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In this study, the static pull-in instability of beam-type micro-electromechanical system (MEMS) is theoretically investigated.
Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size dependent Euler-
Bernoulli beammodel is used based on a modified couple stress theory, capable of capturing the size effect. Two supervised neural
networks, namely, back propagation (BP) and radial basis function (RBF), have been used for modeling the static pull-in instability
of microcantilever beam.These networks have four inputs of length, width, gap, and the ratio of height to scale parameter of beam
as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data employed for training
the networks and capabilities of the models in predicting the pull-in instability behavior has been verified. Based on verification
errors, it is shown that the radial basis function of neural network is superior in this particular case and has the average errors of
4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input
conditions has been investigated and comparison results ofmodeling with numerical considerations show a good agreement, which
also proves the feasibility and effectiveness of the adopted approach.

1. Introduction

Micro-electromechanical systems (MEMS) are widely being
used in today’s technology. So investigating the problems
referring to MEMS owns a great importance. One of the
significant fields of study is the stability analysis of the
parametrically excited systems. Parametrically excitedmicro-
electromechanical devices are ever being increasingly used
in radio, computer, and laser engineering [1]. Parametric
excitation occurs in a wide range of mechanics, due to time-
dependent excitations, especially periodic ones; some exam-
ples are columns made of nonlinear elastic material, beams
with a harmonically variable length, parametrically excited
pendulums, and so forth. Investigating stability analysis on
parametrically excited MEM systems is of great importance.
In 1995 Gasparini et al. [2] examined the transition between
the stability and instability of a cantilevered beam exposed
to a partially follower load. Applying voltage difference

between an electrode and ground causes the electrode to
deflect towards the ground. At a critical voltage, which is
known as pull-in voltage, the electrode becomes unstable and
pulls in onto the substrate [3]. The static pull-in behavior
of MEMS actuators has been studied for over two decades
without considering the Casimir force [4–6]. Osterberg and
Senturia [4] and Osterberg et al. [5] investigated the pull-in
parameters of the beam-type and circular MEMS actuators
using the distributed parameter models. Beni et al. [7],
Koochi et al. [8] and Ghalambaz et al. [9] investigated the
effect of Casimir force on the pull-in behavior of beams-
type NEMS. Sadeghian et al. [6] applied the generalized
differential quadrature method to investigate the pull-in
phenomena of microswitches. A comprehensive literature
review on investigating MEMS actuators can be found in
[10].Moghimi Zand andAhmadian [11] investigated the pull-
in behavior of multilayer microplates using finite element
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method. Different analytical, numerical, finite element meth-
ods have been proposed to model the pull-in behavior of
microbeams [12–16]. Further information about modeling
pull-in instability of MEMS has been presented by Batra
et al. [17] and Lin and Zhao [18]. The classical continuum
mechanics theory is not able to explain the size-dependent
behavior of materials and structures at submicron distances.
To overcome this problem, nonclassical continuum theories
such as higher-order gradient theories and the couple stress
theory are developed considering the size effects [7]. In 1960s
some researchers such as Koiter [19], Mindlin and Tiersten
[20], and Toupin [21] introduced the couple stress elasticity
theory as a nonclassic theory capable to predict the size effects
with appearance of twohigher-ordermaterial constants in the
corresponding constitutive equations. In this theory, besides
the classical stress components acting on elements of mate-
rials, the couple stress components, as higher-order stresses,
are also available which tend to rotate the elements. Utilizing
the couple stress theory, some researchers investigated the
size effects in someproblems [22]. Employing the equilibrium
equation of moments of couples besides the classical equilib-
rium equations of forces and moments of forces, a modified
couple stress theory is introduced by Yang et al. [23], with one
higher-order material constant in the constitutive equations.
Recently, size-dependent nonlinear Euler-Bernoulli andTim-
oshenko beams modeled on the basis of the modified couple
stress theory have been developed by Xia et al. [24] and
Asghari et al. [25], respectively. Rong et al. [26] presented
an analytical method for pull-in analysis of clamped-clamped
multilayer beam. Their method is the Rayleigh-Ritz method
and assumes one deflection shape function.They derived the
two governing equations by enforcing the pull-in conditions
that the first- and second-order derivatives of the system
energy functional are zero. They investigated the static pull-
in instability voltage and displacement of themultilayer beam
whichwere coupled in the two governing equations. Artificial
neural networks (ANNs), as one of the most attractive
branches in artificial intelligence, have the potentiality to
handle problems such as modeling, estimation, prediction,
diagnosis, and adaptive control in complex nonlinear systems
[27]. As seen from pervious studies, the researcher used the
analytical or numerical methods for static pull-in instability
voltage of microcantilever beams but in this study, we use
the neural network to estimate the pull-in voltage. This
study investigates the pull-in instability of microbeams with
a curved ground electrode under action of electric field
force within the framework of von Karman nonlinearity
and the Euler-Bernoulli beam theory. The static pull-in
instability voltage of cantilever microbeam is obtained by
using MAPLE commercial software. The objective of this
paper is to establish the neural networkmodels for estimation
of the pull-in instability voltage of cantilever beams. More
specifically, two different types of neural networks, back
propagation (BP) and radial basis function (RBF), are used to
construct the pull-in instability voltage. Effective parameters
influencing pull-in voltage and their levels for training were
selected through preliminary calculations carried out on
instability pull-in voltage of microbeam. Networks trained by
the same numerical data are then verified by some numerical
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Figure 1: An electrostatically actuated Euler-Bernoulli microbeam.

