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We apply the Izergin-Korepin analysis to the study of the projected wavefunctions of the generalized free-fermion model. We
introduce a generalization of the 𝐿-operator of the six-vertexmodel by Bump-Brubaker-Friedberg andBump-McNamara-Nakasuji.
Wemake the Izergin-Korepin analysis to characterize the projected wavefunctions and show that they can be expressed as a product
of factors and certain symmetric functionswhich generalizes the factorial Schur functions.This result can be seen as a generalization
of the Tokuyama formula for the factorial Schur functions.

1. Introduction

Integrable lattice models [1–4] are special classes of models
in statistical physics in which many exact calculations are
believed to be able to be done. The most local object in
integrablemodels is called the𝑅-matrix, and itsmathematical
structurewas revealed in themid-1980s [5, 6].The underlying
mathematical structure was named as the quantum groups,
and the investigation of the quantum groups naturally leads
to immediate constructions of various 𝑅-matrices.

From the point of view of statistical physics, 𝑅-matrices
are the most local objects, and the study on the 𝑅-matrices
is a starting point. The most important objects in statistical
physics are partition functions. For the case of integrable
models, partition functions are objects constructed from
multiple 𝑅-matrices and are determined by boundary con-
ditions. One of the most famous partition functions in inte-
grable lattice models are the domain wall boundary partition
functionswhichwas first introduced and analyzed in [7, 8]. In
recent years, amore general class of partition functionswhich
we shall call as the projected wavefunctions are attracting
attention in its relation with algebraic combinatorics. The
projected wavefunctions are the projection of the off-shell
Bethe vector of integrable models into a class of some simple
states labelled by the sequences of the particles or down
spins. For the case of the free-fermion model in an external
field, it was first shown by Bump-Brubaker-Friedberg [9] that

the projected wavefunctions give a natural realization of the
Tokuyama combinatorial formula for the Schur functions
[10], which is a one-parameter deformation of the Weyl
character formula (note that there are pioneering works
using the free-fermion model implicitly in [11–13], and the
Izergin-Korepin analysis and observation of the factoriza-
tion phenomena on the domain wall boundary partition
functions of the related models are called the Perk-Schultz
(supersymmetric vertex) model [14] and the Felderhof free-
fermion model [15] in [16, 17]. There is also an application to
the correlation functions in [18]). This observation triggered
studies on finding various generalizations and variations of
the Tokuyama-type formula for symmetric functions [19–27]
such as the factorial Schur functions and symplectic Schur
functions, and an interesting notion was introduced further-
more which the number theorists call it the metaplectic ice.

In this paper, we analyze the free-fermion model using
the method initiated by Izergin-Korepin [7, 8]. The method
was developed by them in order to find the explicit expression
of polynomials representing the domainwall boundary parti-
tion functions of the𝑈𝑞(𝑠𝑙2) six-vertexmodel, fromwhich the
famous Izergin-Korepin determinant formulawas found.The
Izergin-Korepin analysis is the important method to study
variants of the domainwall boundary partition functions. For
example, it was applied to the domain wall boundary parti-
tion functions of the 𝑈𝑞(𝑠𝑙2) six-vertex model with reflecting
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end by Tsuchiya [28] to find its determinant formula. Extend-
ing the Izergin-Korepin analysis to more general class of
partition functions is also important. Wheeler [29] invented
a method to extend the Izergin-Korepin analysis on a class of
partition functions called the scalar products. And in our very
recent work [30], we extended the Izergin-Korepin analysis
to study the projected wavefunctions of the𝑈𝑞(𝑠𝑙2) six-vertex
model. The resulting symmetric polynomials representing
the projected wavefunctions contains the Grothendieck poly-
nomials as a special case when the six-vertex model reduces
to the five-vertex model [31–33]. We apply this technique to
study the free-fermion model in an external field. To this
end, we first introduce an ultimate generalization of the 𝐿-
operator by introducing the inhomogeneous parameters and
factorial parameters. We use an inhomogeneous version of
the generalized 𝐿-operator in our forthcoming paper [34]
having two types of factorial parameters, which generalizes
the factorial 𝐿-operator by Bump-McNamara-Nakasuji [22].
We next view the projectedwavefunctions as a function of the
inhomogeneous parameters and characterize its properties by
using the Izergin-Korepin analysis. We then show that the
product of factors and certain symmetric functions satisfies
all the required properties the projected wavefunctions must
satisfy. The result is a generalization of [9, 22] and hence
can be viewed as a generalization of the Tokuyama for
the factorial Schur functions. The Izergin-Korepin analysis
views the partition functions as functions of inhomogeneous
parameters in the quantum spaces, whereas the arguments
initiated in [9] view the partition functions as functions of
the free parameter in the auxiliary spaces.The comparison of
the two different ways of arguments seems to be interesting.

We will use the results of the projected wavefunctions to
the algebraic combinatorial study of the generalized Schur
functions [34]. For example, two ways of evaluations of the
same partition functions can lead to integrable model con-
structions of algebraic identities of the symmetric functions.
For example, two ways of evaluations of the domain wall
boundary partition functions, a direct evaluation and an
indirect evaluation using the completeness relation and the
projected wavefunctions, can give rise to the dual Cauchy
formula of the generalized Schur functions. This idea can
also be applied to partition functions of integrable models
under reflecting boundary to give dual Cauchy identities of
the generalized symplectic Schur functions. Further detailed

Izergin-Korepin analysis on the domain wall boundary par-
tition functions and the dual projected wavefunctions are
required for the studies.

There are also studies on deriving Cauchy identities using
the domain wall boundary partition functions like an inter-
twiner, invented in [35]. Deriving algebraic combinatorial
properties of symmetric functions using their integrable
model realizations is an active line of research. See [36–40]
formore examples onCauchy-type identities andmore recent
studies on the Littlewood-Richardson coefficients by [33, 41].

In any case, in order to conduct these studies, we first of all
have to find out what are the explicit functions representing
the projected wavefunctions. We think the Izergin-Korepin
analysis presented in this paper is a fairly simple way to find
out the explicit forms.

This paper is organized as follows. In the next section,
we first list the generalized 𝐿-operator and introduce the
projected wavefunctions. In Section 3, we make the Izergin-
Korepin analysis and list the properties needed to determine
the explicit form of the projected wavefunctions. In Section 4,
we show that the product of factors and certain symmetric
functions satisfies all the required properties extracted from
the Izergin-Korepin analysis, which means that the product
is the explicit form of the projected wavefunctions. Section 5
is devoted to the conclusion of this paper.

2. The Generalized Free-Fermion Model and
the Projected Wavefunctions

Themost fundamental objects in integrable latticemodels are
the 𝑅-matrices and 𝐿-operators. The 𝑅-matrix of the free-
fermion model we treat in this paper is given by

𝑅𝑎𝑏 (𝑧) = (1 + 𝑡𝑧 0 0 00 𝑡 (1 − 𝑧) 𝑡 + 1 00 (𝑡 + 1) 𝑧 𝑧 − 1 00 0 0 𝑧 + 𝑡) , (1)

acting on the tensor product 𝑊𝑎 ⊗ 𝑊𝑏 of the complex two-
dimensional space 𝑊𝑎.

