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The time-band approximation model for flight operations recovery following disruption (Bard, Yu, Arguello, IIE Transactions, 33,
931–947, 2001) is constructed by partitioning the recovery period into time bands and by approximating the delay costs associated
with the possible flight connections. However, for disruptions occurring in a hub-and-spoke network, a large number of possible
flight connections are constructed throughout the entire flight schedule, so as to obtain the approximate optimal. In this paper,
we show the application of the simplex group cycle approach to hub-and-spoke airlines in China, along with the related weighted
threshold necessary for controlling the computation time and the flight disruption scope and depth. Subsequently, we present
the weighted time-band approximationmodel for flight operations recovery, which incorporates the simplex group cycle approach.
Simple numerical experiments using actual data fromAir China show that theweighted time-band approximationmodel is feasible,
and the results of stochastic experiments using actual data from Sichuan Airlines show that the flight disruption and computation
time are controlled by the airline operations control center, which aims to achieve a balance between the flight disruption scope
and depth, computation time, and recovery value.

1. Introduction

Flight plans are very important for all airlines, as the efficiency
of their construction can significantly affect profit margins
and because they involve aircraft, crew, airports, and other
important factors. Flight plans contain a series of flight
schedules, which consist of the originating city, the departure
time, the destination city, and the arrival time for flights
the airline intends to operate. However, aircraft mechani-
cal problems, crewunavailability due to illness, and inclement
weather conditions often lead to disruptions and delay flight
plan propagation [1]. With the rapid increase in scheduled
flights and airlines in China, a greater number of airline
schedule disruptions are occurring. Moreover, the aircraft,
crew, airports, airspace ports, and airspace capacities are
connected and restricted; thus, disruptions can lead to a
domino effect that generates further flight disruptions. Such

disruptions often result in irregular operations such as
delays, cancellations, and aircraft reassignment.Themajority
of irregular operations can be attributed to fourmajor factors,
namely, shortage of airline resources (such as crew, aircraft,
ground personnel, and gates), airport and airspace capacity
shortages, inclement weather conditions, and management-
level discontent that affects the related resources. In 2013, the
economic losses due to airline schedule disruptions exceeded
RMB43 billion, according to the Civil Aviation Resource Net
of China. However, the Civil Aviation Development Statis-
tical Bulletin reports that, at most, 50.49% of the schedule
disruptions in 2014 can be attributed to airlines, with 26.41%
being the average result. Therefore, the speed with which
flight operations are recovered is very important in order to
reduce economic losses due to schedule disruptions.

A large amount of research has been devoted to this topic.
For example, Teodorović and Guberinić [2] have presented a
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network (representing an airline network) inwhich the nodes
represent the flights and the arcs are the total time losses on
individual flights. Hence, a branch and bound procedure was
developed to minimize the total passenger delay when an air-
craft is grounded. Further, Teodorović and Stojković [3] have
introduced a lexicographic dynamic programming approach
and a heuristic algorithm to minimize the total passenger
delays and the number of cancelled flights. Two minimum-
cost network flow models to address aircraft shortages have
also been introduced by Jarrah et al. [4]. The first is a delay
model that allows for flights to be delayed or cancelled, air-
craft to be alternated among scheduled flights, or the usage of
surplus aircraft to be requested.The secondmodel minimizes
the total flight leg cancellation costs by similarly selecting
multiple cancellations, employing aircraft substitution, and
utilizing spare aircraft. However, accurate flight delay costs
can not yet be quickly and easily determined, and the scope
and depth of the flight disruption are not considered in the
above models. In contrast, delay costs can be approximated
with accuracy using the time-band approximation model
introduced by Yu et al., which was developed in order to
retain the superiority of the resource assignment model and
the multicommodity flow model. Further, Yu [5] has intro-
duced a time-based two-commodity network optimization
model for aircraft routing. One commodity in the network
model represents aircraft, while the other represents flight
cancellations. In addition, Yan and Yang [6] have published
a single model to initially combine flight cancellations and
delays and to ferry flights. Using a basic time-space network
representation, Yan and Lin [7] have developed network flow
models to handle station closures, while Yan and Tu [8]
have proposed a multiple-fleet network flow model. Finally,
Cao and Kanafani [9, 10] have developed a minimum-cost
network flow aircraft recovery model, along with network
flow algorithms to determine solutions.

However, themathematical solution derived from a time-
based network does not represent the delay costs accurately.
In order to develop an optimizationmodel that can determine
delay costs with greater accuracy than the multicommodity
flow model, the time-band optimization model for aircraft
routing reconstruction in response to groundings and delays
experienced over the course of a day has been introduced
[11, 12]. A mathematical model that captures the delay costs
for each flight based on a time-based network has been
developed; the motivation for this approach is to exploit the
underlying network structure associated with aircraft rout-
ings, with themathematical model being a single-commodity
integral minimum-cost flow problem with side constraints.
The concept behind this model is to partition the time
horizon into time bands with a fixed length. The nodes in
the resulting network represent possible activity at a station.
Thus, in the established network, some nodes are positioned
at fixed intervals on the time axis.The aggregation of activities
for that station can then be attained in 𝑂(𝑚𝑛𝑡) operations,
where𝑚 is the number of stations, 𝑛 is the number of flights,
and

𝑡 = time horizon
time segment length

. (1)

All aircraft that arrive at a station within the time period
represented by a node may then be connected to any flights
scheduled to depart from that station. The delay time can
be approximated with an accuracy that is dependent on the
length of the time segment; therefore, the delay costs can be
determined quickly.

When disruptions occur, the airline controllers in the
airline operations control centers (AOCC) adjust the sched-
uled operations by delaying flight departures, cancelling flight
legs, rerouting or swapping aircraft, summoning new crew
(or reassigning existing crew), and so forth. In order to
reassign resources and adjust flight schedules in the most
economicmanner, certain factors must be acknowledged: the
flight delay costs, flight cancellation costs, aircraft substitu-
tion costs, aircraft assignment, crew schedules, maintenance
requirements, aircraft positions, and so forth. However, it is
difficult to determine the delay costs exactly. Further, flight
cancellation costs involve both passenger opportunity costs
and direct costs, and the delay time cannot be determined
in advance. Therefore, the ability to compute both delay and
flight cancellation costs is very important as regards the solu-
tion of flight operations recovery problems. Such solutions
determine adjusted flight departure times, cancellations, and
revised routing for affected aircraft.

Many researchers have conducted significant work with
regard to flight operations recovery considering passen-
ger factors. For example, Bratu and Barnhart [13] have pro-
posed two flight operations recovery optimization models,
the Disrupted Passenger Metric (DPM) and the Passenger
Delay Metric (PDM) models, the objective of which is to
find the optimal trade-off between airline operation costs
and passenger delay costs. The resultant recovery plans work
to select flight departure times and flight cancellations, to
assign aircraft, to reserve crews for each flight leg as necessary,
and to ensure the constraints regarding crew regulations and
aircraftmaintenance requirements are considered.The objec-
tive of the DPM model is to minimize the sum of the
operating and disrupted passenger costs. In contrast, the
PDMmodel is constructed to more accurately compute delay
costs. Thus, a special procedure to compute the costs due to
disrupted passengers has been developed. In addition, Hu
et al. [14] have proposed the integrated integer program-
ming model, which is based on an approximate reduced
time-band network and a passenger transiting relationship.
The objective is to minimize the total cost associated with
reassigning aircraft and passengers to flights. A feasibility
analysis for the problem is conducted in order to obtain
the conditions under which aircraft and passenger recovery
is possible. Further, Zhao et al. [15] have introduced an
approach in which the flight delay costs are subdivided,
proposing the concept of passenger disappointment spillover
cost, and demonstrated a mathematical model of an irregular
flight schedule recovery problem that reschedules flight legs
and reroutes aircraft by minimizing an objective function
involving the flight delay costs or the delay time. The airline
can choose one of selections of objective functions according
to their needs. However, determining the passenger disap-
pointment spillover cost function remains a problem, and
the compensation provided by the airline is a very important
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factor influencing this cost function. For further research on
recovery considering passenger factors, see [16–19]. Castro
et al. [19] give a new approach for disruption management in
airline operations control. They provide a Multiagent System
Architecture that represents the AOCC, and introduce a
method to calculate the quality costs from the passenger
point of view and a system classification to classify disruption
management systems.They have donemuch original work in
the recovery operational costs; especially they first propose
the quality operational costs (the cost that each minute of
delay and flight cancellation has from a passengers point
of view). They try to quantify in a monetary unit the cost
that each minute of delay and flight cancellation has from
a passengers point of view and, at the same time, use that
value togetherwith the direct operational costs to improve the
decision making during the disruption management process.
The quality costs of a flight are given out under the passenger
goodwill; what ismore, they propose the airline company case
study of TAPPortugal, regarding the delay cost from the point
of view of the passengers. However, we can not directly use
a similar method to calculate the passenger recovery costs in
China, in that the preconception of passenger’s compensation
costs comes from Confucius’s idea of the average distribution
two thousand years ago and some exemption rules fromCivil
Aviation Administration of China, such as the weather and
other objective reasons, and the passengers can not get any
compensation.