calculations different from those used in training phase, and
the best model was selected based on the criterion of having
the least average values of verification errors. To the authors’
best knowledge, no previous studies which cover all these
issues are available.

2. Modeling the Microcantilever Based on
the Modified Couple Stress

Consider an electrostatically actuated microbeam of length
𝐿 as shown in Figure 1. The microcantilever is under a
transverse distributed electrical force 𝑞(𝑥) caused by the input
voltage applied between the microbeam and the substrate.
The cross section of the beam is here assumed to be rect-
angular with width 𝑏 and height ℎ. The governing equation
for the static behavior of a uniform, homogeneous Euler-
Bernoulli beam, made of an isotropic linear elastic material,
under transverse distributed load 𝑞(𝑥)modeled based on the
modified couple stress theory is written as [28]
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where 𝐸,𝑁
0
, 𝐼, and 𝑤(𝑥, 𝑡) are Young’s modulus in the beam

direction, the axial load, the second moment of inertia, and
the transverse deflection. In addition, 𝑙 is a material length
scale parameter and 𝜇 is the average shear modulus in the
side-plane of the beam. Letting 𝑙 = 0, the equation is reduced
to one corresponding to the classical theory. If in (1),𝑁 = 0,
then the model of beam is called the linear equation without
the effect of geometric nonlinearity. The cross-sectional area
of beam is 𝐴. The electrostatic force enhanced with first-
order fringing correction can be presented in the following
equation [29]:

𝑞 (𝑥) =
𝜀
0
𝑏𝑉
2

2(𝑔 − 𝑤 (𝑥, 𝑡))
2
[1 + 0.65

(𝑔 − 𝑤)

𝑏
] , (3)



Advances in Artificial Neural Systems 3

where 𝜀
0
= 8.854 × 10

−12 C2N−1m−2 is the permittivity of
vacuum, 𝑉 is the applied voltage, and 𝑔 is the initial gap
between the movable and the ground electrode.

In the static case, it is clear that 𝜕/𝜕𝜏 = 0 and 𝜕/𝜕𝑥 =

𝑑/𝑑𝑥. Hence, (1) is reduced to
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For cantilever beam, the boundary conditions at the ends are
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𝑑𝑤 (0)

𝑑𝑥
= 0,

𝑑
2
𝑤 (𝐿)

𝑑𝑥
2

= 0,
𝑑
3
𝑤 (𝐿)

𝑑𝑥
3

= 0.