The 𝐿-operator of the free-fermion model we use as bulk
pieces of the projected wavefunctions in this paper is given by

𝐿𝑎𝑗 (𝑧, 𝑤𝑗, 𝛼𝑗, 𝛾𝑗) = (
(

𝑤𝑗 − 𝛾𝑗𝑧 0 0 00 𝑡𝑤𝑗 + 𝛾𝑗𝑧 𝑤𝑗 00 (𝑡 + 1) 𝑧 𝛼𝑗𝑤𝑗 + (1 − 𝛼𝑗𝛾𝑗) 𝑧 00 0 0 −𝑡𝛼𝑗𝑤𝑗 + (1 − 𝛼𝑗𝛾𝑗) 𝑧
)
)

, (2)

acting on the tensor product𝑊𝑎⊗F𝑗 of the space𝑊𝑎 and the
two-dimensional Fock space at the 𝑗th siteF𝑗.

The parameters 𝑤𝑗, 𝛼𝑗, and 𝛾𝑗 can be regarded as param-
eters associated with the quantum spaceF𝑗. The 𝐿-operators
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Figure 1: The 𝐿-operator 𝐿𝑎𝑗(𝑧, 𝑤𝑗, 𝛼𝑗, 𝛾𝑗) (2). The horizontal line is the space 𝑊𝑎, and the vertical line is the spaceF𝑗.

giving the Schur functions [9] and factorial Schur functions
[22] are a special limit of the generalized 𝐿-operator (2) given
by

𝐿𝑎𝑗 (𝑧, 1, 0, 0) = (
(

1 0 0 00 𝑡 1 00 (𝑡 + 1) 𝑧 𝑧 00 0 0 𝑧
)
)

, (3)

𝐿𝑎𝑗 (𝑧, 1, 𝛼𝑗, 0) = (1 0 0 00 𝑡 1 00 (𝑡 + 1) 𝑧 𝛼𝑗 + 𝑧 00 0 0 −𝑡𝛼𝑗 + 𝑧), (4)

respectively.
The 𝐿-operator (2) together with the𝑅-matrix (1) satisfies

the 𝑅𝐿𝐿 relation:𝑅𝑎𝑏 (𝑧1𝑧2)𝐿𝑎𝑗 (𝑧1, 𝑤𝑗, 𝛼𝑗, 𝛾𝑗) 𝐿𝑏𝑗 (𝑧2, 𝑤𝑗, 𝛼𝑗, 𝛾𝑗)= 𝐿𝑏𝑗 (𝑧2, 𝑤𝑗, 𝛼𝑗, 𝛾𝑗) 𝐿𝑎𝑗 (𝑧1, 𝑤𝑗, 𝛼𝑗, 𝛾𝑗) 𝑅𝑎𝑏 (𝑧1𝑧2) , (5)

acting on 𝑊𝑎 ⊗ 𝑊𝑏 ⊗ F𝑗.
Let us denote the orthonormal basis of 𝑊𝑎 and its

dual as {|0⟩𝑎, |1⟩𝑎} and { 𝑎⟨0|, 𝑎⟨1|} and the orthonormal
basis of F𝑗 and its dual as {|0⟩𝑗, |1⟩𝑗} and { 𝑗⟨0|, 𝑗⟨1|}.
The matrix elements of the 𝐿-operator can be written as
𝑎⟨𝛾|𝑗⟨𝛿|𝐿𝑎𝑗(𝑧, 𝑤𝑗, 𝛼𝑗, 𝛾𝑗)|𝛼⟩𝑎|𝛽⟩𝑗, which we will use this form
in the next section. See Figure 1 for a pictorial description of
the 𝐿-operator (2).

The 𝑅-matrices and the 𝐿-operators have origins in
statistical physics, and |0⟩ or its dual ⟨0| can be regarded as
a hole state, while |1⟩ or its dual ⟨1| can be interpreted as
a particle state from the point of view of statistical physics.
We sometimes use the terms hole states and particle states
to describe states constructed from |0⟩, ⟨0|, |1⟩, and ⟨1|,
since they are convenient for the description of the states. In
the quantum inverse scattering method, the Fock spaces 𝑊𝑎
and F𝑗 are usually called the auxiliary and quantum spaces,
respectively.

For later convenience, we also define the following Pauli
spin operators 𝜎+ and 𝜎− as operators acting on the (dual)
orthonormal basis as 𝜎+ |1⟩ = |0⟩ ,𝜎+ |0⟩ = 0,⟨0| 𝜎+ = ⟨1| ,⟨1| 𝜎+ = 0,𝜎− |0⟩ = |1⟩ ,𝜎− |1⟩ = 0,⟨1| 𝜎− = ⟨0| ,⟨0| 𝜎− = 0.

(6)

To construct projected wavefunctions, we introduce the
monodromy matrix 𝑇𝑎(𝑧 | 𝑤1, . . . , 𝑤𝑀) (Figure 2(a)) from
the generalized 𝐿-operator (2) as𝑇𝑎 (𝑧 | 𝑤1, . . . , 𝑤𝑀)= 𝐿𝑎𝑀 (𝑧, 𝑤𝑀, 𝛼𝑀, 𝛾𝑀) ⋅ ⋅ ⋅ 𝐿𝑎1 (𝑧, 𝑤1, 𝛼1, 𝛾1)= (𝐴 (𝑧 | 𝑤1, . . . , 𝑤𝑀) 𝐵 (𝑧 | 𝑤1, . . . , 𝑤𝑀)𝐶 (𝑧 | 𝑤1, . . . , 𝑤𝑀) 𝐷 (𝑧 | 𝑤1, . . . , 𝑤𝑀))𝑎∈ End (𝑊𝑎 ⊗ F1 ⊗ ⋅ ⋅ ⋅ ⊗ F𝑀) .

(7)

The matrix elements 𝐴(𝑧 | 𝑤1, . . . , 𝑤𝑀), 𝐵(𝑧 | 𝑤1, . . . ,𝑤𝑀), 𝐶(𝑧 | 𝑤1, . . . , 𝑤𝑀), and 𝐷(𝑧 | 𝑤1, . . . , 𝑤𝑀) are called
the 𝐴𝐵𝐶𝐷 operators, which are 2𝑀 × 2𝑀 matrices acting on
the tensor product of the quantum spacesF1 ⊗ ⋅ ⋅ ⋅ ⊗ F𝑀.

