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New discrete Adomian decomposition methods are presented by using some identified Clenshaw-Curtis quadrature rules. We
investigate two mixed quadrature rules one of precision five and the other of precision seven. The first rule is formed by using the
Fejér second rule of precision three and Simpson 1/3 rule of precision three, while the second rule is formed by using the Fejér
second rule of precision five and the Boole rule of precision five. Our methods were applied to a nonlinear integral equation of the
Hammerstein type and some examples are given to illustrate the validity of our methods.

1. Introduction

In this paper we study the problem of approximate solutions
for the nonlinear integral equations of theHammerstein type:

𝜆𝑥 (𝑡) = 𝑦 (𝑡) + ∫

𝑏

𝑎

𝑘 (𝑡, 𝑠) 𝑢 (𝑥 (𝑠)) 𝑑𝑠,

𝜆 ̸= 0; 𝑎 ≤ 𝑡 ≤ 𝑏.

(1)

Nonlinear integral equations arise naturally in many appli-
cations in describing numerous real world problems. For
example, it occurs in solving several problems arising in eco-
nomics, engineering, and physics. One of themost important
frequently investigated nonlinear integral equations is the
Hammerstein integral equation (cf. [1–5]).

On the other hand, there are significant interests in
applying the Adomian decomposition method (ADM) for a
wide class of nonlinear equations, for example, ordinary and
partial differential equations, integral equations, and inte-
grodifferential equations; see [6–9] and references therein.

In [10], Behiry et al. introduced a discrete version of
the Adomian decomposition method and applied it to (1).
This method is called a discrete Adomian decomposition
method (DADM). DADM arises when the quadrature rules

are used to approximate the definite integrals which cannot
be computed analytically. The DADM gives the numerical
solution at nodes used in the quadrature rules.

Dash and Das [11, 12] used mixed quadrature rules to
approximate a definite integral, namely, mixed quadrature
rules blending some Fejér and Newton-Cote type rule and a
mixed quadrature rule blending Clenshaw-Curtis five-point
rule and Gauss-Legendre three-point rule. Behiry and other
[10] applied the Simpson rule with 𝑛 subinterval and step size
ℎ = (𝑏 − 𝑎)/𝑛. It is occasionally useful, both theoretically and
practically, to have interpolatory formulas on sets of abscissas
other than the equidistant set. A common choice is the set of
zeros of an orthogonal polynomial.

Our main goal is to improve DADM, used by Behiry and
other [10] to obtain approximate solutions of (1), by using
mixed quadrature rules to approximate a definite integral.
We use the advantage of the fact that the Fejér second rule
of precision three and Simpson 1/3 rule of precision three
to form a mixed quadrature rule of higher precision, that is,
precision five. Also, we use the Fejér second rule of precision
five and the Boole rule of precision five to form a mixed
quadrature rule of precision seven. Our numerical examples
show that ourmethod gives approximate solutions to (1)more
accurate than approximate solutions obtained in [10].
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2. Quadrature Rules

In this section, we recall definitions of two quadrature rules
which will be used throughout the paper, namely, Clenshaw-
Curtis quadrature and Fejér quadrature. Clenshaw-Curtis
quadrature and Fejér quadrature are based on an expansion
of the integrand in terms of Chebyshev polynomials. So,
let us first state some facts about Chebyshev polynomials.
It is worth mentioning that Chebyshev polynomials are
everywhere dense in numerical analysis [13].