(5)

Let us consider the following dimensionless parameters:
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In the above equations, the nondimensional parameter, 𝛿, is
defined as the size effect parameter. Also,𝛽 is nondimensional
voltage parameter. The normalized nonlinear governing
equation of motion of the beam can be written as [30]
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3. Overview of Neural Networks

A neural network is a massive parallel system comprised of
highly interconnected, interacting processing elements, or
nodes. The neural networks process through the interactions
of a large number of simple processing elements or nodes,
also known as neurons. Knowledge is not stored within
individual processing elements but rather represented by
the strengths of the connections between elements. Each
piece of knowledge is a pattern of activity spread among
many processing elements, and each processing element can
be involved in the partial representation of many pieces of
information. In recent years, neural networks have become
a very useful tool in the modeling of complicated systems
because it has an excellent ability to learn and to generalize
(interpolate) the complicated relationships between input
and output variables [27]. Also the ANNs behave as a model
free estimators; that is, they can capture and model complex
input-output relations without the help of a mathematical
model [31]. In other words, training neural networks, for
example, eliminates the need for explicit mathematical mod-
eling or similar system analysis.

3.1. Artificial Neural Network Models of Static Pull-In Insta-
bility of Beam. In this research backpropagation (BP) and
radial basis function (RBF) neural networks have been used
formodeling the pull-in instability voltage ofmicrocantilever
beams. The first ANN is very popular, especially in the
area of online monitoring and manufacturing modeling, as
its design, structure, and operation are relatively simple.
The radial basis network has some additional advantages
such as rapid learning and less error. In particular, most
RBFNs involve fixed basis functions with linearly unknown
parameters in the output layer. In contrast, multilayer BP
ANNs comprise adjustable basis functions, which results in
nonlinearly unknownparameters. It is commonly known that
linear parameters in RBFNmake the use of least squares error
based updating schemes possible that have faster convergence
than the gradient-descent methods in multilayer BP ANN.
On the other hand, in practice, the number of parameters
in RBFN starts becoming unmanageably large only when the
number of input features increases beyond 10 or 20, which
is not the case in our study. Hence, the use of RBFN was
practically possible in this research. In this paper, MATLAB
Neural Network Toolbox “NNET” was used as a platform to
create the networks [32].

3.2. Backpropagation (BP) Neural Network. The backprop-
agation network (Figure 2) is composed of many intercon-
nected neurons or processing elements (PE) operating in
parallel and are often grouped in different layers.

As shown in Figure 3, each artificial neuron evaluates
the inputs and determines the strength of each through its
weighing factor. In the artificial neuron, the weighed inputs
are summed to determine an activation level. That is,
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Before practical application, the network has to be trained. To
properly modify the connection weights, an error-correcting
technique, often called backpropagation learning algorithm
or generalized delta rule, is employed. Generally, this tech-
nique involves two phases through different layers of the
network. The first is the forward phase, which occurs when
an input vector is presented and propagated forward through
the network to compute an output for each neuron. During
the forward phase, synaptic weights are all fixed. The error
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Figure 2: Backpropagation neural network with two hidden layers.
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Figure 3: Architecture of an individual PE for BP network.

obtained when a training pair consisting of both input and
output is given to the input layer of the network is expressed
by the following equation [33]:
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where 𝑇
𝑝𝑗
is the 𝑗th component of the desired output vector,

and 𝑂
𝑝𝑗
is the calculated output of 𝑗th neuron in the output

layer. The overall error of all the patterns in the training set is
defined as mean square error (MSE) and is given by
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where 𝑛 is the number of input-output patterns in the training
set. The second is the backward phase which is an iterative
error reduction performed in the backward direction from
the output layer to the input layer. In order to minimize
the error, 𝐸, as rapidly as possible, the gradient descent
method, adding a momentum term is used. Hence, the new
incremental change of weight Δ𝑤𝑘
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where 𝜂 is a constant real number between 0.1 and 1, called
learning rate, 𝛼 is the momentum parameter usually set to

a number between 0 and 1, and 𝑚 is the index of iteration.
Therefore, the recursive formula for updating the connection
weights becomes
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These corrections can be made incrementally (after each
pattern presentation) or in batch mode. In the latter case,
the weights are updated only after the entire training pattern
set has been applied to the network. With this method, the
order in which the patterns are presented to the network does
not influence the training. This is because of the fact that
adaptation is done only at the end of each epoch. And thus,
we have chosen this way of updating the connection weights.

