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We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear
Schrodinger equationwith the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution
of dark soliton and calculate the precise expressions of dark soliton’s width, amplitude, wave central position, and wave velocity
which can describe the dynamic behavior of soliton’s evolution. From two different kinds of quadratic phase chirps, we mainly
analyze the effect on dark soliton’s dynamics which different fiver-order nonlinear term generates. The results show the following
two points with quintic nonlinearities coefficient increasing: (1) if the coefficients of the quadratic phase chirp term relate to the
propagation distance, the solitary wave displays a periodic change and the soliton’s width increases, while its amplitude and wave
velocity reduce. (2) If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function
only emerges in a fixed area. The soliton’s width increases, while its amplitude and the wave velocity reduce.

1. Introduction

Optical solitons have been proposed to be used as infor-
mation carrier for the long-distance optical fiber communi-
cations and the optical signal processing. There are two of
the most basic physical factors in single mode fiber: group
velocity dispersion and self-phasemodulation. It arrests pulse
broadening resulting from group velocity dispersion, and
self-phase modulation causes pulse compression. An optical
soliton in fiber is based on the exact balance between the
group velocity dispersion and the self-phase modulation. In
the ideal situation, propagation of optical solitons in single
mode fiber is governed by the famous nonlinear Schrodinger
(NLS) equation. Recently, it has been extensively studied
theoretically by various methods [1–11]. However, in a real
fiber, generally, the core medium is not homogeneous [12].
There is always nonuniformity due to many factors. It is
mainly shown in two aspects. One reason is that the variation
in the lattice parameters of the fiber medium leading to
the distance between two neighboring atoms in the optical
fiber is not constant; another reason is that the fiber core
diameter fluctuations cause the change of the geometric shape
of the fiber. Therefore fiber characteristic parameters such as

dispersion, self-phase modulation, and optical fiber loss or
gain coefficient are not constants. So this system is described
as variable coefficient of the nonlinear schrodinger equation.

The discovery of optical solitons dates back to 1971. Dark
solitons form in the normal-dispersion region and appear
as an intensity dip whose shape and size do not change.
In recent years, the cubic nonlinearities in optical soliton
transmission have been attracting more attention, but the
general dark solitons under five-order nonlinear term have
been much less discussed. When the intensity of the optical
pulse propagating inside nonlinearmedium exceeds a certain
value, it has relatively high coefficient of nonlinear optical
materials such as semiconductor doped glass and organic
polymer. Even the medium intensity of the optical pulse
propagating inside nonlinear medium and the cubic and
quintic (CQ) nonlinearities in the governing equation should
be taken into consideration [13] because it may affect the
spread of the soliton.The research shows that the dark soliton
transmission is less affected by environment than bright
soliton. Therefore it has potential applications in optical
communication system [14].

In this paper, we present the exact solution of dark soliton
and calculate the precise expressions of dark soliton’s width,
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amplitude, wave central position, and wave velocity which
can describe the dynamic behavior of soliton’s evolution. By
comparing different quintic nonlinearities coefficients, we
analyzed the influence of five-order nonlinear item in soliton
transmission.

2. Exact Dark Solitons Solution

Recently, the application of (1) with various forms of inhomo-
geneities has been studied in various papers [15–21]. It should
be pointed out that without the residual loss/gain term and
five-order nonlinearities term (1) has been studied in different
contexts in [15, 16]. With the loss/gain term, (1) has been
reported in [19–22] from the light intensity point of view, with
five-order nonlinear term being taken into consideration.