To create projected wavefunctions, what is important is
the 𝐵-operator 𝐵(𝑧 | 𝑤1, . . . , 𝑤𝑀) (Figure 2(b)) which has the
role of creating particles in the quantum spacesF1⊗⋅ ⋅ ⋅⊗F𝑀.
We next introduce the following state vector.|Φ𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀)⟩ ∈ F1 ⊗ ⋅ ⋅ ⋅ ⊗ F𝑀 uses
the 𝐵-operators asΦ𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀)⟩= 𝐵 (𝑧1 | 𝑤1, . . . , 𝑤𝑀) ⋅ ⋅ ⋅ 𝐵 (𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀) |Ω⟩𝑀 , (8)

where |Ω⟩𝑀 fl |0⟩1⊗⋅ ⋅ ⋅⊗|0⟩𝑀 ∈ F1⊗⋅ ⋅ ⋅⊗F𝑀 is the vacuum
state in the tensor product of quantum spaces.
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Figure 2: The monodromy matrix 𝑇𝑎(𝑧 | 𝑤1, . . . , 𝑤𝑀) (7) (a) and the 𝐵-operator 𝐵(𝑧 | 𝑤1, . . . , 𝑤𝑀) (b).
Due to the so-called ice rule of the 𝐿-operator

𝑎⟨𝛾|𝑗⟨𝛿|𝐿𝑎𝑗(𝑧, 𝑤𝑗, 𝛼𝑗, 𝛾𝑗)|𝛼⟩𝑎|𝛽⟩𝑗 = 0 unless 𝛼 + 𝛽 = 𝛾 + 𝛿,
each 𝐵-operator creates one particle in the quantum spaces.
From this fact and since the state vector (8) is constructed
from 𝑁-layers of the 𝐵-operators acting on the vacuum state|Ω⟩𝑀, the state vector (8) is an 𝑁-particle state for 𝑁 ≤ 𝑀.
To construct a nonvanishing inner product, we introduce the
dual 𝑁-particle state:

⟨𝑥1 ⋅ ⋅ ⋅ 𝑥𝑁 = ( 1⟨0| ⊗ ⋅ ⋅ ⋅ ⊗ 𝑀⟨0|) 𝑁∏
𝑗=1

𝜎+𝑥𝑗∈ F
∗
1 ⊗ ⋅ ⋅ ⋅ ⊗ F

∗
𝑀, (9)

which are states labelling the configurations of particles 1 ≤𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ < 𝑥𝑁 ≤ 𝑀.
The projected wavefunctions 𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . ,𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) is defined as the inner product between

the state vector (off-shell Bethe vector) |Φ𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 |𝑤1, . . . , 𝑤𝑀)⟩ and the 𝑁-particle state ⟨𝑥1 ⋅ ⋅ ⋅ 𝑥𝑁|:𝑊𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)= ⟨𝑥1 ⋅ ⋅ ⋅ 𝑥𝑁 | Φ𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀)⟩ . (10)

See Figure 3 for a pictorial description of (10).
In the next section, we examine the properties of the pro-

jected wavefunctions. Here we just remark that the projected
wavefunctions of the free-fermionmodel treated in this paper
is not symmetric with respect to the spectral parameters{𝑧1, . . . , 𝑧𝑁}. This is in contrast to the case of the projected
wavefunctions of the𝑈𝑞(𝑠𝑙2) six-vertexmodel, where they are
symmetric with respect to the spectral variables, and in that
case the Grothendieck polynomials and its quantum group
deformation appear.This fact for the properties of the spectral
variables of the free-fermion model leads to the Tokuyama
formula [10] for the Schur functions, as was first found in [9].

z1

zN

wM, �훼M, �훾M w1, �훼1, �훾1

Figure 3:The projectedwavefunctions𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 |𝑥1, . . . , 𝑥𝑁) (10). This figure illustrates the cases 𝑀 = 5, 𝑁 = 3, 𝑥1 =2, 𝑥2 = 3, 𝑥3 = 5.
3. Izergin-Korepin Analysis

By the Izergin-Korepin analysis, we examine the properties of
the projected wavefunctions 𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 |𝑥1, . . . , 𝑥𝑁) in this section.

Proposition 1. The projected wavefunctions 𝑊𝑀,𝑁(𝑧1, . . . ,𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) satisfy the following properties.
(1) 𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) is a

polynomial of degree 𝑁 in 𝑤𝑀.
(2) The projected wavefunctions 𝑊𝑀,𝑁(𝑧𝜎(1), . . . , 𝑧𝜎(𝑁) |𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) with the ordering of the spectral

parameters permuted 𝑧𝜎(1), . . . , 𝑧𝜎(𝑁), 𝜎 ∈ 𝑆𝑁 are related to the
unpermuted one 𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)
by the following relation:∏
1≤𝑗<𝑘≤𝑁
𝜎(𝑗)>𝜎(𝑘)

(𝑧𝜎(𝑗) + 𝑡𝑧𝜎(𝑘))
⋅ 𝑊𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)
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1≤𝑗<𝑘≤𝑁
𝜎(𝑗)>𝜎(𝑘)

(𝑧𝜎(𝑘) + 𝑡𝑧𝜎(𝑗))
⋅ 𝑊𝑀,𝑁 (𝑧𝜎(1), . . . , 𝑧𝜎(𝑁) | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) .

(11)
(3) The following recursive relations between the projected
wavefunctions hold if 𝑥𝑁 = 𝑀:𝑊𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)𝑤𝑀=𝛾𝑀𝑧𝑁= 𝛾𝑁𝑀𝑧𝑁𝑁−1∏

𝑗=1

(𝑧𝑗 + 𝑡𝑧𝑁)𝑀−1∏
𝑗=1

{(1 − 𝛼𝑗𝛾𝑗) 𝑧𝑁 + 𝛼𝑗𝑤𝑗}× 𝑊𝑀−1,𝑁−1 (𝑧1, . . . , 𝑧𝑁−1 | 𝑤1, . . . , 𝑤𝑀−1 | 𝑥1, . . . , 𝑥𝑁−1) .
(12)

When evaluated at 𝑤𝑀 = 0, we have𝑊𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)𝑤𝑀=0= 0. (13)

If 𝑥𝑁 ̸= 𝑀, the following factorizations hold for the
projected wavefunctions:𝑊𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)= 𝑁∏

𝑗=1

(𝑤𝑀 − 𝛾𝑀𝑧𝑗)⋅ 𝑊𝑀−1,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀−1 | 𝑥1, . . . , 𝑥𝑁) .
(14)

(4) The following holds for the case 𝑁 = 1, 𝑥𝑁 = 𝑀:𝑊𝑀,1 (𝑧 | 𝑤1, . . . , 𝑤𝑀 | 𝑀)= 𝑤𝑀𝑀−1∏
𝑘=1

{(1 − 𝛼𝑘𝛾𝑘) 𝑧 + 𝛼𝑘𝑤𝑘} . (15)

Proof. Let us first show Properties (1) and (3) for the case𝑥𝑁 = 𝑀.
To show Property (1) when 𝑥𝑁 = 𝑀, we first express

the projected wavefunctions in terms of the vertical transfer
matrix:

T
𝑁
𝑗 (𝑤𝑗; 𝑧1, . . . , 𝑧𝑁)= 𝐿𝑎1𝑗 (𝑧1, 𝑤𝑗, 𝛼𝑗, 𝛾𝑗) ⋅ ⋅ ⋅ 𝐿𝑎𝑁𝑗 (𝑧𝑁, 𝑤𝑗, 𝛼𝑗, 𝛾𝑗)∈ End (𝑊𝑎1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑊𝑎𝑁 ⊗ F𝑗) . (16)

Using this vertical transfer matrix, the projected wavefunc-
tions can be rewritten as𝑊𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁−1,𝑀)= ⟨0|⊗𝑁 𝑀⟨1| ⟨𝑥1 ⋅ ⋅ ⋅ 𝑥𝑁−1⋅ T𝑁𝑀 (𝑤𝑀; 𝑧1, . . . , 𝑧𝑁) ⋅ ⋅ ⋅T𝑁1 (𝑤1; 𝑧1, . . . , 𝑧𝑁) |1⟩⊗𝑁⋅ |Ω⟩𝑀 ,