3.3. Radial Basis Function (RBF) Neural Network. The con-
struction of a radial basis function (RBF) neural network in
its most basic form involves three entirely different layers.
A typical RBFN with 𝑁 input and 𝑀 output is shown in
Figure 4.The input layer is made up of source nodes (sensory
units). The second layer is a single hidden layer of high
enough dimension, which serves a different purpose in a
feed-forward network.The output layer supplies the response
of the network to the activation patterns applied to the
input layer. The input units are fully connected though unit-
weighed links to the hidden neurons, and the hidden neurons
are fully connected by weighed links to the output neurons.
Each hidden neuron receives input vector X and compares it
with the position of the center ofGaussian activation function
with regard to distance. Finally, the output of the 𝑗th-hidden
neuron can be written as

𝐴
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where X
𝑖
is an 𝑁-dimensional input vector, C

𝑗
is the vector

representing the position of the center of the 𝑗th hidden
neuron in the input space, and 𝑆 is the standard deviation or
spread factor of Gaussian activation function. The structure
of a radial basis neuron in the hidden layer can be seen in
Figure 5.Output neurons have linear activation functions and
form a weighted linear combination of the outputs from the
hidden layer:
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𝑤
𝑘𝑗
𝐴
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where𝑌
𝑘
is the output of neuron 𝑘,𝐻 is the number of hidden

neurons, and 𝑤
𝑘𝑗

is the weight value from the 𝑗th hidden
neuron to the 𝑘th output neuron. Basically, the RBFN has the
properties of rapid learning, easy convergence, and less error
and generally possess following characteristics.

(1) It may require more neurons than the standard feed-
forward BP networks.

(2) It can be designed in a fraction of the time that it takes
to train the BP network.

(3) It has excellent ability of representing nonlinear func-
tions. RBFN is being used for an increasing number of
applications, proportioning a very helpful modeling
tool.
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4. Results and Discussion

4.1. Static Pull-In Instability Analysis. In order to obtain
different pull-in instability parameters and output features for
training and testing of neural networks, a series of numerical
analysis was performed on a MAPLE package. At first, some
preliminary calculations were carried out to determine the
stable domain of the pull-in instability parameters and also
the different ranges of pull-in variables. Based on preliminary
calculations results, beam length (𝐿), width of beam (𝑏), gap
(𝑔), and (ℎ/𝑙) ratio were chosen as independent input param-
eters.The total data obtained fromMAPLE calculations is 120
which forms the neural networks’ training and testing sets.
In the considered case study, it is assumed that the cantilever
beam is made of silicon in 110 direction; that is, the length of
the beam is along the 110 direction of silicon crystal, with 𝐸 =

169.2GPa. Also, the side planes of the beam are considered
normal to the 110 direction, with average in-plane Poisson’s
ratio and shear modulus equal to ] = 0.239 and 𝜇 = 65.8GPa
[29].

4.2. Modeling of Static Pull-In Instability of Cantilever Beam
Using Neural Networks. Themodeling of pull-in instability of
microbeam with BP and RBF neural networks is composed
of two stages: training and testing of the networks with
numerical data. The training data consisted of values for
beam length (𝐿), gap (𝑔), width of beam (𝑏) and (ℎ/𝑙), and
the corresponding static pull-in instability voltage (𝑉PI). A
total of 120 such datasets were used, of which 110 were
selected randomly and used for training purposes whilst
the remaining 10 datasets were presented to the trained
networks as new application data for verification (testing)
purposes. Thus, the networks were evaluated using data

...