Based on the previous discussions, in this paper we
considered a generalized variable coefficients cubic-quintic
nonlinear schrodinger (CQNLS) equation. Considering the
inhomogeneities in the fiber, the dynamics of the optical pulse
propagation are governed by the following inhomogeneous
nonlinear schrodinger (INLS) equation:
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where 𝜓(𝑧, 𝜏) is the complex envelope of the electrical field
in a comoving frame, 𝑧 is the transmission distance, 𝜏 is
the retarded time, 𝛽(𝑧) is the group velocity dispersion
parameter, 𝛾(𝑧) and 𝛿(𝑧) are the cubic nonlinearity coefficient
and the quintic nonlinearity coefficient, respectively; and
𝐶(𝑧) and𝑔(𝑧)are inhomogeneous parameters related to phase
modulation and loss (or gain), which are the functions of the
propagation distance 𝑧. Qian et al. presented without quintic
nonlinearities NLS equation of explicit soliton solutions by
using the similarity transformations [23]. In this paper, one
dark soliton solution has been obtained by the similarity
transformation; it can be given by [24]

𝜓 (𝑧, 𝜏) = √
𝑎

𝛼𝐹
0

𝑀

√−𝑔
0

sinh [𝑝 (𝑍 − 𝜔𝑇)]

√1 + 𝑁 sinh2 [𝑝 (𝑍 − 𝜔𝑇)]

× exp[𝑖𝜔𝑍 − 𝑖(𝜎 +
𝜔
2

2
)𝑇] 𝑒

𝑖𝜙(𝑧,𝜏)
,

(2)

where

𝜎 =
(3𝑁 − 1) 𝑝

2

2
, 𝑀 = √(3𝑁 − 2) 𝑝

2𝑁,

𝑝 = √
3 (𝑁 − 1)

2𝛽
0
(3𝑁 − 2)

2
,

(3)

where 𝑁 is a real number. In order to make the above
parameters real, we must define that 𝑁 > 1. Here 𝜔, 𝑝, and
𝑀 are relative to the group velocity, the pulse width, and the
amplitude, respectively. 𝑔

0
(𝑔
0
< 0) and 𝐹

0
are real constants,

𝑎 = 𝑎(𝑧) is arbitrary function of transmission distance, and

𝛼(𝑧) is a positive definite function of transmission distance.
The choice of the parameters can affect the dynamics of some
solutions, which will be discussed as follows in detail: 𝑍 =
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and obtain the exact solution, where 𝑇
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is arbitrary real

constant. Integrability conditions on (1) for exact solutions by
the similarity transformation used in the paper are
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3. The Dynamics of Dark Solitons in
Optical Fiber

The properties of some solutions have been studied, such as
width, amplitude, wave center position, and most of them
can be controlled by 𝑎(𝑧), 𝛼(𝑧), and so forth. This situation
will be seen apparently in the following by using their exact
expressions.

3.1. The Coefficients of the Quadratic Phase Chirp Term with
Propagation Distance. To study the dynamics of the dark
soliton in the optical fiber, we choose 𝑎 = 1,𝛼 = 1+𝜀 cos(𝜔

0
𝑧),

where 𝛼 is arbitrary functions of propagation distance where
required, with 𝜀 ∈ (−1, 1), and 𝜔

0
∈ 𝑅. Then we can get the

coefficients of the quadratic phase chirp term, which is
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Dark solitary wave intensity is given by
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Figure 1: (a) Evolution of the dark solitary wave solution for 𝜀 = 0.3, 𝜔
0
= 1. (b) The density plot of (a) with the same parameter. (c) The

width of the solution (10). (d) Amplitude of the solution (9). (e)The velocity of the wave center V
𝑐
of the soliton (13) with the same parameter.

The other parameters are𝑁 = 2, 𝛽
0
= 1, 𝑔

0
= −1, 𝐹

0
= 1, and 𝜔 = −1.

Thus, the expressions of soliton’s wave amplitude, width, wave
central position, and wave velocity are written as follows:
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Figure 1(a) demonstrates the intensity profiles of the dark
soliton wave functions, which vary with time. Figure 1(b)
shows the density in Figure 1(a). Figures 1(c), 1(d), and
1(e) present the change of width, amplitude, and velocity
of the wave center through different parameters of quintic
nonlinearities 𝛿 = 1, 𝛿 = 2, and 𝛿 = 3, respectively. With the
increasing transmission distance, the solitary wave displays a
periodic change in the width and amplitude, and the velocity
of the wave center executes periodic oscillations and an
increase in themagnitude; thus the soliton can spread steadily
and have application value in the communication.