(17)

⟨0|⊗𝑁 = 𝑎1⟨0| ⊗ ⋅ ⋅ ⋅ ⊗ 𝑎𝑁⟨0|, (18)|1⟩⊗𝑁 = |1⟩𝑎1 ⊗ ⋅ ⋅ ⋅ ⊗ |1⟩𝑎𝑁 . (19)

Inserting the completeness relation in one particle sector

𝑁∑
𝑗=1

0𝑗−1, 1, 0𝑁−𝑗⟩ ⟨0𝑗−1, 1, 0𝑁−𝑗 = Id,0𝑗−1, 1, 0𝑁−𝑗⟩= |0⟩𝑎1 ⊗ ⋅ ⋅ ⋅ ⊗ |0⟩𝑎𝑗−1 ⊗ |1⟩𝑎𝑗 ⊗ |0⟩𝑎𝑗+1 ⊗ ⋅ ⋅ ⋅⊗ |0⟩𝑎𝑁 ,⟨0𝑗−1, 1, 0𝑁−𝑗= 𝑎1⟨0| ⊗ ⋅ ⋅ ⋅ ⊗ 𝑎𝑗−1⟨0| ⊗ 𝑎𝑗⟨1| ⊗ 𝑎𝑗+1⟨0| ⊗ ⋅ ⋅ ⋅⊗ 𝑎𝑁⟨0|,
(20)

into (19), we have𝑊𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁−1,𝑀)= 𝑁∑
𝑗=1

⟨0|⊗𝑁 𝑀⟨1|T𝑁𝑀 (𝑤𝑀; 𝑧1, . . . , 𝑧𝑁)⋅ 0𝑗−1, 1, 0𝑁−𝑗⟩ |0⟩𝑀 × ⟨𝑥1 ⋅ ⋅ ⋅ 𝑥𝑁−1 ⟨0𝑗−1, 1, 0𝑁−𝑗⋅ T𝑁𝑀−1 (𝑤𝑀−1; 𝑧1, . . . , 𝑧𝑁) ⋅ ⋅ ⋅T𝑁1 (𝑤1; 𝑧1, . . . , 𝑧𝑁)⋅ |Ω⟩𝑀−1 |1⟩⊗𝑁 .
(21)

In the right-hand side of (21), the parameter𝑤𝑀 depends only
on ⟨0|⊗𝑁 𝑀⟨1|T𝑁𝑀(𝑤𝑀; 𝑧1, . . . , 𝑧𝑁)|0𝑗−1, 1, 0𝑁−𝑗⟩|0⟩𝑀, whose
matrix elements can be easily calculated from its graphical
representation as⟨0|⊗𝑁 𝑀 ⟨1|T𝑁𝑀 (𝑤𝑀; 𝑧1, . . . , 𝑧𝑁) 0𝑗−1, 1, 0𝑁−𝑗⟩ |0⟩𝑀= 𝑤𝑀𝑗−1∏

𝑘=1

(𝑡𝑤𝑀 + 𝛾𝑀𝑧𝑘) 𝑁∏
𝑘=𝑗+1

(𝑤𝑀 − 𝛾𝑀𝑧𝑘) . (22)

Since the matrix elements (22) are a polynomial of degree𝑁 in 𝑤𝑀, one finds that the projected wavefunctions are a
polynomial of degree 𝑁 in 𝑤𝑀.

Let us next show Property (3) for the case 𝑥𝑁 =𝑀. We first remark that since the projected wavefunctions𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) are a polynomial
of degree 𝑁 in 𝑤𝑀, one needs to evaluate 𝑁 + 1 distinct
points in 𝑤𝑀 for the Izergin-Korepin trick to be successful.
Equation (12) is the result of the evaluation at the point𝑤𝑀 =𝛾𝑀𝑧𝑁. The (𝑁 − 1) points 𝑤𝑀 = 𝛾𝑀𝑧𝑗, 𝑗 = 1, . . . , 𝑁 − 1
can be evaluated using Property (2); hence if one shows that
certain functions satisfy Property (2), it remains to consider
the evaluation at 𝑤𝑀 = 𝛾𝑀𝑧𝑁. The evaluation at 𝑤𝑀 = 𝛾𝑀𝑧𝑁
essentially gives evaluations at𝑁 distinct points.We need one
more point to be evaluated. An easy point to be evaluated is𝑤𝑀 = 0, whose result is (13). Let us show these two results of
the evaluations.

The recursion relation (12) can be shown as follows. First,
from the decomposition (21) and the explicit form of the



6 Advances in Mathematical Physics

matrix elements (22), one finds that, after the substitution𝑤𝑀 = 𝛾𝑀𝑧𝑁, only the term 𝑗 = 𝑁 of the sum in (21) survives
and we have𝑊𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁−1,𝑀)𝑤𝑀=𝛾𝑀𝑧𝑁= 𝛾𝑁𝑀𝑧𝑁𝑁−1∏

𝑗=1

(𝑧𝑗 + 𝑡𝑧𝑁) × ⟨𝑥1 ⋅ ⋅ ⋅ 𝑥𝑁−1 ⟨0𝑁−1, 1⋅ T𝑁𝑀−1 (𝑤𝑀−1; 𝑧1, . . . , 𝑧𝑁) ⋅ ⋅ ⋅T𝑁1 (𝑤1; 𝑧1, . . . , 𝑧𝑁)⋅ |Ω⟩𝑀−1 |1⟩⊗𝑁 .
(23)

Sincewe can calculate the right-hand side of (23) furthermore
as⟨𝑥1 ⋅ ⋅ ⋅ 𝑥𝑁−1 ⟨0𝑁−1, 1T𝑁𝑀−1 (𝑤𝑀−1; 𝑧1, . . . , 𝑧𝑁)⋅ ⋅ ⋅T𝑁1 (𝑤1; 𝑧1, . . . , 𝑧𝑁) |Ω⟩𝑀−1 |1⟩⊗𝑁= ⟨𝑥1 ⋅ ⋅ ⋅ 𝑥𝑁−1 ⟨0𝑁−1T𝑁−1𝑀−1 (𝑤𝑀−1; 𝑧1, . . . , 𝑧𝑁−1)⋅ ⋅ ⋅T𝑁−11 (𝑤1; 𝑧1, . . . , 𝑧𝑁−1) |Ω⟩𝑀−1 |1⟩⊗𝑁−1× 𝑎𝑁 ⟨1|𝑀−1 ⟨Ω| 𝐿𝑎𝑁,𝑀−1 (𝑧𝑁, 𝑤𝑀−1, 𝛼𝑀−1, 𝛾𝑀−1)⋅ ⋅ ⋅ 𝐿𝑎𝑁,1 (𝑧𝑁, 𝑤1, 𝛼1, 𝛾1) |1⟩𝑎𝑁 |Ω⟩𝑀−1