When one or several aircraft are grounded, a heuristic
approach based on a greedy randomized adaptive search
procedure (GRASP) for the reconstruction of aircraft routes,
which has been developed by Argüello et al. [20], can be
applied. (Further optimization methods are provided in [21–
25].) However, a large proportion of the feasible optimization
methods copy flights to the entire flight schedule, while other
resources are reassigned in order to repair the disrupted
schedules in the best possible manner; thus, the disruption
scope or depth may be wide or great. Further, the com-
putation time increases with increases in the number of
potentially disrupted flights, when such disruptions occur in
hub-and-spoke airline networks.

Petersen et al. [26] have introduced a disruptable flight
set in an attempt to control the recovery search scope of
an optimization approach to airline integrated recovery. This
approach yields the first computed results for the fully
integrated problem. In fact, the disruptable flight set may be
comprised of all flights and the actual scope and depth of
the disruption may not be controlled. In addition, Lan et al.
[27] have introduced aircraft routing and flight departure
time adjustment in order to reduce the number of disrupted
passengers and to minimize the number of passenger mis-
connections. However, some passengers may have a long
delay time or the flight scope may be wide. The computation
time and the disruption scope and depth are not yet fully
controllable.

At the 2012 Informs meeting, we first proposed the sim-
plex group cycle approach as a means of controlling the
potential disruption scope [28].The approximated delay costs
considering the random flying time around the planned
flying time is first introduced in the literature [29], and the

time-band approximation model on flight operations recov-
ery problems is constructed based on the time-band network
and approximated delay costs. Further, a series of numerical
experiments show that the time-band approximation model
on flight operations recovery with the random flying time
may be more efficient than the time-band approximation
model on flight operations recovery with the planned fly-
ing time. Using the thought of stochastic delay costs, the
approximated cancellation costs formula is first introduced
in this paper. In addition, the formula takes into account
interval random number, the number of passengers, and
approximate city accommodation costs. However, we did
not introduce the feasible algorithm for aircraft and flight
partitioning, the feasible algorithm to compute weighted
value and simulation tests, and so forth, in our previous
work.

Previously, Clausen et al. [30] have shown that robust
planning or schedule robustness is an interesting research
topic closely related to disruption management. The goal of
robust planning is to reduce the sensitivity of flight and crew
schedules and aircraft rotations to disruptions. Rosenberger
et al. [31] have also proposed a robust fleet-assignment model
with hub isolation and short cycles and proven that fleet
assignments with limited hub connectivity have a greater
number of short cycles. A cycle is a sequence of flights that
begins and ends at the same airport; further when a cycle
contains fewer flights, this cycle is called short cycle. And it
is possible to reduce the impact of a disruption at one hub
on other hubs by isolating the hubs insofar as possible; hub
isolation is zero hub connectivity which is the number of legs
in a rotation that are in a route that begins at a hub and ends
at a different hub. In fact, the aim of hub isolation and short
cycles is to control the difficulty and scope of schedule recov-
ery. However, limited hub isolation corresponds to a lower
number of feasible schedule recovery solutions, while short
cycles are associated with flight cancellations or longer delay
times within the short cycles. The scope of schedule recovery
is controlled within the short cycle, rather than by the AOCC
controllers.

Moreover, airline network structure has an important
effect on flight operations recovery. In America, the AOCC
controllers formulating flight operations recovery plans must
consider passenger itineraries within a hub-and-spoke net-
work structure. A hub-and-spoke network [19] means a
system of connections arranged like a chariot wheel, in which
all traffic moves along spokes connected to the hub at the
center. However, passenger itineraries of domestic flights in
China containing a single flight leg are in the majority, and
the international flights accounted for about 9% of all flights
in 2015 according to flights data from the Civil Aviation
Administration of China. Further, international flights and
domestic flights are different in aircraft type and crews,
so there is little implication between international flights
and domestic flights. Thus, we do not consider passenger
itineraries in this study on domestic flights in China. What
is more, multi-hub-and-spoke airlines are associated with
multibase airlines in China. Therefore, the hub-and-spoke
airlines have some advantages as regards options for schedule
recovery from irregular operations.
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This article makes three new contributions compared
to previous results. First, we describe more specifically the
simplex group cycle approach and first present a feasible
algorithm for aircraft and flight partitioning and a feasible
algorithm to compute weighted value. Second, we use a
weighted threshold to control the disruption scope anddepth,
computation time and recovery value for flight operations
recovery for hub-and-spoke airlines. Hence, we describe the
weighted time-band approximation model (WTBAM) for
flight operations recovery using the simplex group cycle
approach, referring to the concept of the time-band approx-
imation model for flight operations recovery [12]. Third, we
design some practical numerical experiments and the results
demonstrate that use of the WTBAM incorporating the
simplex group cycle is reasonable and feasible, andwe provide
first the feasible method to choose the weighted threshold𝛼0. Furthermore, the results verify that the gap between
the relaxed weighted time-band approximation model and
the weighted time-band approximation model is zero under
certain conditions. Finally, the results demonstrate that we
can obtain a satisfactory recovery plan considering the flight
disruption scope and depth, computation time and recovery
value under some appropriate rules.

The remainder of this paper is organized as follows. In
Section 2, we introduce some fundamental concepts, includ-
ing important definitions and key aspects of the time-band
approximationmodel. In Section 3,we present themathemat-
ical formulations of the WTBAM.The model is then applied
to actual data from two airlines and the computational results
are presented in Section 4. In Section 5, the conclusions are
presented with a brief discussion.

2. Fundamental Concepts

To construct the WTBAM, we first introduce several funda-
mental concepts.

2.1. Objective and Constraints. The objective of flight oper-
ations recovery is to make decisions that correspond to the
lowest-cost response to restoring the disrupted schedule to
the planned schedule. In this paper, we firstly consider flight
departure delays or flight leg cancellations to repair a flight
schedule after a disruption and subsequently assign individ-
ual aircraft to a new flight schedule by the method [32].
Moreover, considering the characteristics of multi-hub-and-
spoke airlines in China, we have no considering maintenance
base for the overnight restrictions in the process of assigning
individual aircraft to a new flight schedule. In fact, the AOCC
controllers customarily give priority to assign the same type
aircraft, and in general there are a lot of the same type aircraft
in the multi-hub-and-spoke airlines. Further, the different
type of aircraft will bring about a series of problems, such
as crew, airport, and maintenance; the AOCC controller has
to make sure the aircraft routing is feasible. Therefore, the
relaxation of maintenance base restrictions is one of the
advantages for multi-hub-and-spoke airlines in China.

Note that minimization of weighted delay costs and flight
cancellation costs is a common objective. The delay costs
include additional fuel expenses, overtime payments, further

expenses associated with overtime payments when an aircraft
is delayed in an airport, and passenger food expenses. Thus,
delay costs are the direct costs incurred by flight delays, rather
than associated costs that arise by chance. We consider the
different weighted values of these costs in different simplex
group cycles. In contrast, flight cancellation costs include loss
of profit, passenger food and accommodation expenses, and
passenger compensation. And flight cancellation costs were
generated by the approximate estimation formula 𝑦 = 𝑎𝑥 + 𝑏
in this research, 𝑎 is the number of passengers, 𝑥 is a random
number between 80 and 100 and generally includes meals
and passenger compensation, and 𝑏 is the approximate city
accommodation cost. Further, the recovery plan must also
satisfy the following constraints in order to be considered
feasible. First, the turnaround time must be more than the
minimum threshold, that is, 40min. Second, every flight on
each aircraft route must depart from the station at which
the immediately preceding flight arrived. Finally, the aircraft
balance necessary for the flight schedule to be resumed the
next day must be achieved.

2.2. Simplex Group Cycle. The network of a multi-hub-and-
spoke airline is comprised of two or more hub-and-spoke
structures. Thus, multi-hub-and-spoke airlines have more
maintenance bases and a greater number of feasible recovery
plans. In fact, the group of flights between one or more hub-
and-spoke systems in the same airline network is defined as
belonging to a simplex group cycle and labelled 𝑆𝐹𝑠, where𝑠 denotes the specific simplex group cycle. Those flights are
assigned to certain fixed aircraft, and the originating and des-
tination cities contain one or more hub-and-spoke systems.
Thus, each flight belongs to only one 𝑆𝐹𝑠. According to the
definition of a simplex group cycle, a simplex group cycle
partition for all aircraft can be determined, with each aircraft
being assigned to one of various 𝑆𝐴 𝑠 groupings. The simplex
group cycle approach and its superiority are shown in the
following example.

The Air China hub-and-spoke systems shown in the
following flight schedule are Beijing (PEK), Shanghai (SHA),
and Chengdou (CTU). The network comprised of the PEK,
SHA, Xian (XIY), and CTU hubs is shown in Figure 1.