Output layer

Hidden layer

Input layer 

L

g
VPI

b

h/l

Figure 6: General ANN topology.

that had not been used for training. Training/testing pattern
vectors are formed, each with an input condition vector and
the corresponding target vector. Map each term to a value
between−1 and 1 using the following linearmapping formula:

𝑁 =
(𝑅 − 𝑅min)

∗

(𝑁max − 𝑁min)

(𝑅max − 𝑅min)
+ 𝑁min, (16)

where 𝑁: normalized value of the real variable; 𝑁min = −1

and𝑁max = 1: minimum andmaximum values of normaliza-
tion, respectively; 𝑅: real value of the variable; 𝑅min and
𝑅max: minimum and maximum values of the real variable,
respectively. These normalized data were used as the input
and output to train the ANN. In other words, the network
has four inputs of beam length (𝐿), gap (𝑔), width of beam (𝑏),
and (ℎ/𝑙) ratio and one output of static pull-in voltage (𝑉PI).
Figure 6 shows the general network topology for modeling
the process.

4.3. BP Neural Network Model. The size of hidden layer(s) is
one of the most important considerations when solving the
actual problems with using multilayer feed-forward network.
However, it has been shown that the BP neural network with
one hidden layer can uniformly approximate any continuous
function to any desired degree of accuracy given an adequate
number of neurons in the hidden layer and the correct
interconnection weights [34]. Therefore, one hidden layer
was adopted for the BP model. To determine the number of
neurons in the hidden layer, a procedure of trial and error
approach needs to be done. As such, some attempts have
beenmade to study the network performance with a different
number of hidden neurons. Hence, a number of candidate
networks are constructed, each trained separately, and the
“best” network was selected based on the accuracy of the
predictions in the testing phase. It should be noted that if the
number of hidden neurons is too large, the ANN might be
overtrained giving spurious values in the testing phase. If too
few neurons are selected, the function mapping might not be
accomplished due to undertraining.Three functions, namely,
newelm, newff, and newcf, have been used for creating the BP
networks. Table 1 shows that 10 numerical datasets have been
used for verifying or testing network capabilities in modeling
the process.

Therefore, the general network structure is supposed to
be 4-𝑛-1, which implies 4 neurons in the input layer, 𝑛
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Table 1: Beam geometry and pull-in voltage for verification analysis.

Test number 𝐿 (𝜇m) 𝑏 (𝜇m) ℎ/𝑙 𝑔 (𝜇m) 𝑉PI (volt)
1 75 0.5 4 0.5 0.179
2 100 5 6 1 2.44
3 125 10 8 1.5 7.31
4 150 20 10 2 16.82
5 175 25 12 2.5 26.78
6 200 30 14 3 40.27
7 225 35 16 3.5 53.84
8 250 40 18 4 68.01
9 275 45 20 4.5 84.53
10 300 50 22 5 103.62

neurons in the hidden layer, and 1 neuron in the output layer.
Then, by varying the number of hidden neurons, different
network configurations are trained, and their performances
are checked. The results are shown in Table 2.

For training problem, equal learning rate andmomentum
constant of 𝜂 = 𝛼 = 0.9 were used. Also, error stopping
criterion was set at 𝐸 = 0.01, which means that training
epochs continued until the mean square error fell beneath
this value. Both the required iteration numbers and mapping
performances were examined for these networks. As the error
criterion for all networks was the same, their performances
are comparable. As a result, from Table 2, the best network
structure of BP model is picked to have 8 neurons in the
hidden layer with the average verification errors of 6.36%
in predicting 𝑉PI by newelm function. Table 3 shows the
comparison of calculated and predicted values for static pull-
in voltage in verification cases. After 1884 epochs, the MSE
between the desired and actual outputs becomes less than
0.01. At the beginning of the training, the output from the
network is far from the target value. However, the output
slowly and gradually converges to the target value with more
epochs and the network learns the input/output relation of
the training samples.

4.4. RBF Neural Network Model. Spread factor (𝑆) value
of Gaussian activation functions in the hidden layer is the
parameter that should be determined by trial and error when
using MATLAB neural network toolbox for designing RBF
networks. It has to be larger than the distance between
adjacent input vectors, so as to get good generalization, but
smaller than the distance across thewhole input space.There-
fore, in order to have a network model with good generaliza-
tion capabilities, the spread factor should be selected between
0.5 and 5.34. For training the RBF network, at first, a guess is
made for the value of spread factor in the obtained interval.
Also, the number of radial basis neurons is originally set as
one. At each iteration, the input vector that results in lowering
themost network training error is used to create a radial basis
neuron.Then, the error of the new network is checked, and if
it is low enough, the training stops. Otherwise, the next neu-
ron is added.This procedure is repeated until the error goal is
achieved or the maximum number of neurons is reached. In
the present case, it was found by trial and error that 20 hidden