Definition 1. The Chebyshev polynomial 𝑇𝑛(𝑥) of the first
kind is a polynomial in 𝑥 of degree 𝑛, defined by the following
relation:

𝑇𝑛 (𝑥) = cos 𝑛𝜃, when 𝑥 = cos 𝜃. (2)

From formula (2), the zeros for 𝑥 in [−1, 1] of 𝑇𝑛(𝑥) must
correspond to the zeros for 𝜃 in [0, 𝜋] of cos 𝑛𝜃, so that

𝑛𝜃 = (2𝑗 − 1)
𝜋

2
, 𝑗 = 1, 2, 3, . . . , 𝑛. (3)

Hence, the zeros of 𝑇𝑛(𝑥) are

𝑥𝑗 = cos
(2𝑗 − 1) 𝜋

2𝑛
, 𝑗 = 1, 2, 3, . . . , 𝑛. (4)

The internal extrema of 𝑇𝑛(𝑥) correspond to the extreme val-
ues of cos 𝑛𝜃, namely, the zeros of sin 𝑛𝜃, since (𝑑/𝑑𝑥)𝑇𝑛(𝑥) =
sin 𝑛𝜃/sin 𝜃. Hence, including those at 𝑥 = ±1, the extrema of
𝑇𝑛(𝑥) on [−1, 1] are

𝑥𝑗 = cos
𝑗𝜋

𝑛
, 𝑗 = 1, 2, 3, . . . , 𝑛. (5)

Definition 2. TheChebyshev polynomial𝑈𝑛(𝑥) of the second
kind is a polynomial in 𝑥 of degree 𝑛, defined by the following
relation:

𝑈𝑛 (𝑥) =
sin (𝑛 + 1) 𝜃

sin 𝜃
, when 𝑥 = cos 𝜃. (6)

The zeros of 𝑈𝑛(𝑥) are given by

𝑥𝑗 = cos
𝑗𝜋

𝑛 + 1
, 𝑗 = 1, 2, 3, . . . , 𝑛. (7)

2.1. Clenshaw-Curtis Quadrature. Clenshaw-Curtis quadra-
ture method proposed by Clenshaw and Curtis [14] amounts
to integrating via a change of variable 𝑥 = cos(𝜃). The
algorithm is normally expressed for integration of a function
𝑓(𝑥) over the interval [−1, 1]; any other interval can be
obtained by appropriate rescaling. For this integral, we can
write

∫

1

−1

𝑓 (𝑥) 𝑑𝑥 = ∫

𝜋

0

𝑓 (cos 𝜃) sin (𝜃) 𝑑𝜃. (8)

That is, we have transformed the problem from integrat-
ing 𝑓(𝑥) to one of integrating 𝑓(cos 𝜃) sin 𝜃. This can be
performed if we know the cosine series for 𝑓(cos 𝜃). The
reason that this is connected to the Chebyshev polynomials

𝑇𝑗(𝑥) is that, by (2), 𝑇𝑗(cos 𝜃) = cos(𝑗𝜃), and so the cosine
series is really an approximation of 𝑓(𝑥) by Chebyshev
polynomials:

𝑓 (𝑥) =
𝑎0

2
𝑇0 (𝑥) +

𝑛

∑

𝑗=1

𝑎𝑗𝑇𝑗 (𝑥) , 𝑥 ∈ [−1, 1] , (9)

and thus we are integrating 𝑓(𝑥) by integrating its approx-
imate expansion in terms of Chebyshev polynomials. The
evaluation points 𝑥𝑗 = cos(𝑗𝜃/𝑛) correspond to the extrema
of the Chebyshev polynomial 𝑇𝑛(𝑥); see (5). The fact that
such Chebyshev approximation is just a cosine series under
a change of variables is responsible for the rapid convergence
of the approximation as more terms 𝑇𝑗(𝑥) are included. A
cosine series converges very rapidly for functions that are
even, periodic, and sufficiently smooth. This is true here,
since 𝑓(cos 𝜃) is even and periodic in 𝜃 by construction,
and is 𝑗-times differentiable everywhere if 𝑓(𝑥) is 𝑗-times
differentiable on [−1, 1].