The flight schedule and aircraft assignments are shown
in Table 1. Thus, we can determine a partition based on the
natural aircraft sequence. The first simplex group cycle is the
set comprised of CA4193, CA4102, CA1216, CA1215, CA1945,
CA1946, CA425, and CA1950, and the related aircraft are 𝑓1,𝑓2, and 𝑓3. Thus, the second simplex group cycle is the set
comprised of CA1203, CA1204, CA4107, CA4108, CA4201,
and CA4202, with the related aircraft being 𝑓4 and 𝑓5.

The partitioning of the flights or aircraft is usually deter-
mined by the AOCC controllers, according to their empirical
data and objectives. However, partitioning the flights or
aircraft in amanner that establishes the optimal 𝑆𝐹𝑠 groupings
is a difficult problem. Therefore, we first present a feasible
algorithm for aircraft and flight partitioning in Algorithm 1.

2.3. Weighted Set and Potential Disruption Set. When disrup-
tions occur in a hub-and-spoke network, they may lead to
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Figure 1: Air China flight network comprised of Beijing (PEK), Shanghai (SHA), Xian (XIY), and Chengdou (CTU) hubs.

Table 1: Sample flight schedule and aircraft assignments.

Flight𝑁 Tail𝑁 From To Dep. 𝑇 Arr. 𝑇 Ass. A C. cost
CA4193 11 CTU PEK 7:00 9:30 𝑓1, 321 11380
CA4102 12 PEK CTU 11:30 14:00 𝑓1, 321 15150
CA1216 21 SHA PEK 8:00 10:00 𝑓2, 321 12985
CA1215 22 PEK SHA 12:30 14:30 𝑓2, 321 16991
CA1945 31 SHA CTU 8:05 10:35 𝑓3, 321 11260
CA1946 32 CTU SHA 12:20 14:50 𝑓3, 321 15785
CA425 33 SHA CTU 17:35 20:05 𝑓3, 321 13031
CA1950 34 CTU SHA 21:00 23:30 𝑓3, 321 13820
CA1203 41 PEK XIY 07:05 9:00 𝑓4, 321 11650
CA1204 42 XIY PEK 10:00 11:55 𝑓4, 321 10256
CA4107 51 CTU PEK 09:00 11:30 𝑓5, 321 11000
CA4108 52 PEK CTU 15:00 17:30 𝑓5, 321 15236
CA4201 53 CTU XIA 20:45 22:00 𝑓5, 321 9325
CA4202 54 XIA CTU 23:00 00:15 𝑓5, 321 9128
Flight𝑁: flight number; Tail𝑁: tail number; Dep. 𝑇: departure time; Arr. 𝑇: arrival time; Ass. A: assigned aircraft; C. cost: cancellation cost.

a large amount of disruptions overall. Thus, schedule recov-
ery should be accomplished in the most economic man-
ner. However, if we only consider the flights themselves, the
disruptions may have a negative influence on passengers.
Therefore, in order to control the potential disruption scope

𝐹𝑠 in a hub-and-spoke network and the associated negative
influence on passengers, 𝐹𝑠 can be determined based on the
flight disruption scope and depth, the computation time, and
the recovery value. Therefore, we employ the concept of a
weighted set, as explained below.
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Input: 𝐹 = Original flight schedule
Aircraft = All the executive aircraft associated with the flights

Output: Airport = An ordered list of all airports according to the number of related flights𝑆𝐴 𝑠 =The aircraft group in simplex group cycle 𝑠𝑆𝐹𝑠 =The flight group in simplex group cycle 𝑠
begin
for each airport 𝜆𝑖

Count the related flights 𝐹𝜆𝑖
mark(𝜆𝑖) = 𝐹𝜆𝑖 ;
Sort 𝜆𝑖 according to 𝐹𝜆𝑖 ;

end /According to the node degree at the airport-flight adjacency graph, we sort the airport from large to small./𝑗 = 𝑚0; /where𝑚0 is the approximate simplex group cycle number/𝑇𝐴 = 𝑆𝐴𝑚0 =The related aircraft in airport 𝜆𝑚0 ;
for 𝑖 = 1 : 𝑗𝑆𝐴𝑗−𝑖 =The related aircraft in airport 𝜆𝑗−𝑖𝑆𝐴𝑗−𝑖 = 𝑆𝐴𝑗−𝑖 − 𝑇𝐴; /Ensure that each aircraft is in the only one 𝑆𝐴 𝑖/𝑇𝐴 = 𝑆𝐴𝑗−𝑖 ∪ 𝑇𝐴;𝑖 + +;
end
if (𝑇𝐴 ̸= Aircraft);𝑆𝐴𝑗+1 =The related aircraft in airport 𝜆𝑗+1𝑆𝐴𝑗+1 = 𝑆𝐴𝑗+1 − 𝑇𝐴;𝑇𝐴 = 𝑆𝐴𝑗+1 ∪ 𝑇𝐴; 𝑗 = 𝑗 + 1;
else output 𝑆𝐴 𝑠, 𝑠 ∈ 𝑆 = {1, 2, . . . , 𝑗}.
end

output 𝑆𝐹𝑠, 𝑠 ∈ 𝑆,𝑆𝐹 =The flight group comprised of all flights in all simplex group cycles;
end

Algorithm 1: Simplex group cycle partitioning (SGCP) algorithm (𝑆 Algorithm).

Let 𝑆∗ be the set containing the simplex group cycle 𝑠
which is at least one schedule disruption in 𝑠 ∈ 𝑆. And let𝑆𝐴 be the aircraft partition related to 𝑆, the set of all simplex
group cycles. Then 𝑆𝐴∗ is the aircraft partition related to 𝑆∗.
Definition 1. When a disruption occurs, the weighted value is
denoted

𝑤𝑗 = {{{{{
∑
𝑖∈𝑆𝐴∗

𝑤𝑖𝑗, 𝑗 ∉ 𝑆𝐴∗,
1, 𝑗 ∈ 𝑆𝐴∗. (2)

When the flights of the 𝑖th simplex group cycle influence
those of the 𝑗th simplex group cycle, the value of 𝑤𝑖𝑗 can
usually be assigned by the AOCC controllers in accordance
with their empirical data and objectives. Naturally, we define𝑤𝑖𝑖 = 1, ∀𝑖 ∈ 𝑆, and 𝑤𝑖𝑗 = 𝛽(1 + 𝐴𝑇𝑆𝐴𝑗/𝐴𝑇𝑆𝐴𝑖), ∀𝑖, 𝑗 ∈ 𝑆.
Here, 𝛽 is the amplification coefficient, and 𝐴𝑇𝑆𝐴𝑖 and 𝐴𝑇𝑆𝐴𝑗
are the average available flight times of each 𝑆𝐴 𝑖 and 𝑆𝐴𝑗,
respectively. Then, the weighted set𝑊 = {𝑤𝑗, ∀𝑗 ∈ 𝑆}.

The simplex group cycle approach can exploit the advan-
tages provided by amulti-hub-and-spoke network. For exam-
ple, in Table 1, when aircraft 𝑓1 (CA4193) departed from
CTU arrived in PEK, the maintenance personnel detected
mechanical problems. It was estimated that a period of 4 h
was required to complete the repairs.Thus, using the simplex

group cycle approach, we utilize 𝑓2 to execute flight CA4102,
followed by flight CA1950, with 𝑓3 being utilized for flights
CA1945 andCA1946.At 13:30,𝑓1 then executes flights CA1215
and CA425. The total delay time is 100min, and we save
60min. Note that only the disruption scope is controlled by
the simplex group cycle approach. In addition, the developed
recovery plan involved cooperation between China Airlines
(𝑓2, 𝑓3) and its branch company, China Southwest Airlines
(𝑓1).

Based on a weighted threshold 𝛼0, AOCC airline con-
trollers can obtain a potential disrupted set 𝑃𝐷𝐹𝑆𝛼0 , which
is defined as follows.

Definition 2. Thepotential disrupted flights set 𝑃𝐷𝐹𝑆𝛼0 is the
set of flights in the simplex group cycle 𝑠 obtained when the
condition 𝑤𝑠 ≤ 𝛼0, ∀𝑠 ∈ 𝑆, is satisfied.