neurons with the spread factor of 3 can give a model, which
has the best performance in the verification stage. Table 4
shows the effect of the number of hidden neurons on the
RBF network performance. It is clear that adding of hidden
neuronsmore than 20makes the training error (MSE) smaller
but deteriorates network’s generalization capabilities with the
increase of average verification errors instead of decreasing.
Therefore, the optimum number of radial basis neurons is
20. The selected network has the average errors of 4.55% in
response to the 10 input verification calculations (Table 1)
for 𝑉PI with newrbe function. Table 5 lists output values
predicted by the RBF neural model and the calculated ones
in verification (testing) phase. Two functions, namely, newrbe
and newrb, have been used for creating of RBF networks.

5. Selection of the Best Model

The simplest approach to the comparison of some different
networks is to evaluate the error function by using the data
which is independent of that used for training [35]. Hence,
the selection of the corresponding “best network” is carried
out based on the accuracy of predicting the process outputs
in verification stage. From Tables 2 and 4, it is concluded that
RBFNmodel with the total average error of 4.55% in compar-
ison with 6.36% for BP model has superior performance and
therefore is picked as the best model. Figure 7 illustrates the
numerical and predicted 𝑉PI by BP and RBF neural networks
in verification stage. Figures 8 and 9 compare the pull-in
voltages evaluated by the modified couple stress theory with
ℎ/𝑙 = 4, 𝑔 = 1.05 𝜇m, 𝑏 = 50 𝜇m, and ℎ = 2.94 𝜇m with
the results of the BP and RBF neural networks, respectively.
The pull-in voltages of the microcantilever versus parameter
ℎ/𝑙 for 𝑏/𝑔 = 50 are depicted in Figure 10, with three
BP functions. The same conditions have been used for two
functions of RBFN, in Figure 11. As a further step to study the
capabilities of each network in fitting all points in the input
space, a linear regression between the network output and the
corresponding target (numerical) values was performed. In
this case, the entire data set (training and verification) was
put through the trained networks, and regression analysis was
conducted. The networks have mapped the output very well.
The correlation coefficients (𝑅) are also given as a criterion of
comparison. The amounts of 𝑅 are 0.989 for BP model and
0.997 for RBF model in simulating 𝑉PI.

6. Conclusions and Summary

In this paper, by using the modified couple stress theory,
the size-dependent behavior of an electrostatically actu-
ated microcantilever has been investigated. In this study
the pull-in instability of geometrically nonlinear cantilever
microbeams under an applied voltage is investigated. Two
supervised neural networks have been used for the static
pull-in instability voltage of microcantilever beams. Based
on the results of each network with some data set, different
from those used in the training phase, it was shown that
the RBF neural model has superior performance than BP
network model and can predict the output in a wide range of
microbeam conditions with reasonable accuracy. In sum, the
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Table 2: The effects of different numbers of hidden neurons on the BP network performance.

Number of hidden neurons Epoch Average error in 𝑉PI (%)
with newelm function

Average error in 𝑉PI (%)
with newcf function

Average error in 𝑉PI (%)
with newff function

4 18914 12.31 10.27 12.30
5 4970 14.38 18.38 20.19
6 1783 8.19 11.65 12.75
7 3984 9.72 9.39 11.17
8 1884 6.36 8.28 10.14
9 2770 13.39 11.86 19.98
10 2683 11.67 16.40 15.48

Table 3: Comparison of 𝑉PI calculated and predicted by the BP neural network model with three functions.