= 𝑊𝑀−1,𝑁−1 (𝑧1, . . . , 𝑧𝑁−1 | 𝑤1, . . . , 𝑤𝑀−1 | 𝑥1, . . . , 𝑥𝑁−1)⋅ 𝑀−1∏
𝑗=1

{(1 − 𝛼𝑗𝛾𝑗) 𝑧𝑁 + 𝛼𝑗𝑤𝑗} ,
(24)

we can express the evaluation of 𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . ,𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) at 𝑤𝑀 = 𝛾𝑀𝑧𝑁 as𝑊𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)𝑤𝑀=𝛾𝑀𝑧𝑁= 𝛾𝑁𝑀𝑧𝑁𝑁−1∏
𝑗=1

(𝑧𝑗 + 𝑡𝑧𝑁)𝑀−1∏
𝑗=1

{(1 − 𝛼𝑗𝛾𝑗) 𝑧𝑁 + 𝛼𝑗𝑤𝑗}× 𝑊𝑀−1,𝑁−1 (𝑧1, . . . , 𝑧𝑁−1 | 𝑤1, . . . , 𝑤𝑀−1 | 𝑥1, . . . , 𝑥𝑁−1) .
(25)

The evaluation at 𝑤𝑀 = 0 (13) can be easily seen by the
expansion (21) and the fact that all the matrix elements (22)
contain the factor 𝑤𝑀.

Properties (1) and (3) for the case 𝑥𝑁 ̸= 𝑀 can be
shown much easier. Using the ice rule 𝑎⟨𝛾|𝑗⟨𝛿|𝐿𝑎𝑗(𝑧,𝑤𝑗, 𝛼𝑗, 𝛾𝑗)|𝛼⟩𝑎|𝛽⟩𝑗 = 0, one can easily find the following
factorization:

𝑊𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)= ⟨0|⊗𝑁 𝑀 ⟨0| ⟨𝑥1 ⋅ ⋅ ⋅ 𝑥𝑁T𝑁𝑀 (𝑤𝑀; 𝑧1, . . . , 𝑧𝑁) ⋅ ⋅ ⋅T𝑁1 (𝑤1; 𝑧1, . . . , 𝑧𝑁) |1⟩⊗𝑁 |Ω⟩𝑀= ⟨0|⊗𝑁 𝑀 ⟨0|T𝑁𝑀 (𝑤𝑀; 𝑧1, . . . , 𝑧𝑁) |0⟩⊗𝑁 |0⟩𝑀× ⟨0|⊗𝑁 ⟨𝑥1 ⋅ ⋅ ⋅ 𝑥𝑁T𝑁𝑀−1 (𝑤𝑀−1; 𝑧1, . . . , 𝑧𝑁) ⋅ ⋅ ⋅T𝑁1 (𝑤1; 𝑧1, . . . , 𝑧𝑁) |1⟩⊗𝑁 |Ω⟩𝑀−1= 𝑁∏
𝑗=1
𝑎𝑗

⟨0|𝑀 ⟨0| 𝐿𝑎𝑗 ,𝑀 (𝑧𝑗, 𝑤𝑀, 𝛼𝑀, 𝛾𝑀) |0⟩𝑎𝑗 |0⟩𝑀 × 𝑊𝑀−1,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀−1 | 𝑥1, . . . , 𝑥𝑁)
= 𝑁∏
𝑗=1

(𝑤𝑀 − 𝛾𝑀𝑧𝑗)𝑊𝑀−1,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀−1 | 𝑥1, . . . , 𝑥𝑁) .
(26)

This shows Properties (1) and (3) for the case 𝑥𝑁 ̸= 𝑀.
Property (2) can be shown as follows. Using the 𝑅𝐿𝐿 rela-

tion repeatedly, one gets the intertwining relation between the
monodromy matrices:𝑅𝑎𝑏 (𝑧1𝑧2)𝑇𝑎 (𝑧1 | 𝑤1, . . . , 𝑤𝑀) 𝑇𝑏 (𝑧2 | 𝑤1, . . . , 𝑤𝑀)= 𝑇𝑏 (𝑧2 | 𝑤1, . . . , 𝑤𝑀) 𝑇𝑎 (𝑧1 | 𝑤1, . . . , 𝑤𝑀)⋅ 𝑅𝑎𝑏 (𝑧1𝑧2) . (27)

An element of the intertwining relation (27) gives the com-
mutation relation between the 𝐵-operators:(𝑧2 + 𝑡𝑧1) 𝐵 (𝑧1 | 𝑤1, . . . , 𝑤𝑀) 𝐵 (𝑧2 | 𝑤1, . . . , 𝑤𝑀)

= 𝐵 (𝑧2 | 𝑤1, . . . , 𝑤𝑀) 𝐵 (𝑧1 | 𝑤1, . . . , 𝑤𝑀)⋅ (𝑧1 + 𝑡𝑧2) .
(28)

Since the projected wavefunctions𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . ,𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) (10) are constructed from 𝑁-layers of 𝐵-
operators, the effect of reordering the spectral parameters of
the𝐵-operators can be traced using the commutation relation
(28).

What finally remains is Property (4), which can also easily
calculated.

Before presenting the solution in the next section, we
explain here why the Izergin-Korepin analysis uniquely
defines the projected wavefunctions.The idea is based on the
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following fact: if there are two polynomials 𝑓(𝑤) and 𝑔(𝑤) of𝑤 of degree𝑁, and the evaluations of the two polynomials at𝑁 + 1 distinct points are the same (𝑓(𝑤) = 𝑔(𝑤) for 𝑤 = 𝑧𝑗,𝑗 = 1, . . . , 𝑁 + 1 such that 𝑧𝑗 ̸= 𝑧𝑘, 𝑗 ̸= 𝑘), then the two
polynomials are exactly the same, that is, 𝑓(𝑤) = 𝑔(𝑤) for all𝑤. The idea of Izergin-Korepin analysis is to relate the pro-
jected wavefunctions𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . ,𝑥𝑁) to smaller ones by using the above fact. The point is
to regard 𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) as
a polynomial of a single variable 𝑤𝑀. By Property (1) in
Proposition 1, 𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)
is a polynomial of degree 𝑁 in 𝑤𝑀. If 𝑥𝑁 = 𝑀, one can
evaluate the projected wavefunction at the following 𝑁 + 1
points: 𝑤𝑀 = 𝛾𝑀𝑧𝑗, 𝑗 = 1, . . . , 𝑁, 𝑤𝑀 = 0. The evaluations at𝑤𝑀 = 𝛾𝑀𝑧𝑁 and 𝑤𝑀 = 0 can be obtained by its graphical
representation and can be expressed by using the smaller
projected wavefunction 𝑊𝑀−1,𝑁−1(𝑧1, . . . , 𝑧𝑁−1 | 𝑤1, . . . ,𝑤𝑀−1 | 𝑥1, . . . , 𝑥𝑁−1), which is (12) and (13) of Property (3).
The evaluations at (𝑁−1) points𝑤𝑀 = 𝛾𝑀𝑧𝑗, 𝑗 = 1, . . . , 𝑁−1
can be obtained from the evaluation at 𝑤𝑀 = 𝛾𝑀𝑧𝑁 using
Property (2).This idea is essentially the samewith the Izergin-
Korepin analysis for the domain wall boundary partition
functions.