Hence, the AOCC airline controllers can set the potential
disruption flights 𝑃𝐷𝐹𝑆𝛼0 conveniently by considering the
value of 𝛼0. However, it is difficult to compute the 𝑤𝑖𝑗 values
for flights or aircraft. Therefore, a feasible algorithm to com-
pute 𝑊 and 𝑃𝐷𝐹𝑆𝛼0 is first given in Algorithm 2. The time-
band network incorporating 𝑃𝐷𝐹𝑆𝛼0 is constructed using the
time-band network transformation procedure found in [11,
12]. The time-band network mainly consists of station-time
nodes, station-sink nodes, and flight arcs, so we refer to some
concepts of the literature [11, 12] in the following
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Input: 𝑆𝐴, 𝑆𝐹
Output:𝑊, potential disrupted aircraft set 𝑃𝐷𝐴𝑆𝛼0 and 𝑃𝐷𝐹𝑆𝛼0
begin
for each 𝑆𝐴 𝑖
compute the average available flight time (𝐴𝑇𝑆𝐴𝑖 ) in the 𝑆𝐴 𝑖;
/𝑆𝐴 𝑖 is the set of aircraft in the simplex group cycle 𝑖, 𝑖 ∈ 𝑆./

end
for each simplex group cycle 𝑆𝐴 𝑖 𝑖 ∈ 𝑆∗
for each simplex group cycle 𝑆𝐴𝑗 𝑗 ∈ 𝑆
compute

𝑤𝑖𝑗 = {{{{{
𝛽(1 + 𝐴𝑇𝑆𝐴𝑗𝐴𝑇𝑆𝐴𝑖 ) 𝑗 ̸= 𝑖
1 𝑗 = 𝑖

end
end /𝑆𝐴 is the aircraft partition related to 𝑆.𝑆𝐴∗ is the aircraft partition related to 𝑆∗./

for each 𝑆𝐴𝑗, ∀𝑗 ∈ 𝑆.
compute

𝑤𝑗 = {{{
∑
𝑖∈𝑆𝐴∗

w𝑖𝑗 𝑗 ∉ 𝑆∗
1 𝑗 ∈ 𝑆∗

end𝑊 = (𝑤1, 𝑤2, . . . , 𝑤|𝑆|)𝑇;
𝑊𝑆𝐴 = ( |𝑆𝐴1 |⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑤1, . . . , 𝑤1, |𝑆𝐴2 |⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑤2, . . . , 𝑤2, . . . , |𝑆𝐴|𝑆| |⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑤|𝑆|, . . . , 𝑤|𝑆| )𝑇;𝑃𝐷𝐴𝑆𝛼0 = 0; 𝑃𝐷𝐹𝑆𝛼0 = 0;
for 𝑖 = 1 : |𝑆|
if 𝑤𝑖 ≤ 𝛼0; /𝛼0 is the threshold./𝑃𝐷𝐴𝑆𝛼0 = 𝑃𝐷𝐴𝑆𝛼0 ∪ 𝑆𝐴 𝑖; 𝑃𝐷𝐹𝑆𝛼0 = 𝑃𝐷𝐹𝑆𝛼0 ∪ 𝑆𝐹𝑖;
end
end

end

Algorithm 2: Weighted set and potential disruption flights set (𝑃𝐷𝐹𝑆𝛼0 ) algorithm (𝑊 Algorithm).

Flight arcs: arcs representing specific scheduled
flights.

Station-time nodes: nodes representing aggregate
activity for a specific time segment at a station.

Station-sink nodes: nodes representing the end of the
recovery period at stations.

Subsequently all the possible delay costs for the flight arcs
can be computed by considering the difference between the
real takeoff time and the scheduled plan in the time-band net-
work. Naturally, the WTBAM is constructed in accordance
with the optimization model by considering a series of flight
arcs with some potential flight delays. In the next section,
we present the mathematical formulation of the time-band
approximation model.

3. Time-Band Approximation Model
Mathematical Formulation

In order to construct the mathematical formulation of the
optimization model, some indices, sets, parameters, and
variables are employed, which are given in Nomenclature.

Using 𝛼0 and considering the recovery plan for 𝑃𝐷𝐹𝑆𝛼0
only, we can express the WTBA approximation model as fol-
lows:

min 𝐹𝛼0 (𝑥, 𝑦, 𝑧)
= ∑
𝑘∈𝑃𝐷𝐹𝑆𝛼0

∑
𝑖∈𝑃(𝑘)

∑
𝑗∈𝐻(𝑘,𝑖)

𝑤𝑘𝑖𝑗𝑑𝑘𝑖𝑗𝑥𝑘𝑖𝑗
+ ∑
𝑘∈𝑃𝐷𝐹𝑆𝛼0

𝑤𝑘𝑐𝑘𝑦𝑘,
(3)

subject to ∑
𝑖∈𝑃(𝑘)

∑
𝑗∈𝐻(𝑘,𝑖)

𝑥𝑘𝑖𝑗 + 𝑦𝑘 = 1, ∀𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼0 , (4)

∑
𝑘∈𝐺(𝑖)

∑
𝑗∈𝐻(𝑘,𝑖)

𝑥𝑘𝑖𝑗 + 𝑧𝑖 − ∑
𝑘∈𝑁(𝑖)

∑
𝑗∈𝑀(𝑘,𝑖)

𝑥𝑘𝑖𝑗
= 𝑎𝛼0𝑖 , ∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼0 ,

(5)

∑
𝑘∈𝑁(𝑖)

∑
𝑗∈𝑀(𝑘,𝑖)

𝑥𝑘𝑗𝑖 + ∑
𝑗∈𝑄(𝑖)

𝑧𝑗 = ℎ𝛼0𝑖 ,
∀𝑖 ∈ 𝐽, 𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼0 ,

(6)
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𝑥𝑘𝑖𝑗 ∈ {0, 1} ,
𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼0 , 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐻 (𝑘, 𝑖) , (7)

𝑦𝑘 ∈ {0, 1} , 𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼0 , (8)

𝑧𝑖 ∈ 𝑍+, 𝑖 ∈ 𝐼. (9)

The objective function (3) minimizes the delay and cancel-
lation costs for 𝑃𝐷𝐹𝑆𝛼0 . Constraint (4) shows that all flights
in the simplex group cycle must be operated or cancelled.
Further, constraint (5) satisfies the aircraft utilization require-
ment at the station-time node. The station-sink node flow
constraint (6) enforces aircraft balance.The binary 𝑥𝑘𝑖𝑗 and 𝑦𝑘
ensure that a flight can only be operated or cancelled; that
is, it must not be partially serviced and then cancelled.
The possible arcs must be integrated, which is enforced by
constraint (9).

Remark 3. When 𝛼0 = 1, the solution ofWTBAM is obtained
after searching the flights in 𝑆∗, and the passengers affected
by this solution may experience long flights, or some flights
in the simplex group cycle may be cancelled. In other words,
the disruption scope can be controlled in the simplex group
cycle 𝑆∗, but the disruption depth may be very large.

In contrast to the optimization model with 𝛼0 ≥ 1,
the objective function and constraints in the model can be
modified by 𝑘 ∈ 𝑆𝐹𝑆∗ . In this optimization model, 𝑃𝐷𝐹𝑆𝛼0 is
restricted to the disrupted flight set 𝑆𝐹𝑆∗ only. We can obtain
the optimization model with𝑊𝑆∗ = 1, as follows:

min 𝑓𝑆∗ (𝑥, 𝑦, 𝑧)
= ∑
𝑠∈𝑆∗

∑
𝑘∈𝑆𝐹𝑠

( ∑
𝑖∈𝑃(𝑘)

∑
𝑗∈𝐻(𝑘,𝑖)

𝑑𝑘𝑖𝑗𝑥𝑘𝑖𝑗 + 𝑐𝑘𝑦𝑘) , (10)

subject to ∑
𝑖∈𝑃(𝑘)

∑
𝑗∈𝐻(𝑘,𝑖)

𝑥𝑘𝑖𝑗 + 𝑦𝑘 = 1, ∀𝑘 ∈ 𝑆𝐹𝑆∗ , (11)

∑
𝑘∈𝐺(𝑖)

∑
𝑗∈𝐻(𝑘,𝑖)

𝑥𝑘𝑖𝑗 + 𝑧𝑖 − ∑
𝑘∈𝑁(𝑖)

∑
𝑗∈M(𝑘,𝑖)

𝑥𝑘𝑖𝑗
= 𝑎1𝑖 ,

∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝑆𝐹𝑆∗ ,
(12)

∑
𝑘∈𝑁(𝑖)

∑
𝑗∈𝑀(𝑘,𝑖)

𝑥𝑘𝑗𝑖 + ∑
𝑗∈𝑄(𝑖)

𝑧𝑗 = ℎ1𝑖 ,
∀𝑖 ∈ 𝐽, 𝑘 ∈ 𝑆𝐹𝑆∗ ,

(13)

𝑥𝑘𝑖𝑗 ∈ {0, 1} ,
𝑘 ∈ 𝑆𝐹𝑆∗ , 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐻 (𝑘, 𝑖) , (14)

𝑦𝑘 ∈ {0, 1} , 𝑘 ∈ 𝑆𝐹𝑆∗ , (15)

𝑧𝑖 ∈ 𝑍+, 𝑖 ∈ 𝐼. (16)

The objective function (10) minimizes the delay costs and
the cancellation costs in 𝑆∗. Further, constraint (11) shows