2.2. Fejér Quadrature. Let 𝑛 ≥ 2 be a given fixed integer, and
define the (𝑛 + 1) quadrature nodes on the interval [−1, 1] as
the extrema of the Chebyshev polynomial 𝑇𝑛(𝑥) arguments
by the boundary points:

𝑥𝑗 = cos 𝜗𝑗, 𝜗𝑗 =
𝑗𝜋

𝑛
, 𝑗 = 0, 1, 2, . . . , 𝑛. (10)

Fejér’s first rule [15] is obtained by using the well-known
Chebyshev points as nodes, that is, 𝑥𝑗 from (10) with 𝑗 = 1/2,

3/2, . . . , 𝑛 − 1/2, namely,

𝑅
1
𝐹
𝑛

(𝑓) =

𝑛

∑

𝑗=0

𝑤𝑗𝑓 (𝑥𝑗) =

𝑛

∑

𝑗=0

𝑤𝑗𝑓(cos
𝑗𝜋

𝑛
) , (11)

with the corresponding weights

𝑤𝑗 =
2

𝑛
[1 − 2

[𝑛/2]

∑

𝑚=1

cos (𝑚𝜗𝑗+1)

4𝑚
2
− 1

] , 𝑗 = 1, 2, . . . , 𝑛 − 1.

(12)

Fejér’s second rule [15] is obtained by omitting the nodes
𝑥0 = 1 and 𝑥𝑛 = −1 and using the interpolating polynomial
of degree 𝑛 − 2. This may also be achieved by keeping the
boundary points as nodes but preassigning the corresponding
weights as 𝑤0 = 𝑤𝑛 = 0. Then Fejér’s second rule is given by

𝑅
2
𝐹
𝑛

(𝑓) =

𝑛

∑

𝑗=0

𝑤
∗

𝑗
𝑓 (𝑥
∗

𝑗
) =

𝑛

∑

𝑗=0

𝑤
∗

𝑗
𝑓(cos

𝑗𝜋

𝑛 + 1
) (13)

with the corresponding weights

𝑤
∗

𝑗
=

4

𝑛
sin 𝜗𝑗

[𝑛/2]

∑

𝑚=1

sin [(2𝑚 − 1) 𝜗𝑗]

2𝑚 − 1
, 𝑗 = 0, 2, . . . , 𝑛. (14)
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3. DADM with New Nodes

By applying ADM, the solution 𝑥 of (1) is given by the
following series form:

𝑥 (𝑡) =

∞

∑

𝑘=0

𝑥𝑘 (𝑡) , (15)

where the components 𝑥𝑘(𝑡), 𝑘 ≥ 0, can be computed later
on. We represent the nonlinear term 𝑢(𝑥(𝑡)) by the Adomian
polynomials, 𝐴𝑘(𝑡), as follows:

𝑢 (𝑥 (𝑡)) =

∞

∑

𝑘=0

𝐴𝑘 [𝑥0 (𝑡) , 𝑥1 (𝑡) , . . . , 𝑥𝑘 (𝑡)] , (16)

where 𝐴𝑘(𝑡) can be evaluated by the following formula [16]:

𝐴𝑘 [𝑥0 (𝑡) , 𝑥1 (𝑡) , . . . , 𝑥𝑘 (𝑡)] =
1

𝑘!

𝑑
𝑘

𝑑𝛽
𝑘
[𝑢(

∞

∑

𝑘=0

𝛽
𝑘
𝑥𝑘)]

𝛽=0

.

(17)

By substituting (15) and (16) into (1), we obtain
∞

∑

𝑘=0

𝑥𝑘 (𝑡) =
1

𝜆
𝑦 (𝑡) +

1

𝜆

∞

∑

𝑘=0

∫

𝑏

𝑎

𝑘 (𝑡, 𝑠) 𝐴𝑘 (𝑠) 𝑑𝑠. (18)

Now, we can compute the components 𝑥𝑘(𝑡), 𝑘 ≥ 0, by using
the following recursive relations [17]:

𝑥𝑘+1 (𝑡) =
1

𝜆
∫

𝑏

𝑎

𝑘 (𝑡, 𝑠) 𝐴𝑘 (𝑠) 𝑑𝑠, 𝑘 ≥ 0,

𝑥0 (𝑡) =
𝑦 (𝑡)

𝜆
.