For the case of projected wavefunctions, there is another
case we have to consider: the case when 𝑥𝑁 ̸= 𝑀. For
this case, it is easier to connect the projected wavefunctions
from its graphical description, and we have (14). Note
that the smaller projected wavefunctions connected are𝑊𝑀−1,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀−1 | 𝑥1, . . . , 𝑥𝑁) which are
different from the one for the case when 𝑥𝑁 = 𝑀.

In both cases𝑥𝑁 = 𝑀 and𝑥𝑁 ̸= 𝑀, we are able to connect
the projected wavefunctions of different sizes, and, contin-
uing this process successively, the relations can be regarded
as recursion relations between projected wavefunctions. For
the Izergin-Korepin analysis to be successful such that it gives
the uniqueness of the projected wavefunctions, we need the
initial condition for the recursion relations, and it is Property
(4) in Proposition 1. Hence, if one finds an explicit function
satisfying all the properties in Proposition 1, it is the one
representing the projected wavefunctions.This is given in the
next section.

4. Generalized Schur Functions

Definition 2. We define the following symmetric function𝐹𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) which depends
on the symmetric variables 𝑧1, . . . , 𝑧𝑁, complex parameters𝑤1, . . . , 𝑤𝑀, 𝛼1, . . . , 𝛼𝑀, 𝛾1, . . . , 𝛾𝑀 and integers 𝑥1, . . . , 𝑥𝑁
satisfying 1 ≤ 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑁 ≤ 𝑀:𝐹𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)= 𝑁∏

𝑗=1

𝑤𝑥𝑗 1∏1≤𝑗<𝑘≤𝑁 (𝑧𝑘 − 𝑧𝑗) ∑
𝜎∈𝑆𝑁

(−1)𝜎
⋅ 𝑁∏
𝑗=1

𝑀∏
𝑘=𝑥𝑗+1

(𝑤𝑘 − 𝛾𝑘𝑧𝜎(𝑗))
× 𝑁∏
𝑗=1

𝑥𝑗−1∏
𝑘=1

{(1 − 𝛼𝑘𝛾𝑘) 𝑧𝜎(𝑗) + 𝛼𝑘𝑤𝑘} .
(29)

The symmetric function 𝐹𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 |𝑥1, . . . , 𝑥𝑁) (29) is a generalization of the (factorial) Schur
functions. Equation (29) can be rewritten in the form using
Young diagrams as𝐹𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)= 𝐹𝜆+𝛿 (z | 𝑤1, . . . , 𝑤𝑀)∏1≤𝑗<𝑘≤𝑁 (𝑧𝑗 − 𝑧𝑘) . (30)

Here, z = {𝑧1, . . . , 𝑧𝑁} is a set of variables and 𝜆 denotes a
Young diagram 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑁) with weakly decreasing
nonnegative integers 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑁 ≥ 0, and 𝛿 = (𝑁−1,𝑁 − 2, . . . , 0). 𝐹𝜇(z | {𝛼} | {𝛾}) is an 𝑁 × 𝑁 determinant:𝐹𝜇 (z | 𝑤1, . . . , 𝑤𝑀) = det𝑁 (𝑓𝜇𝑗 (𝑧𝑘 | 𝑤1, . . . , 𝑤𝑀)) , (31)

where𝑓𝜇 (𝑧 | 𝑤1, . . . , 𝑤𝑀)
= 𝑤𝜇+1 𝜇∏

𝑗=1

{(1 − 𝛼𝑗𝛾𝑗) 𝑧 + 𝛼𝑗𝑤𝑗} 𝑀∏
𝑗=𝜇+2

(𝑤𝑗 − 𝛾𝑗𝑧) . (32)

The Young diagrams 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑁) ∈ Z𝑁 (𝑀 − 𝑁 ≥𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑁 ≥ 0) in form (30) and the sequence of
integers 𝑥1, . . . , 𝑥𝑁 satisfying 1 ≤ 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑁 ≤ 𝑀 in (29)
representing 𝐹𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) are
connected by the translation rule 𝜆𝑗 = 𝑥𝑁−𝑗+1 − 𝑁 + 𝑗 − 1,𝑗 = 1, . . . , 𝑁.

In the limit𝑤𝑗 = 1, 𝑗 = 1, . . . ,𝑀, 𝛾𝑗 = 0, 𝑗 = 1, . . . ,𝑀, we
can see from form (30) that 𝐹𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 |𝑥1, . . . , 𝑥𝑁) reduces to the factorial Schur functions. If one
furthermore sets 𝛼𝑗 = 0, 𝑗 = 1, . . . ,𝑀, it further reduces to
the Schur functions.

We have the following correspondence between the
projected wavefunctions of the integrable model and the
generalized Schur function 𝐹𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 |𝑥1, . . . , 𝑥𝑁).
Theorem 3. The projected wavefunctions of the generalized
free-fermion model 𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . ,𝑥𝑁) are explicitly expressed as the product of factors∏1≤𝑗<𝑘≤𝑁(𝑧𝑗 + 𝑡𝑧𝑘) and the symmetric function 𝐹𝑀,𝑁(𝑧1, . . . ,𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁):𝑊𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)= ∏

1≤𝑗<𝑘≤𝑁

(𝑧𝑗 + 𝑡𝑧𝑘)
⋅ 𝐹𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) .

(33)

In the limits 𝑤𝑗 = 1, 𝑗 = 1, . . . ,𝑀, 𝛾𝑗 = 0, 𝑗 = 1, . . . ,𝑀,
(33) reduces to the main theorem of Bump-McNamara-
Nakasuji [22]. Taking the limit 𝛼𝑗 = 0, 𝑗 = 1, . . . ,𝑀 fur-
thermore, one gets the main theorem of Bump-Brubaker-
Friedberg [9].
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Proof. Let us denote the right-hand side of (33) as 𝐺𝑀,𝑁(𝑧1,. . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁):𝐺𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)
fl ∏
1≤𝑗<𝑘≤𝑁

(𝑧𝑗 + 𝑡𝑧𝑘)
⋅ 𝐹𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)
= 𝑁∏
𝑗=1

𝑤𝑥𝑗∏1≤𝑗<𝑘≤𝑁 (𝑧𝑗 + 𝑡𝑧𝑘)∏1≤𝑗<𝑘≤𝑁 (𝑧𝑘 − 𝑧𝑗) ∑
𝜎∈𝑆𝑁

(−1)𝜎
⋅ 𝑁∏
𝑗=1

𝑀∏
𝑘=𝑥𝑗+1

(𝑤𝑘 − 𝛾𝑘𝑧𝜎(𝑗))
× 𝑁∏
𝑗=1

𝑥𝑗−1∏
𝑘=1

{(1 − 𝛼𝑘𝛾𝑘) 𝑧𝜎(𝑗) + 𝛼𝑘𝑤𝑘} .

(34)

We prove this theorem by showing that𝐺𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 |𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) satisfies all four properties in
Proposition 1.