Table 2: Flight schedule and aircraft assignments for 𝑃𝐷𝐹𝑆2.0.
Tail𝑁 From To Dep. 𝑇 Arr. 𝑇 Ass. A C. Cost
12 PEK CTU 11:30 14:00 𝑓1, 321 15150
22 PEK SHA 12:30 14:30 𝑓2, 321 16991
32 CTU SHA 12:20 14:50 𝑓3, 321 15785
33 SHA CTU 17:35 20:05 𝑓3, 321 13031
34 CTU SHA 21:00 23:30 𝑓3, 321 13820
42 XIY PEK 10:00 11:55 𝑓4, 321 10256
52 PEK CTU 15:00 17:30 𝑓5, 321 15236
53 CTU XIY 20:45 22:00 𝑓5, 321 9325
54 XIY CTU 23:00 00:15 𝑓5, 321 9128

Table 3: Nonzero flight arc delay costs with disruption threshold𝛼0 = 1.0.
Tail𝑁 Origin

node
Destination

node
Arc delay

cost
12 3 7 3000
21 3 6 1800
32 4 8 3200
32 7 9 6200
32 10 14 10400
32 11 14 11600
33 8 11 1100
33 9 13 4100
34 11 14 1200

that all flights in ⋃𝑠∈𝑆∗ 𝑆𝐹𝑠 must be operated or cancelled.
Constraint (12) satisfies the aircraft utilization requirement
for⋃𝑠∈𝑆∗ 𝑆𝐹𝑠 at the station-time node. The station-sink node
flow constraint (13) enforces aircraft balance in⋃𝑠∈𝑆∗ 𝑆𝐹𝑠.The
binary 𝑥𝑘𝑖𝑗 and 𝑦𝑘 ensure that a flight can only be operated or
cancelled; that is, it must not be partially serviced and then
cancelled. Finally, the copy arcs must be integrated, which is
enforced by constraint (16).

Remark 4. When 𝛼0 has the maximum weighted value 𝛼sup,𝐹𝑠 corresponds to all of the flights. In that case, it may be very
difficult for the AOCC to quickly obtain the optimal solution
or the disrupted flight scope may be very broad. It may be
very difficult to implement such a recovery plan for actual
flight production, because it does not satisfy the requirements
of timeliness and balance between the disruption scope,
disruption depth, and recovery value.

For 1 ≤ 𝛼0 ≤ 𝛼sup, it is difficult for the AOCC to
determine the optimal 𝛼0 that satisfies the balance between
the passenger and airline requirements. However, the AOCC
can choose the best satisfactory value under those conditions.

Remark 5. When a disruption occurs, the weighted value is
given out by the𝑊 Algorithm,Then

𝑤𝑘𝑖𝑗 = 𝑤𝑘 = 𝑤𝑠,
where {𝑤𝑠 | ∃𝑠 ∈ 𝑆, s.t. 𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼sup} . (17)
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Table 4: Nonzero flight arc delay costs with disruption threshold𝛼0 = 2.0.
Tail𝑁 Origin

node
Destination

node
𝑤𝑘𝑖𝑗∗ arc
delay cost

12 4 10 1200
12 5 11 1800
12 6 13 1800
22 5 9 600
22 6 12 3420
32 7 14 3200
32 10 16 4400
32 11 17 5000
32 13 18 6200
32 15 20 7400
32 19 27 10400
32 21 27 11600
32 22 27 12800
32 24 27 14000
33 14 21 1100
33 16 22 2300
33 17 24 2900
33 18 26 4100
33 20 29 5300
34 21 27 1200
34 22 27 2400
34 24 27 3600
42 23 28 29640
42 25 28 31920
53 19 23 570
53 21 25 1800
53 22 30 5130
53 24 30 6270
53 26 30 8550
54 25 29 2280

Proof. Because all the flights are contained within𝑃𝐷𝐹𝑆𝛼sup =⋃𝑠∈𝑆 𝑆𝐹𝑠, when 𝑖 ̸= 𝑗, 𝑆𝐹𝑖 ̸= 𝑆𝐹𝑗, ∀𝑖, 𝑗 ∈ 𝑆.Therefore, we can
obtain

∃𝑠 ∈ 𝑆, s.t. 𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼sup . (18)

In fact, 𝑧𝑖 must be less than or equal to the total number
of aircraft ∑𝑠∈𝑆 |𝑆𝐴 𝑠|. And then the linear programming
relaxation of the weighted time-band approximation model
(LPRWTBAM) is expressed as follows:

min 𝑓𝛼0 (𝑥, 𝑦, 𝑧)
= ∑
𝑘∈𝑃𝐷𝐹𝑆𝛼0

( ∑
𝑖∈𝑃(𝑘)

∑
𝑗∈𝐻(𝑘,𝑖)

𝑤𝑘𝑖𝑗𝑑𝑘𝑖𝑗𝑥𝑘𝑖𝑗 + 𝑤𝑘𝑐𝑘𝑦𝑘) ,
(19)

subject to ∑
𝑖∈𝑃(𝑘)

∑
𝑗∈𝐻(𝑘,𝑖)

𝑥𝑘𝑖𝑗 + 𝑦𝑘 = 1, ∀𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼0 , (20)

∑
𝑘∈𝐺(𝑖)

∑
𝑗∈𝐻(𝑘,𝑖)

𝑥𝑘𝑖𝑗 + 𝑧𝑖 − ∑
𝑘∈𝑁(𝑖)

∑
𝑗∈𝑀(𝑘,𝑖)

𝑥𝑘𝑖𝑗 = 𝑎𝛼0𝑖 ,
∀𝑖 ∈ 𝐼, 𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼0 ,

(21)

∑
𝑘∈𝑁(𝑖)

∑
𝑗∈𝑀(𝑘,𝑖)

𝑥𝑘𝑗𝑖 + ∑
𝑗∈𝑄(𝑖)

𝑧𝑗 = ℎ𝛼0𝑖 ,
∀𝑖 ∈ 𝐽, 𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼0 ,

(22)

𝑥𝑘𝑖𝑗 ∈ [0, 1] , 𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼0 , 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐻 (𝑘, 𝑖) ,
(23)

𝑦𝑘 ∈ [0, 1] , 𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼0 , (24)

𝑧𝑖 ∈ [0,∑
𝑠∈𝑆

󵄨󵄨󵄨󵄨𝑆𝐴 𝑠󵄨󵄨󵄨󵄨] , 𝑖 ∈ 𝐼. (25)

Naturally, 𝑤𝑘𝑖𝑗𝑑𝑘𝑖𝑗 ≥ 0 and 𝑤𝑘𝑐𝑘 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐻(𝑘, 𝑖),𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼0 . We can set

(𝐼0, 𝐽0, 𝐾0) = {(𝑖0, 𝑗0, 𝑘0) | 𝑤𝑘0𝑖0𝑗0𝑑𝑘0𝑖0𝑗0 > 0, 𝑖0 ∈ 𝐼, 𝑗0∈ 𝐻 (𝑘0, 𝑖0)} , 𝑘0 ∈ 𝑃𝐷𝐹𝑆𝛼0 ,
𝐾1 = {𝑘1 | 𝑤𝑘1𝑐𝑘1 > 0, 𝑘1 ∈ 𝑃𝐷𝐹𝑆𝛼0} .

(26)

Further, we assume that 𝑤𝑘𝑖𝑗𝑑𝑘𝑖𝑗 and 𝑤𝑘𝑐𝑘 satisfy the following
properties.

Well-Ordered Property. The nonzero value coefficient set
(NVCS)

{𝑤𝑘𝑖𝑗𝑑𝑘𝑖𝑗, ∀ (𝑖, 𝑗, 𝑘) ∈ (𝐼0, 𝐽0, 𝐾0)} ∪ {𝑤𝑘𝑐𝑘, ∀𝑘 ∈ 𝐾1} (27)

is well ordered according to <.
In fact, the weighted value, delayed time, and cancellation

cost are often different in the NVCS; therefore, the following
sequence properties may be satisfied in most cases

𝑤000𝑑000 < 𝑤000𝑑100 < ⋅ ⋅ ⋅ < 𝑤001𝑑001 < 𝑤101𝑑101 < ⋅ ⋅ ⋅
< 𝑤|𝐾0|
|𝐼0||𝐽0|

𝑑|𝐾0|
|𝐼0||𝐽0|

, (𝑖, 𝑗, 𝑘) ∈ (𝐼0, 𝐽0, 𝐾0) ,
𝑤0𝑐0 < 𝑤1𝑐1 < ⋅ ⋅ ⋅ < 𝑤|𝐾1|𝑐|𝐾1|, 𝑘 ∈ 𝐾1.

(28)

Naturally, the NVCS frequently exhibits a well-ordered prop-
erty.

Let ‖𝐹𝑘0 ‖ be the number of elements in the 𝐹𝑘0 set. Then,
we can obtain the following property in the majority of cases.

Possible Zero Property. ‖𝐹𝑘0 ‖ = 0 or 1, 𝐹𝑘0 = {(𝑖, 𝑗, 𝑘) | 𝑤𝑘𝑖𝑗𝑑𝑘𝑖𝑗 =0}, ∀𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼0 . In fact, when there is only a small number
of available aircraft in 𝑖 ∈ 𝑃(𝑘), the aircraft utilization is
generally reasonably high and flights cannot take off early;
then ‖𝐹𝑘0 ‖ = 0 or 1 often occurs.