(19)

It is noticed that the computation of each component 𝑥𝑘(𝑡),
𝑘 ≥ 0, requires the computation of an integral in (19). If the
evaluation of integral in (19) is analytically impossible, the
ADM cannot be applied. In order to use numerical integra-
tion method for integral in (19), we transform the interval
[𝑎, 𝑏] into the interval [−1, 1] by using the transformation

𝜏 =
1

2
[(𝑎 + 𝑏) + (𝑏 − 𝑎) 𝑡] . (20)

Now, we will make use of the following two quadrature rules.

Rule 1. Here, the construction mixed quadrature rule will be
of precision five [11].

We consider the Fejér second rule of precision three:

𝐼 (𝑓) = ∫

1

−1

𝑓 (𝑥) 𝑑𝑥 ≃ 𝑅
2
𝐹
3

(𝑓)

=
2

3
[𝑓(

1

√2

) + 𝑓 (0) + 𝑓(
−1

√2

)]

(21)

and the Simpson 1/3 rule of precision three:

𝐼 (𝑓) = ∫

1

−1

𝑓 (𝑥) 𝑑𝑥 ≃ 𝑅𝑆 (𝑓)

=
1

3
[𝑓 (−1) + 4𝑓 (0) + 𝑓 (1)] .

(22)

Then, we obtain the mixed quadrature rule of precision five
for the approximate evaluation of 𝐼(𝑓); namely,

𝑅
2
𝐹
3
𝑆 (𝑓)

=
1

15
[𝑓 (−1) + 8𝑓(

−1

√2

) + 12𝑓 (0) + 8𝑓(
1

√2

) + 𝑓 (1)]

(23)

with a truncation error 𝐸
2
𝐹
3
𝑆 given by

𝐸
2
𝐹
3
𝑆 (𝑓) =

1

37800
𝑓
(V𝑖)

(0) + ⋅ ⋅ ⋅ . (24)

Rule 2. In this rule the mixed quadrature rule will be of
precision seven [11].

We consider the Fejér second rule of precision five:

𝑅
2
𝐹
5

(𝑓) =
2

45
[7𝑓(

√3

2
) + 9𝑓(

1

2
) + 13𝑓 (0)

+ 9𝑓(
−1

2
) + 7𝑓(

−√3

2
)]

(25)

and the Boole rule of precision five:

𝑅𝐵 (𝑓) =
1

45
[7𝑓 (−1) + 32𝑓(

−1

2
) + 12𝑓 (0)

+ 32𝑓(
1

2
) + 7𝑓 (1)] .

(26)

Then, we obtain themixed quadrature rule of precision seven
for the approximate evaluation of 𝐼(𝑓); namely,

𝑅
2
𝐹
5
𝐵 (𝑓)

=
1

315
[9𝑓 (−1) + 80𝑓(

−√3

2
) + 144𝑓(

−1

2
) + 164𝑓 (0)

+ 144𝑓(
1

2
) + 80𝑓(

√3

2
) + 9𝑓 (1)]

(27)

with a truncation error 𝐸
2
𝐹
5
𝐵 given by

𝐸
2
𝐹
5
𝐵 (𝑓) =

1

140 × 9!
𝑓
(V𝑖𝑖𝑖)

(0) + ⋅ ⋅ ⋅ . (28)

4. Numerical Examples

In this section we apply our methods to some integral
equations of the Hammerstein type. These examples show
the efficient and accuracy of our methods. The tables show
computed absolute error:

𝑒𝑚 (𝑡)
 =


𝑥exact (𝑡) − 𝑥app. (𝑡)


, (29)

where𝑚 is the number of the components 𝑥1, 𝑥2, . . . , 𝑚. The
computations associated with examples are performed using
Mathematica 6.
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Table 1: The effect of𝑚 in the absolute error at 𝑛 = 3.

𝑅2𝐹3

𝑡 |𝑒3(𝑡)| |𝑒4(𝑡)| |𝑒5(𝑡)|

0.14645 4.93549 × 10
−3

4.43266 × 10
−3

4.26484 × 10
−3

0.50000 5.251397 × 10
−3

4.71637 × 10
−3

4.53780 × 10
−3

0.85355 8.38783 × 10
−3

7.53327 × 10
−3

7.24806 × 10
−6

Table 2: The effect of𝑚 in the absolute error at 𝑛 = 5.