Test
number

𝑉PI (volt) 𝑉PI (volt) 𝑉PI (volt)
Calculated BP model (newelm) Error (%) Calculated BP model (newff) Error (%) Calculated BP model (newcf) Error (%)

1 0.179 0.190 6.56 0.179 0.191 7.12 0.179 0.193 8.29
2 2.44 2.61 7.28 2.44 2.52 3.39 2.44 2.59 6.28
3 7.31 7.32 0.16 7.31 7.54 3.16 7.31 7.70 5.39
4 16.82 19.21 14.24 16.82 18.29 8.75 16.82 19.21 14.24
5 26.78 28.22 5.39 26.78 28.16 5.19 26.78 28.76 7.41
6 40.27 42.17 4.74 40.27 46.03 14.31 40.27 43.99 9.25
7 53.84 57.13 6.12 53.84 57.49 6.79 53.84 57.96 7.67
8 68.01 71.60 5.29 68.01 78.39 15.27 68.01 82.14 20.78
9 84.53 89.39 5.76 84.53 86.71 2.59 84.53 92.51 9.45
10 103.62 112.03 8.12 103.62 120.53 16.32 103.62 116.74 12.67

Table 4: The effects of different numbers of hidden neurons on the
RBF network performance (𝑆 = 3).

Number of
hidden
neurons

Average error (%) in
predicting 𝑉PI with
newrbe function

Average error (%) in
predicting 𝑉PI with
newrb function

16 8.87 7.3
18 9.66 10.77
20 4.55 6.08
22 12.32 14.71
24 12.89 15.16
26 13.78 16.24

following items can also bementioned as the general findings
of the present research.

(1) The BP and RBF neural networks are capable of con-
structing models using only numerical data, describ-
ing the static pull-in instability behavior.

(2) RBF neural network which possesses the privileges
of rapid learning, easy convergence, and less error
with respect to BP network, has better generalization
power and is more accurate for this particular case.
This selection was done according to the results
obtained in the verification phase.
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Figure 7:The comparison of𝑉PI between verification and numerical
results.

(3) The results show that the newelm function is more
accurate than newff and newcf functions. Also the
Levenberg-Marquardt training is faster than other
training methods.

(4) The results have demonstrated the applicability and
adaptability of the RBNN for analysis of instability
static pull-in voltage of cantilever beams and also
the newrbe function is more accurate and faster than
newrb function.
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Table 5: Comparison of 𝑉PI calculated and predicted by the RBF neural network model.

Test number 𝑉PI (volt) 𝑉PI (volt)
Calculated RBF model (newrbe) Error (%) Calculated RBF model (newrb) Error (%)

1 0.179 0.19 8.49 0.179 0.18 3.78
2 2.44 2.47 1.34 2.44 2.70 10.97
3 7.31 7.68 5.12 7.31 7.81 6.93
4 16.82 16.88 0.38 16.82 17.27 2.71
5 26.78 27.47 2.59 26.78 27.76 3.69
6 40.27 41.96 4.20 40.27 43.20 7.29
7 53.84 54.80 1.79 53.84 54.96 2.09
8 68.01 70.64 3.88 68.01 75.06 10.38
9 84.53 85.43 1.07 84.53 88.40 4.59
10 103.62 120.89 16.67 103.62 113.75 9.78
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Figure 8: Comparing the theoretical and BP neural networks pull-
in voltages for silicon 110.

0
10
20
30
40
50
60
70
80
90

50 100 150 200 250 300
Cantilever length

Pu
ll-

in
 v

ol
ta

ge
 (v

ol
t)

Numerical
newrbe RB function
newrb RB function

Figure 9: Comparing the theoretical and RBF neural networks pull-
in voltages for silicon 110.

(5) For cantilever beams by increasing of gap length, the
pull-in voltage is significantly increased.

(6) For cantilever beams by increasing of length of beams,
the pull-in voltage is significantly decreased.
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Figure 10: Comparing pull-in voltage of the microcantilever versus
parameter ℎ/𝑙 and 𝑏/𝑔 = 50 with BP models.
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Figure 11: Comparing pull-in voltage of the microcantilever versus
parameter ℎ/𝑙 and 𝑏/𝑔 = 50 with RBF models.

(7) When the ratio of ℎ/𝑙 increases, the pull-in voltage
predicted by modified couple stress theory and ANN
is constant approximately.

The conclusion indicates that the geometry of beam has
significant influences on the electrostatic characteristics of
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microbeams that can be designed to tailor the desired per-
formance in different MEMS applications.
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