.67 35.07 41.07
Our method 32.25 34.24 32.66 36.18 33.77 37.96 34.82 41.21

Barbara (256 × 256)
TVAL3 27.25 27.57 27.78 28.27 29.14 29.45 31.42 32.45
RecPF 28.70 29.29 29.45 30.28 30.67 31.80 33.07 35.62
Hybrid TVL1 28.86 29.50 29.63 30.55 30.93 32.20 33.36 36.20
Second-order TV 29.25 30.21 30.02 31.54 31.41 33.44 33.86 37.98
Our method 29.62 30.69 30.46 31.86 31.69 33.76 33.89 38.13

Brain (256 × 256)
TVAL3 32.63 33.22 33.76 34.49 35.23 36.32 37.52 40.18
RecPF 31.49 32.11 32.51 33.50 33.89 35.27 36.31 39.12
Hybrid TVL1 31.69 32.38 32.75 33.83 34.23 35.75 36.63 39.71
Second-order TV 32.65 33.64 33.66 35.13 35.20 37.29 37.52 41.11
Our method 33.19 34.72 34.02 35.63 35.46 37.70 37.35 41.55

Table 2: Average CPU times of different methods (s).

Sampling ratio (%) 20 25 0.33 0.5
Noise level (dB) 30 40 30 40 30 40 30 40
TVAL3 2.21 2.15 2.12 1.90 1.82 1.81 1.81 1.76
RecPF 0.80 0.68 0.69 0.67 0.69 0.67 0.67 0.58
Hybrid TVL1 1.76 1.72 1.68 1.67 1.56 1.56 1.51 1.50
Second-order TV 81.25 78.36 77.18 75.63 75.02 75.01 74.45 74.56
Our method 29.50 26.79 26.37 24.13 24.01 23.76 23.24 23.12
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