Remark 6. If the feasible solution of WTBAM is nonempty,𝑎𝛼0𝑖 and ℎ𝛼0𝑖 are integers, and NVCS exhibits a well-ordered
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Table 5: Results for 𝛼0 = 1.0.
min 𝑧 = 15785ℎ1 = ℎ2 = ℎ3 = 1

Tail𝑁 From To OST node DST node Ass. A D. cost C. cost
12 PEK CTU 2 4 𝑓2 0 —
21 PEK SHA 1 5 𝑓3 0 —
32 CTU SHA — — — — 15758
33 SHA CTU 5 10 𝑓3 0 —
34 CTU SHA 4 14 𝑓2 0 —
OST: origin station-time; DST: destination station-time; D. cost: delay cost.

Table 6: Results for 𝛼0 = 2.0.
min 𝑧 = 0ℎ1 = 2, ℎ2 = 1, ℎ3 = 2, ℎ4 = 0

Tail𝑁 From To OST node DST node Ass. A D. cost C. cost
12 PEK CTU 2 7 𝑓2 0 —
22 PEK SHA 4 8 𝑓5 0 —
32 CTU SHA 3 8 𝑓3 0 —
33 SHA CTU 8 19 𝑓3 0 —
34 CTU SHA 19 27 𝑓1 0 —
42 XIY PEK 1 5 𝑓4 0 —
52 PEK CTU 6 15 𝑓1 0 —
53 CTU XIY 15 23 𝑓2 0 —
54 XIY CTU 23 29 𝑓2 0 —

Table 7: First simplex group cycle partition.

SGC𝑁 Tail𝑁𝑆1 16 17 18 21 31 32 33 35 39 42𝑆2 1 22 25 26 27 30 38 48 52 54 55 57 60𝑆3 2 3 8 9 10 11 34 40 41 43 44𝑆4 29 36 37 47 49 53𝑆5 5 6 15 20 56 58 59𝑆6 4 7 12 19 23 24 46𝑆7 13 14 28 45 50 51
SGC𝑁: Simplex group cycle number.

property, then 𝐹𝑘0 has the possible zero property, ∀𝑘 ∈𝑃𝐷𝐹𝑆𝛼0 , 𝑖 ∈ 𝑃(𝑘).Then, theWTBAMand LPRWTBAMsolu-
tions are identical.

Proof. Let (𝑥∗𝑙𝑝, 𝑦∗𝑙𝑝, 𝑧∗𝑙𝑝)𝑇 be the LPRWTBAM solution and(𝑥∗, 𝑦∗, 𝑧∗)𝑇 be the WTBAM solution. Then, because the
LPRWTBAM is the relaxed WTBAM,

𝑓 (𝑥∗𝑙𝑝, 𝑦∗𝑙𝑝, 𝑧∗𝑙𝑝) ≤ 𝑓 (𝑥∗, 𝑦∗, 𝑧∗) . (29)

If (𝑥∗𝑙𝑝, 𝑦∗𝑙𝑝, 𝑧∗𝑙𝑝)𝑇 is an integer, then

(𝑥∗, 𝑦∗, 𝑧∗)𝑇 = (𝑥∗𝑙𝑝, 𝑦∗𝑙𝑝, 𝑧∗𝑙𝑝)𝑇 . (30)

The analysis of (𝑥∗𝑙𝑝, 𝑦∗𝑙𝑝, 𝑧∗𝑙𝑝)𝑇 is as follows.

Table 8: Second simplex group cycle partition.

SGC𝑁 Tail𝑁𝑆1 17 18 32 35 39 42𝑆2 22 25 26 38 57𝑆3 2 8 9 10 11 34 40 41𝑆4 29 36 37 49 53𝑆5 5 6 15 20 56 59𝑆6 12 23 24 46𝑆7 27 43 52 58𝑆8 1 30 33 47 48𝑆9 13 14 28 45 50 51𝑆10 3 16 44 55 60𝑆11 4 19 21𝑆12 7 31 54

Table 9: Third simplex group cycle partition.

SGC𝑁 Tail𝑁𝑆1 18 32 35 39 42𝑆2 22 25 26 38𝑆3 2 8 9 10 11 34 40 41𝑆4 29 36 37 49𝑆5 5 6 15 20 56 59𝑆6 23 24𝑆7 43 58𝑆8 1 30 47 48𝑆9 14 28 45 51𝑆10 3 16 44 55 60𝑆11 4 19 21𝑆12 7 31 54𝑆13 12 46 50𝑆14 13 52 57𝑆15 15 17 27 53

When ‖𝐹𝑘0 ‖ = 0 or 1, ∀𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼0 , we adopt the
assumption

∃ (𝑖, 𝑗, 𝑘0) , s.t. 𝑤𝑘0𝑖𝑗 𝑑𝑘0𝑖𝑗 = 0. (31)
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Table 10: The impact of disruption flights scope and depth.

Delay time band

DT 0 DT 15 DT 30 DT 60 Cancelled
flight

Weighted
value 1 2 4 6 8

Then𝑤𝑘0𝑖𝑗 𝑑𝑘0𝑖𝑗 ∪NVCS is well ordered. According to 𝑥𝑘𝑖𝑗 ∈ [0, 1],𝑦𝑘 ∈ [0, 1], 𝑧𝑖 ∈ [0,𝑀0], 𝑖 ∈ 𝐼, (19), and (20), we can obtain

𝑥𝑘𝑖𝑗 = {0, 1} ,𝑦𝑘 = {0, 1} ,∀𝑘 ∈ 𝑃𝐷𝐹𝑆𝛼0 .
(32)

Furthermore, according to (21) and (22) and as 𝑎𝛼0𝑖 and ℎ𝛼0𝑖
are integers, we know that 𝑧𝑖 = {0, 1, . . . ,𝑀0}, where𝑀0 is an
integer. Finally, we conclude that (𝑥∗𝑙𝑝, 𝑦∗𝑙𝑝, 𝑧∗𝑙𝑝)𝑇 is an integer.

4. Computational Results

Two sets of computational results are presented in this
section: (i) the computational results obtained by application
of the WTBAM to the sample data given in Table 1, which
demonstrate that use of the WTBAM incorporating the sim-
plex group cycle is reasonable and feasible; (ii) results of a test
using data from actual aircraft belonging to Sichuan Airlines
in China, which involves a hub-and-spoke network. The
analysis results obtained for different weighted thresholds
and different simplex group cycles under four scenarios are
given.

4.1. Sample Flight Schedule Table 1. Mechanical problems are
detected for aircraft 𝑓1 at 9:50, and it is estimated that a 4-h
period is required for the repair work. In this example, the
time band is set to half an hour and the schedule recovery
is implemented from 10:00 to 02:00 the next day. In this
example, the simplex group cycle partitions are set to 𝑆1 and𝑆2, in order to show the AOCC controllability. Note that these
partitions do not correspond to the partition implemented
using the simplex group cycle procedure. The weighted value𝑊2 = 1.9 is determined according to the weighted set
procedure.We set the disruption threshold 𝛼0 = 2.0; then the
potential disruption flights set𝑃𝐷𝐹𝑆2.0 is as shown in Table 2.

Subsequently, the flight arc delay costs for the recovery
problem are determined using the time-band transformation
network [12]. The time-band transformation contains 26
nodes and 57 flight arcs. The delay cost for each flight arc is
calculated according to the arc delay, and a 20-per-min delay
cost function is assumed [12] in this paper.The nonzero flight
arc delay costs for 𝛼0 = 1.0 and 2.0 are listed in Tables 3 and
4, respectively. Finally, we can compute theWTBAMsolution
using Lingo 14.0. The solutions for 𝛼0 = 1.0 and 2.0 are listed
in Tables 5 and 6, respectively. The results obtained for the
time-band transformation with 𝛼0 = 2.0 contain more nodes
and flight arcs than that for 𝛼0 = 1.0; therefore, the WTBAM

solution (with 𝛼0 = 2.0) may yield a superior proximal point
than the standard time-band transformation with 𝛼0 = 1.0.
Further, the optimal value yielded by the WTBAM is smaller
than that for the time-band transformation with 𝛼0 = 1.0.
4.2. Stochastic Experiments. Our model was also tested using
actual data obtained for a specific day in 2015, for a hub-and-
spoke airline network under Sichuan Airlines having approx-
imately 254 daily flights. The WTBAM was implemented in
C++ using CPLEX 12.3 on a Lenovo notebook with a 2.16-
GHz processor. As the arrival time of the disrupted flight
was 02:30 on the next day and recovery time interval should
contain all the flight schedule, we set the schedule recovery
from 07:00 to 03:00 on the next day and the time band to
5min in order to reduce the gap bound. Then, 1–4 aircraft
having mechanical problems or some issue prohibiting them
from use between 07:00 to 03:00 on the next day were
randomly generated; these events were labelled scenarios 1–4.
Combined with the experience of AOCC, the simplex group
cycle should not be very large but should not be very small,
60 aircraft in the actual data, roughly divided into 6–15 group.
If the simplex group cycle is very large, it may lead to the
fact that the calculation time of optimal solution is too long
and the potential disruption scope is too large, while if it is
too small it may lead to a large potential disruption depth.
So we obtain the 7, 12, and 15 three simplex group cycles by
setting𝑚0 = 5, 10, 12 in the 𝑆Algorithm. Subsequently, three
simplex group cycle partitions are listed in Tables 7–9, and
due to the limit of table length, only apart results of WTBAM
under these partitions and different disruption thresholds are
listed in Tables 12–15. In addition, the results for the simplex
group cycle partitions, the scenarios, and the weighted values
are presented in Figure 2.