To show Property (1), first note that the factor∏𝑁𝑗=1∏𝑀𝑘=𝑥𝑗+1(𝑤𝑘 − 𝛾𝑘𝑧𝜎(𝑗)) in 𝐺𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 |𝑥1, . . . , 𝑥𝑁) is a polynomial of degree 𝑁 − 1 in 𝑤𝑀
if 𝑥𝑁 = 𝑀 and degree 𝑁 if 𝑥𝑁 ̸= 𝑀. For the case𝑥𝑁 ̸= 𝑀, one sees that the dependence on 𝑤𝑁 just only
comes from this factor. For the case 𝑥𝑁 = 𝑀, there is a
factor 𝑤𝑀 coming from the overall factor ∏𝑁𝑗=1𝑤𝑥𝑗 . Thus,𝐺𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) is a polynomial
of degree 𝑁 in 𝑤𝑀 for both cases 𝑥𝑁 = 𝑀 and 𝑥𝑁 ̸= 𝑀;
hence Property (1) is proved.

Let us next show Property (2). First, note that 𝐹𝑀,𝑁(𝑧1,. . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)which is a part of𝐺𝑀,𝑁(𝑧1,. . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) that is symmetric with
respect to 𝑧1, . . . , 𝑧𝑁 since both the denominator∏1≤𝑗<𝑘≤𝑁(𝑧𝑘−𝑧𝑗) and the numerator

𝑁∏
𝑗=1

𝑤𝑥𝑗 ∑
𝜎∈𝑆𝑁

(−1)𝜎 𝑁∏
𝑗=1

𝑀∏
𝑘=𝑥𝑗+1

(𝑤𝑘 − 𝛾𝑘𝑧𝜎(𝑗))
⋅ 𝑁∏
𝑗=1

𝑥𝑗−1∏
𝑘=1

{(1 − 𝛼𝑘𝛾𝑘) 𝑧𝜎(𝑗) + 𝛼𝑘𝑤𝑘} , (35)

are antisymmetric with respect to simple permutations of the
spectral parameters 𝑧1, . . . , 𝑧𝑁. This means

𝐹𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)= 𝐹𝑀,𝑁 (𝑧𝜎(1), . . . , 𝑧𝜎(𝑁) | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) . (36)

Looking at the other factor ∏1≤𝑗<𝑘≤𝑁(𝑧𝑗 + 𝑡𝑧𝑘) which con-
structs the function 𝐺𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . ,𝑥𝑁), we have∏
1≤𝑗<𝑘≤𝑁
𝜎(𝑗)>𝜎(𝑘)

(𝑧𝜎(𝑗) + 𝑡𝑧𝜎(𝑘)) ∏
1≤𝑗<𝑘≤𝑁

(𝑧𝑗 + 𝑡𝑧𝑘)
= ∏
1≤𝑗<𝑘≤𝑁
𝜎(𝑗)>𝜎(𝑘)

(𝑧𝜎(𝑘) + 𝑡𝑧𝜎(𝑗)) ∏
1≤𝑗<𝑘≤𝑁

(𝑧𝜎(𝑗) + 𝑡𝑧𝜎(𝑘)) . (37)

From (36), (37), and the fact that 𝐺𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . ,𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) is defined as a product of ∏1≤𝑗<𝑘≤𝑁(𝑧𝑗+𝑡𝑧𝑘) and 𝐹𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁), we have∏
1≤𝑗<𝑘≤𝑁
𝜎(𝑗)>𝜎(𝑘)

(𝑧𝜎(𝑗) + 𝑡𝑧𝜎(𝑘))
⋅ 𝐺𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)= ∏
1≤𝑗<𝑘≤𝑁
𝜎(𝑗)>𝜎(𝑘)

(𝑧𝜎(𝑘) + 𝑡𝑧𝜎(𝑗))
⋅ 𝐺𝑀,𝑁 (𝑧𝜎(1), . . . , 𝑧𝜎(𝑁) | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) .

(38)

We have shown that 𝐺𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1,. . . , 𝑥𝑁) satisfies the same relation the projected wavefunc-
tions 𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) must sat-
isfy. Hence Property (2) is proved.

Next we show Property (3). We first prove that the
function 𝐺𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) satisfies
(12) and (13) for the case 𝑥𝑁 = 𝑀. To prove (12), we first note
that the factor

𝑁∏
𝑗=1

𝑀∏
𝑘=𝑥𝑗+1

(𝑤𝑘 − 𝛾𝑘𝑧𝜎(𝑗)) , (39)

in each summand essentially becomes

𝑁−1∏
𝑗=1

𝑀∏
𝑘=𝑥𝑗+1

(𝑤𝑘 − 𝛾𝑘𝑧𝜎(𝑗)) . (40)

Concentrating on the factor ∏𝑁−1𝑗=1 (𝑤𝑀 − 𝛾𝑀𝑧𝜎(𝑗)) from (40),
one finds this factor vanishes unless 𝜎 satisfies 𝜎(𝑁) = 𝑁 if
one substitutes 𝑤𝑀 = 𝛾𝑀𝑧𝑁.

Therefore, only the summands satisfying 𝜎(𝑁) = 𝑁 in
(29) survive after the substitution 𝑤𝑀 = 𝛾𝑀𝑧𝑁. Keeping
this in mind, one rewrites 𝐺𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 |𝑥1, . . . , 𝑥𝑁) evaluated at 𝑤𝑀 = 𝛾𝑀𝑧𝑁 by using the symmetric
group 𝑆𝑁−1 where every 𝜎 ∈ 𝑆𝑁−1 satisfies {𝜎(1), . . . , 𝜎(𝑁−1)} = {1, . . . , 𝑁 − 1} as follows:𝐺𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)𝑤𝑀=𝛾𝑀𝑧𝑁= 𝛾𝑀𝑧𝑁𝑁−1∏

𝑗=1

𝑤𝑥𝑗
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⋅ ∏1≤𝑗<𝑘≤𝑁−1 (𝑧𝑗 + 𝑡𝑧𝑘)∏𝑁−1𝑗=1 (𝑧𝑗 + 𝑡𝑧𝑁)∏1≤𝑗<𝑘≤𝑁−1 (𝑧𝑘 − 𝑧𝑗)∏𝑁−1𝑗=1 (𝑧𝑁 − 𝑧𝑗)
× ∑
𝜎∈𝑆𝑁−1

(−1)𝜎 𝑁−1∏
𝑗=1

𝑀−1∏
𝑘=𝑥𝑗+1

(𝑤𝑘 − 𝛾𝑘z𝜎(𝑗))𝑁−1∏
𝑗=1

𝛾𝑀 (𝑧𝑁
− 𝑧𝜎(𝑗)) × 𝑁−1∏

𝑗=1

𝑥𝑗−1∏
𝑘=1

{(1 − 𝛼𝑘𝛾𝑘) 𝑧𝜎(𝑗) + 𝛼𝑘𝑤𝑘}
⋅ 𝑀−1∏
𝑘=1

{(1 − 𝛼𝑘𝛾𝑘) 𝑧𝑁 + 𝛼𝑘𝑤𝑘} .
(41)

One easily notes that the factors∏𝑀−1𝑘=1 {(1 − 𝛼𝑘𝛾𝑘)𝑧𝑁 + 𝛼𝑘𝑤𝑘}
in the sum are independent of the permutation 𝑆𝑁−1. One
also finds that the product of factors 1/∏𝑁−1𝑗=1 (𝑧𝑁 − 𝑧𝑗) and∏𝑁−1𝑗=1 𝛾𝑀(𝑧𝑁 − 𝑧𝜎(𝑗)) can be simplified as1∏𝑁−1𝑗=1 (𝑧𝑁 − 𝑧𝑗)𝑁−1∏