𝑅2𝐹5𝑆

𝑡 |𝑒3(𝑡)| |𝑒4(𝑡)| |𝑒5(𝑡)|

0.00000 1.68344 × 10
−3

9.07620 × 10
−4

6.12675 × 10
−4

0.14645 1.68421 × 10
−3

9.08038 × 10
−4

6.12957 × 10
−4

0.50000 1.79201 × 10
−3

9.66157 × 10
−4

6.52190 × 10
−4

0.85355 2.86231 × 10
−3

1.54320 × 10
−3

1.04172 × 10
−4

1.00000 4.57606 × 10
−3

2.46717 × 10
−3

1.66540 × 10
−3

Table 3: The effect of𝑚 in the absolute error at 𝑛 = 7.

𝑅2𝐹7𝐵

𝑡 |𝑒3(𝑡)| |𝑒4(𝑡)| |𝑒5(𝑡)|

0.00000 1.35339 × 10
−3

2.35630 × 10
−4

1.91978 × 10
−6

0.06699 1.35388 × 10
−3

2.35636 × 10
−4

1.91988 × 10
−6

0.25000 1.35916 × 10
−3

2.36553 × 10
−4

1.92729 × 10
−6

0.50000 1.44117 × 10
−3

2.50828 × 10
−4

2.04359 × 10
−6

0.75000 1.85770 × 10
−3

3.23330 × 10
−4

2.63429 × 10
−6

0.93301 2.88530 × 10
−3

5.02733 × 10
−4

4.09596 × 10
−6

1.00000 3.00680 × 10
−3

6.40511 × 10
−4

5.21850 × 10
−6

Table 4: The effect of𝑚 in the absolute error at 𝑛 = 8.

𝑡 |𝑒3(𝑡)| |𝑒4(𝑡)| |𝑒5(𝑡)|

0.00000 1.1673 × 10
−3

3.2941 × 10
−4

3.0618 × 10
−6

0.25000 1.1718 × 10
−3

3.3070 × 10
−4

3.0738 × 10
−6

0.50000 1.2426 × 10
−3

3.5066 × 10
−4

3.2593 × 10
−6

0.75000 1.6017 × 10
−3

4.5201 × 10
−4

4.2014 × 10
−6

1.00000 3.1730 × 10
−3

8.9543 × 10
−4

8.3229 × 10
−6

Example 1. Consider the nonlinear integral equation:

10𝑥 (𝑡) = 10𝑡 −
1

4
(𝑒 − 1) exp (𝑡

4
)

+∫

1

0

exp (𝑠
4
+ 𝑡
4
) (𝑥 (𝑠))

3
𝑑𝑠.

(30)

Here, 𝜆 = 10, 𝑦(𝑡) = 10𝑡 − (1/4)(𝑒 − 1) exp (𝑡
4
), 𝑘(𝑡, 𝑠) =

exp (𝑠
4
+𝑡
4
), and 𝑢(𝑥(𝑡)) = (𝑥(𝑠))

3. Equation (30) has an exact
solution 𝑥𝑒(𝑡) = 𝑡, [18].

Let 𝑥0(𝑡) = 𝑦(𝑡)/𝜆 = 𝑡 − (1/40)(𝑒 − 1) exp (𝑡
4
).

Tables 1, 2, and 3 the results of our example is stated while
Table 4, the results obtained in [10] are shown.

Table 5: The effect of𝑚 in the absolute error at 𝑛 = 3.

𝑅2𝐹3

𝑡 |𝑒3(𝑡)| |𝑒4(𝑡)| |𝑒5(𝑡)|

0.14645 3.02305 × 10
−4

3.24491 × 10
−4

3.26736 × 10
−4

0.50000 1.64103 × 10
−4

1.82928 × 10
−4

1.84830 × 10
−4

0.85355 5.60069 × 10
−6

1.87365 × 10
−5

2.00742 × 10
−5

Table 6: The effect of𝑚 in the absolute error at 𝑛 = 5.