Note that DT 60, DT 30, DT 15, and DT 0 indicate that
the flight delay time ismore than 60min, between 30min and
60min, between 15min and 30min, and between 0min and
15min, respectively. Further, GTSN time (s) represents the
time required to generate the time-space network in seconds,
while CPU time represents the WTBAM calculation time.

Comparison of the data in Tables 12–15 leads to the
conclusion that the potential disruption scope 𝐹𝑠, GTSN
time, andCPU time increasewith increased𝛼0. Subsequently,
by the results in Tables 12–15, we can obtain that GTSN
time, CPU time, and potential disruption scope 𝐹𝑠 satisfy the
function in Table 11 and Figure 3. With the increase of 𝐹𝑠,
GTSN time and CPU time are exponential growth and the
function relationship is 10𝑎𝑥+𝑏, 𝑎 > 0, 𝑏 ∈ 𝑅, 𝑅 is the real
set. In view of this test, GTSN time and CPU time of second
simplex group cycle partitions are generally better than the
other simplex group cycle partitions. Note that GTSNij and
CPUij indicate the function of GTSN time and potential
disruption scope 𝐹𝑠 in the case of scenario 𝑖 and 𝑗th simplex
group cycle partitions, 𝑖 = 1, 2, 3, 4 and 𝑗 = 1, 2, 3.

However, the optimal integer solution primarily decreases
with increased 𝛼0, and the gap between the optimal integer
and the optimization solution is zero in the examples. Further,
when the optimal integer reaches a certain level, it does
not necessarily decrease or decreases only slightly, in most
cases. These results show that a larger 𝐹𝑠 is not necessarily
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(b) Weighted value under scenario 2
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Figure 2: Weighted value under different scenarios.
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Table 11: Functions for different simplex group cycle partitions and potential disruption scope.

First SGP Second SGP Third SGP First SGP Second SGP Third SGP
Scenario 1 Scenario 2

GTSN 102.30𝑥+0.82 102.97𝑥−0.01 103.28𝑥+0.03 102.53𝑥+0.55 102.53𝑥+0.16 102.98𝑥+0.18
CPU 102.20𝑥+0.99 102.76𝑥+0.26 102.97𝑥+0.34 102.43𝑥+0.72 102.33𝑥+0.44 102.74𝑥+0.47

Scenario 3 Scenario 4
GTSN 102.26𝑥+0.79 101.82𝑥+1.16 102.56𝑥+0.51 102.90𝑥+0.08 102.27𝑥+0.47 102.60𝑥+0.41
CPU 102.12𝑥+1.02 101.76𝑥+1.29 102.39𝑥+0.74 102.73𝑥+0.33 102.12𝑥+0.73 102.45𝑥+0.64
𝑥 : 𝐹𝑠.

Table 12: Results for different simplex group cycle partitions and weighted thresholds under scenario 1.

𝛼0 First simplex group cycle partition Second simplex group cycle partition Third simplex group cycle partition
1 2.1 2.5 2.6 2.7 1 2.27 2.7 2.87 3.3 1 2.5 3.1 3.2 4.1

𝐹𝑠 16.5% 38.1% 63.3% 88.1% 100% 8.6% 22.4% 46.8% 75.9% 100% 7.0% 24.8% 42.9% 50.3% 100%
DT 60 6 6 8 6 6 3 2 0 0 0 3 2 0 0 0
DT 30 1 1 0 0 0 7 8 9 6 6 7 8 6 3 3
DT 15 1 1 0 0 0 1 1 0 0 0 1 1 2 1 1
DT 0 1 0 1 3 3 1 2 2 3 2 1 3 4 6 6
Nodes 1953 6408 11634 14314 15137 679 1965 4599 7091 15137 489 1998 5803 7331 15137
Flight arcs 3877 13903 32606 44636 49439 1064 3516 10331 21364 49439 738 3285 12309 16963 49439
Cancellations 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GTSN time (s) 7.10 101.9 403.0 677.4 801.0 0.86 7.6 45.6 134.1 816.5 0.45 8.4 86.3 144.3 797.7
CPU time (s) 10.9 126.1 492.3 825.0 960.6 1.9 10.8 60.2 185.2 982.4 1.3 11.2 106.7 178.8 949.7
Optimal integer 14100 13700 12447 11647 11647 21500 20925 15725 13510 13025 21500 21391 16542 13542 13040
Gap 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

better. In fact, the real extent of the flight disruption decreases
with increased 𝛼0; however, note that this factor, disruption
scope, and depth do increase with increased 𝛼0 in some cases.
Further, the nodes and flight arcs increase with increased 𝛼0,
along with the CPLEX 12.3 computational time.

The AOCC controllers can choose the value of 𝛼0 by
considering the balance between the real flight disruption
scope and depth, the CPU time, and the optimal integer
value. Subsequently, we first introduce the feasible method to
choose the value of 𝛼0 (ChooseMethod) in the following.The
AOCC controllers choose the appropriate value of 𝛼0 which
should be consistent with the four rules in the following.

Choose Method

The first rule is to meet the time limit for flight
operations recovery.
The second rule is about the flight recovery value in
the following formula.
Let 𝑓∗ be min{𝑓∗1 , 𝑓∗2 }, 𝛼∗0 be the corresponding
threshold of 𝑓∗, and 𝛼𝑖0 be the corresponding thresh-
old of 𝑓∗𝑖 , 𝑖 = 1, 2.

𝛼0 = {{{{{
𝛼∗0 󵄨󵄨󵄨󵄨𝑓∗1 − 𝑓∗2 󵄨󵄨󵄨󵄨𝑓∗ > 𝛾,
𝛼10 or 𝛼20 otherwise. (33)

The third rule is as small as possible to the impact of
disruption flights scope and depth.
The fourth rule is to ensure the uniqueness flight
recovery plan.
If there are two flight recovery plans to meet the pre-
vious three rules, then select a smaller flight recovery
value. And if the flight recovery value is also the same,
then select the CPU time which is less than that of the
flight recovery plan.

In this paper, we choose 𝛾 = 0.25 which means that
the two flight recovery plans can be considered as equivalent
when the difference ratio of the two flight recovery values is
less than or equal to 0.25, because the AOCC controllers are
not just considering about flight recovery values. The airlines
can adjust 𝛾 to meet their management objectives. Subse-
quently, we provide a feasible method to measure the impact
of disruption flights scope and depth according to the actual
situation in China. Firstly, the weighted value of common
delay time band is determined by the AOCC controllers,
and then we calculate the total impact value. The delay time
band and the weighted value are given out in Table 10. In
particular, the weighted value can be adjusted according to
the requirements of the airlines.

By the Choose Method, we give out the value of 𝛼0
under different scenarios for the time limit of 5 minutes, 10
minutes, 15 minutes, and 20minutes in Table 16.The solution



14 Mathematical Problems in Engineering

Table 13: Results for different simplex group cycle partitions and weighted threshold under scenario 2.

𝛼0 First simplex group cycle partition Second simplex group cycle partition Third simplex group cycle partition
1 3.6 4.4 4.45 4.5 1 3.2 3.5 3.9 4.6 1 3.0 3.3 4.2 4.7

𝐹𝑠 28.3% 35.8% 75.1% 89.3% 100% 12.9% 21.6% 45.2% 81.4% 100% 12.9% 23.6% 37.7% 79.1% 100%
DT 60 7 7 7 7 7 7 6 8 8 8 7 9 8 8 8
DT 30 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
DT 15 1 1 1 1 1 0 0 0 0 0 4 0 0 0 0
DT 0 1 1 2 2 2 0 0 2 2 2 0 1 2 2 2
Nodes 2853 3479 12739 14188 15158 781 2261 4639 5164 15158 781 2353 4390 12921 15158
Flight arcs 5948 7659 36361 45118 49543 1369 4436 10646 12089 49543 1369 4984 9171 37809 49543
Cancellations 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
GTSN time (s) 16.5 26.1 504.3 689.1 809.8 1.3 10.0 46.8 59.4 809.6 1.3 11.7 46.3 530.7 810.9
CPU time (s) 23.7 35.1 606.9 841.6 992.7 3.0 14.2 62.0 78.2 1006.5 3.1 17.5 59.6 652.9 998.4
Optimal integer 71200 61100 59835 59835 59835 101300 92600 63343 59743 59743 101300 63000 61722 60822 59722
Gap 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 14: Results for different simplex group cycle partitions and weighted threshold under scenario 3.