From the explicit expressions of (9), (10), (12), and (13), we
find that the quintic nonlinearities term 𝛿(𝑧) affects directly
dark soliton’s width, amplitude, and wave central position
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Figure 2: (a) Evolution of the dark solitary wave solution for 𝜆 = 1. The other parameters are𝑁 = 2, 𝛽
0
= 1, 𝑔

0
= −1, 𝐹

0
= −1, and 𝜔 = −1.

(b) The density plot of (a) with the same parameter. (c) The width of the solution (18). (d) Amplitude of the solution (17). (e) The velocity of
the wave center V

𝑐
of the soliton (21) with the same parameter.

and velocity. With quintic nonlinearities term increasing, the
soliton’s width increases and its amplitude reduces, while the
velocity of the wave center V

𝑐
of the soliton also reduces.

3.2. The Coefficients of the Quadratic Phase Chirp Term
Depend on Propagation Distance. If we take 𝑎 = 𝛼
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are constants, 𝛾 is a function of distance, and the gain 𝑔 is
vanishing.

Quintic nonlinearities terms are expressed by
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Dark solitary wave intensity is given by
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Thus, the expressions of soliton’s width, amplitude, wave
amplitude, wave central position, and wave velocity are
written as follows:
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In Figure 2, we plot the decaying bent solitary waves
to show how they behave as functions of propagation dis-
tance. Figure 2(a) demonstrates the intensity profiles of 𝜓.
Figure 2(b) shows the density of Figure 2(a). Figures 2(c),
2(d), and 2(e) present the change of width, amplitude, and
velocity of the wave center through different parameters of
quintic nonlinearities 𝛿 = 1, 𝛿 = 2, and 𝛿 = 3, respectively. We
can see from Figures 2(c), 2(d), and 2(e), with the increasing
transmission distance, that the solitarywave displays decrease
in the width. The amplitude varies from increase to decrease.
And the velocity of the wave center increases.

From the explicit expressions of (17), (18), (20), and
(21), we find that the quintic nonlinearities term 𝛿(𝑧) affects
directly dark soliton’s width, amplitude, wave central posi-
tion, and wave velocity. With quintic nonlinearities term
increasing, the soliton’s width increases, and its amplitude
reduces, while the velocity of the wave center V

𝑐
of the soliton

also reduces. We find that the wave function only appears in
a fixed area. In other words, the wave function appears to be
a local structure; that is, it only emerges within the fixed area,
rather than varying with time. Therefore, the structure is a
new phenomenon.

4. Conclusion

In this paper, we have considered an inhomogeneous nonlin-
ear Schrodinger equation including the five-order nonlinear
and chirp term. And by using the similarity transformation,
the dark soliton solution has been presented. By changing
parameters 𝑎(𝑧), 𝛼(𝑧), and so forth, we have modified the
frequency chip. If the coefficients of the quadratic phase chirp
term relate to the propagation distance, with the increasing
transmission distance, the velocity of thewave center executes
periodic oscillations and an increase in the magnitude, and
the solitary wave displays a periodic change in the width
and amplitude; thus the soliton can spread steadily and have
application value in communication. When the coefficients
of the quadratic phase chirp term are constants, the wave
function appears to be a local structure; that is, it only
emerges in the fixed area, rather than varying with time.
Therefore, the structure is a new phenomenon. By comparing
with different higher order term, we analyzed the influence
of five-order nonlinear item on soliton transmission. The
results show the main characteristics of the train of optical
solitons. So the study of dark solitons in real optical fiber
is meaningful. Relevant application deserves to be further
studied.
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