𝑅2𝐹5𝑆

𝑡 |𝑒3(𝑡)| |𝑒4(𝑡)| |𝑒5(𝑡)|

0.00000 3.48603 × 10
−5

1.19222 × 10
−5

9.59700 × 10
−6

0.14645 3.69623 × 10
−5

1.46203 × 10
−5

1.23539 × 10
−5

0.50000 3.87246 × 10
−5

1.97467 × 10
−5

1.78171 × 10
−5

0.85355 3.56966 × 10
−5

2.24303 × 10
−5

2.16749 × 10
−5

1.00000 3.31078 × 10
−5

2.27365 × 10
−5

2.16749 × 10
−5

Table 7: The effect of𝑚 in the absolute error at 𝑛 = 7.

𝑅2𝐹7𝐵

𝑡 |𝑒
3
(𝑡)| |𝑒

4
(𝑡)| |𝑒

5
(𝑡)|

0.00000 2.56882 × 10
−5

4.05683 × 10
−7

1.23148 × 10
−7

0.06699 2.54489 × 10
−5

3.99928 × 10
−7

1.19841 × 10
−7

0.25000 2.42181 × 10
−5

3.75164 × 10
−7

1.08116 × 10
−7

0.50000 2.12422 × 10
−5

3.21320 × 10
−7

8.63619 × 10
−8

0.75000 1.69456 × 10
−5

2.47497 × 10
−7

5.92382 × 10
−8

0.93301 1.31145 × 10
−5

1.83399 × 10
−7

3.69417 × 10
−8

1.00000 1.15954 × 10
−5

1.58286 × 10
−7

2.84312 × 10
−8

Table 8: The effect of𝑚 in the absolute error at 𝑛 = 8.

𝑡 |𝑒3(𝑡)| |𝑒4(𝑡)| |𝑒5(𝑡)|

0.00000 3.4816 × 10
−3

2.7837 × 10
−4

5.1932 × 10
−5

0.25000 3.2659 × 10
−3

2.6006 × 10
−4

5.3149 × 10
−5

0.50000 2.8471 × 10
−3

2.2559 × 10
−4

5.1061 × 10
−5

0.75000 2.2513 × 10
−3

1.7709 × 10
−4

4.5798 × 10
−5

1.00000 1.5155 × 10
−3

1.1758 × 10
−4

3.7688 × 10
−5

Example 2. Consider the nonlinear integral equation:

20𝑥 (𝑡) = 20𝑡 + cos (𝑒 + 𝑡) − cos (1 + 𝑡)

+ ∫

1

0

exp (𝑥 (𝑠)) sin (𝑡 + 𝑒
𝑠
) 𝑑𝑠.

(31)

Here, 𝜆 = 20, 𝑦(𝑡) = 20𝑡 + cos (𝑒 + 𝑡) − cos (1 + 𝑡), 𝑘(𝑡, 𝑠) =

sin (𝑡 + 𝑒
𝑠
), and 𝑢(𝑥(𝑡)) = exp (𝑥(𝑠)). Equation (31) has an

exact solution 𝑥𝑒(𝑡) = 𝑡, [18].
Let𝑥0(𝑡) = 𝑦(𝑡)/𝜆 = 𝑡+(1/20) cos (𝑒+𝑡)−(1/20) cos (1+𝑡).
The results of this example represents in Tables 5, 6, and 7

while Table 8 represents the results given in [10].

5. Conclusions

In this paper, we use a new discrete Adomian decompo-
sition method (NADM) to obtain numerical solutions of
integral equations of the Hammerstein type. Our obtained
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results indicate that our method is a remarkably successful
numerical technique for solving integral equations of the
Hammerstein type. We make a comparison between our
results in Tables 3 and 7 and results obtained in [10] (see
Tables 4 and 8), and we found that our results are more
accurate than results obtained in [10].
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