𝛼0 First simplex group cycle partition Second simplex group cycle partition Third simplex group cycle partition
1 1.7 1.8 2.1 2.2 1 4.8 4.9 5.9 6.3 1 4.5 6.0 6.6 7.4

𝐹𝑠 25.1% 49.2% 63.3% 88.1% 100% 27.1% 35.8% 40.9% 65.3% 100% 22.0% 29.1% 58.6% 87.7% 100%
DT 60 10 6 5 5 5 6 4 5 5 3 18 16 11 6 5
DT 30 4 7 8 8 8 4 1 1 1 2 1 1 2 2 2
DT 15 2 3 4 4 4 1 1 1 1 1 2 2 3 4 2
DT 0 6 7 6 6 6 5 5 5 5 7 4 6 7 10 11
Nodes 2951 5420 11407 14052 14879 3530 5200 5688 10177 14879 1803 2798 8566 13603 14879
Flight arcs 6474 14395 31950 43790 48559 7786 11783 13309 28117 48559 4070 6430 22541 43039 48559
Cancellations 2 2 2 2 2 4 4 4 2 2 2 2 2 2 2
GTSN time (s) 17.5 68.4 395.2 659.4 781.7 33.0 71.1 89.4 324.7 781.0 8.0 17.9 224.5 624.9 777.1
CPU time (s) 27.5 97.2 497.5 807.4 957.4 44.4 91.8 112.9 409.4 938.8 13.9 25.7 278.9 766.8 942.2
Optimal integer 89500 76071 73850 73850 73850 101299 93500 88900 81879 74580 127700 108000 105654 90300 87500
Gap 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 15: Results for different simplex group cycle partitions and weighted threshold under scenario 4.

𝛼0 First simplex group cycle partition Second simplex group cycle partition Third simplex group cycle partition
1 6.9 7.3 9.1 1 6.2 6.75 8.1 8.4 1 5.8 6.4 8.3 9.10𝐹𝑠 66.5% 74.0% 88.1% 100% 40.1% 48.8% 62.5% 86.2% 100% 33.8% 40.9% 58.6% 87.7% 100%

DT 60 14 15 16 17 18 21 24 25 29 20 25 25 26 29
DT 30 2 2 2 2 8 5 8 5 3 6 6 5 2 2
DT 15 2 3 3 2 3 3 2 3 3 3 1 3 2 1
DT 0 9 7 8 8 9 8 8 9 7 7 8 9 11 9
Nodes 6475 7037 14034 14858 2959 4200 5466 7735 14858 2425 3474 6503 13585 14858
Flight arcs 19023 20974 43699 48454 8040 11335 15674 25801 48454 6326 8982 16996 42950 48454
Cancellations 3 3 3 3 3 3 3 3 3 3 3 3 3 3
GTSN time (s) 108.6 131.3 662.4 783.9 23.8 45.1 79.8 175.1 781.7 15.6 29.9 125.4 625.3 777.6
CPU time (s) 150.2 184.2 824.4 977.9 38.2 65.6 110.3 259.3 923.2 24.7 41.9 158.6 769.7 931.7
Best integer 140700 140700 137399 137399 172300 150500 144374 142174 139773 182000 155700 149239 143391 141991
Gap 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 16: Choose 𝛼0 for different time limit under different scenarios.

Time limit 5min 10min 15min 20min
Scenario 𝑆1 𝑆2 𝑆3 𝑆4 𝑆1 𝑆2 𝑆3 𝑆4 𝑆1 𝑆2 𝑆3 𝑆4 𝑆1 𝑆2 𝑆3 𝑆4𝛼0 3.2 3.6 4.9 1 3.2 3.6 5.9 1 3.2 3.6 5.9 1 3.2 3.6 6.3 1
SGP 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1
CPU time
(s) 178.8 35.1 112.9 150.2 178.8 35.1 409.4 150.2 178.8 35.1 409.4 150.2 178.8 35.1 938.8 150.2

Impact 20 57 73 129 20 57 57 129 20 57 57 129 20 57 51 129
Optimal
integer 13542 61100 88900 140700 13542 61100 81879 140700 13542 61100 81879 140700 13542 61100 74580 140700
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Figure 3: CPU Ttme and GTSN time under different scenarios.

is obtained considering the flight disruption scope and depth,
computation time, and recovery value under some appro-
priate rules, which is generally different from the minimum
recovery value.

Note that the time-space network generation time occu-
pies the majority of the computational time required to solve
theWTBAM. In fact, the feasible region of theWTBAM is the
time-space network, the total CPU time primarily consists
of the time required to generated a feasible region, and
the well-ordered property requirement must be satisfied or
approximately satisfied in most cases.

By comparing the data for the same disruption scenario,
we note that the simplex group cycle partition is finer, the
weighted value is larger, and the optimal integer value is
largest for all potential flight disruptions. The number of

aircraft decreases as the number of simplex group cycles
increases, according to Tables 7–9. For the same disruption
scenario, the weighted value also increases when the number
of simplex group cycles increases, according to Figure 2.

5. Conclusions and Discussion

In this study, we constructed the weighted time-band approx-
imation model (WTBAM) incorporating simplex group
cycles for flight operations recovery. The objective of the
WTBAM as regards flight operations recovery is to minimize
both the delay costs and the cancellation costs through imple-
mentation of a weighted threshold.The series of experiments
conducted here has shown that the potential disruption
scope and depth, computation time, and recovery value are
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controlled by the disruption threshold. Considering the
balance between the real impact of flight disruption scope
and depth, the CPU operation time, and the recovery value,
airline operations control center (AOCC) controllers can
conveniently obtain satisfactory recovery plan by chang-
ing the disruption threshold. Through examination of the
WTBAM characteristics, it was determined that the gap
between the linear programming relaxation of the WTBAM
(LPRWTBAM) and WTBAM solutions is zero under some
conditions. Therefore, the total CPU operation time is pri-
marily comprised of the time required for the WTBAM to
generate a feasible region for the time-space network. The
computation time decreases as the disruption threshold is
decreased. In future research, methods to partition the flights
or aircraft into the optimal simplex group cycles will be
investigated.

Nomenclature

Indices
𝑖, 𝑗: Node indices𝑘: Flight index𝑠: Simplex group cycle index.

Sets
𝑆𝐹𝑠: Set of flights in simplex group cycle 𝑠𝑆𝐴 𝑠: Set of aircraft in simplex group cycle 𝑠|𝑆𝐴 𝑠|: Number of aircraft in 𝑆𝐴 𝑠𝐺(𝑖): Set of flights originating at station-time node 𝑖𝐻(𝑘, 𝑖): Set of destination nodes for flight 𝑘 originating at

station-time node 𝑖𝐼: Set of station-time nodes𝐽: Set of station-sink nodes𝑆∗: Set containing simplex group cycle 𝑠, with at least
one schedule disruption in 𝑠𝑆: Set of all simplex group cycles𝑊: Set of all weighted values = {𝑊𝑠, 𝑠 ∈ 𝑆}𝑁(𝑖): Set of flights terminating at node 𝑖 ∈ 𝐽𝑀(𝑘, 𝑖): Set of origin station-time nodes for flight 𝑘
terminating at node 𝑖 ∈ 𝐽𝑃(𝑘): Set of station-time nodes from which flight 𝑘
originates𝑄(𝑖): Set of station-time nodes terminating at
station-sink node 𝑖 ∈ 𝐽𝑃𝐷𝐹𝑆𝛼0 : Set of potential disrupted flights determined by
Algorithm 2.

Parameters
𝑎𝛼0𝑖 : Number of aircraft executing 𝑃𝐷𝐹𝑆𝛼0 flights that

become available at station-time node 𝑖 at time zero𝑐𝑘: Cost of cancelling flight 𝑘𝑤𝑘: Weighted value of flight 𝑘𝑑𝑘𝑖𝑗: Delay cost of flight 𝑘 from station-time node 𝑖 to
node 𝑗𝑤𝑘𝑖𝑗: Weighted value of flight 𝑘 from station-time node 𝑖
to node 𝑗ℎ𝛼0𝑖 : Number of aircraft that execute 𝑃𝐷𝐹𝑆𝛼0 flights
required to terminate at station-sink node 𝑖 ∈ 𝐽.

Variables

𝑥𝑘𝑖𝑗: Magnitude of aircraft flow for flight 𝑘 from
station-time node 𝑖 to node 𝑗𝑦𝑘: Cancellation indicator for flight 𝑘𝑧𝑖: Magnitude of aircraft flow required to execute 𝑃𝐷𝐹𝑆𝛼0
flights from station-time node 𝑖 to station-sink node at
same station.
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