𝑗=1

𝛾𝑀 (𝑧𝑁 − 𝑧𝜎(𝑗))
= 1∏𝑁−1𝑗=1 (𝑧𝑁 − 𝑧𝑗)𝑁−1∏

𝑗=1

𝛾𝑀 (𝑧𝑁 − 𝑧𝑗) = 𝛾𝑁−1𝑀 . (42)

Thus, (41) can be rewritten furthermore as𝐺𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)𝑤𝑀=𝛾𝑀𝑧𝑁= 𝛾𝑁𝑀𝑧𝑁𝑁−1∏
𝑗=1

(𝑧𝑗 + 𝑡𝑧𝑁)𝑀−1∏
𝑗=1

{(1 − 𝛼𝑗𝛾𝑗) 𝑧𝑁 + 𝛼𝑗𝑤𝑗}
× 𝑁−1∏
𝑗=1

𝑤𝑥𝑗∏1≤𝑗<𝑘≤𝑁−1 (𝑧𝑗 + 𝑡𝑧𝑘)∏1≤𝑗<𝑘≤𝑁−1 (𝑧𝑘 − 𝑧𝑗) ∑
𝜎∈𝑆𝑁−1

(−1)𝜎
⋅ 𝑁−1∏
𝑗=1

𝑀−1∏
𝑘=𝑥𝑗+1

(𝑤𝑘 − 𝛾𝑘𝑧𝜎(𝑗))
× 𝑁−1∏
𝑗=1

𝑥𝑗−1∏
𝑘=1

{(1 − 𝛼𝑘𝛾𝑘) 𝑧𝜎(𝑗) + 𝛼𝑘𝑤𝑘} .
(43)

Since

𝑁−1∏
𝑗=1

𝑤𝑥𝑗∏1≤𝑗<𝑘≤𝑁−1 (𝑧𝑗 + 𝑡𝑧𝑘)∏1≤𝑗<𝑘≤𝑁−1 (𝑧𝑘 − 𝑧𝑗) ∑
𝜎∈𝑆𝑁−1

(−1)𝜎
⋅ 𝑁−1∏
𝑗=1

𝑀−1∏
𝑘=𝑥𝑗+1

(𝑤𝑘 − 𝛾𝑘𝑧𝜎(𝑗))
× 𝑁−1∏
𝑗=1

𝑥𝑗−1∏
𝑘=1

{(1 − 𝛼𝑘𝛾𝑘) 𝑧𝜎(𝑗) + 𝛼𝑘𝑤𝑘}

= 𝐺𝑀−1,𝑁−1 (𝑧1, . . . , 𝑧𝑁−1 | 𝑤1, . . . , 𝑤𝑀−1 | 𝑥1, . . . ,𝑥𝑁−1) ,
(44)

one finds that (43) is nothing but the following recursion
relation for the function 𝐺𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 |𝑥1, . . . , 𝑥𝑁):𝐺𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)𝑤𝑀=𝛾𝑀𝑧𝑁= 𝛾𝑁𝑀𝑧𝑁𝑁−1∏

𝑗=1

(𝑧𝑗 + 𝑡𝑧𝑁)𝑀−1∏
𝑗=1

{(1 − 𝛼𝑗𝛾𝑗) 𝑧𝑁 + 𝛼𝑗𝑤𝑗}× 𝐺𝑀−1,𝑁−1 (𝑧1, . . . , 𝑧𝑁−1 | 𝑤1, . . . , 𝑤𝑀−1 | 𝑥1, . . . , 𝑥𝑁−1) ,
(45)

which is exactly the same recursion relation the projected
wavefunctions 𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)
must satisfy; hence (12) is shown. Equation (13) can be
shown immediately since 𝐺𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 |𝑥1, . . . , 𝑥𝑁) evaluated at 𝑤𝑀 = 0 becomes zero due to the
overall factor ∏𝑁𝑗=1𝑤𝑥𝑗 in 𝐹𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 |𝑥1, . . . , 𝑥𝑁) and the fact that we are dealing the case 𝑥𝑁 = 𝑀.

Now let us examine the case 𝑥𝑁 ̸= 𝑀. This can
be shown in a similar but much simpler way. We rewrite𝐺𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) as𝐺𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)= 𝑁∏

𝑗=1

𝑤𝑥𝑗∏1≤𝑗<𝑘≤𝑁 (𝑧𝑗 + 𝑡𝑧𝑘)∏1≤𝑗<𝑘≤𝑁 (𝑧𝑘 − 𝑧𝑗) ∑
𝜎∈𝑆𝑁

(−1)𝜎
⋅ 𝑁∏
𝑗=1

𝑀−1∏
𝑘=𝑥𝑗+1

(𝑤𝑘 − 𝛾𝑘𝑧𝜎(𝑗)) 𝑁∏
𝑗=1

(𝑤𝑀 − 𝛾𝑀𝑧𝜎(𝑗))
× 𝑁∏
𝑗=1

𝑥𝑗−1∏
𝑘=1

{(1 − 𝛼𝑘𝛾𝑘) 𝑧𝜎(𝑗) + 𝛼𝑘𝑤𝑘} .
(46)

Noting that

𝑁∏
𝑗=1

(𝑤𝑀 − 𝛾𝑀𝑧𝜎(𝑗)) = 𝑁∏
𝑗=1

(𝑤𝑀 − 𝛾𝑀𝑧𝑗) , (47)

we can take this factor out of the sum in (46) and we get𝐺𝑀,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)= 𝑁∏
𝑗=1

(𝑤𝑀 − 𝛾𝑀𝑧𝑗) 𝑁∏
𝑗=1

𝑤𝑥𝑗∏1≤𝑗<𝑘≤𝑁 (𝑧𝑗 + 𝑡𝑧𝑘)∏1≤𝑗<𝑘≤𝑁 (𝑧𝑘 − 𝑧𝑗)⋅ ∑
𝜎∈𝑆𝑁

(−1)𝜎 𝑁∏
𝑗=1

𝑀−1∏
𝑘=𝑥𝑗+1

(𝑤𝑘 − 𝛾𝑘𝑧𝜎(𝑗))
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× 𝑁∏
𝑗=1

𝑥𝑗−1∏
𝑘=1

{(1 − 𝛼𝑘𝛾𝑘) 𝑧𝜎(𝑗) + 𝛼𝑘𝑤𝑘}
= 𝑁∏
𝑗=1

(𝑤𝑀 − 𝛾𝑀𝑧𝑗)⋅ 𝐺𝑀−1,𝑁 (𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀−1 | 𝑥1, . . . , 𝑥𝑁) ,
(48)

which is also exactly the recursion relation the projected
wavefunctions 𝐺𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁)
must satisfy for the case 𝑥𝑁 ̸= 𝑀.

Finally it is trivial to check from its definition that𝐺𝑀,1 (𝑧 | 𝑤1, . . . , 𝑤𝑀 | 𝑀)= 𝑤𝑀𝑀−1∏
𝑘=1

{(1 − 𝛼𝑘𝛾𝑘) 𝑧 + 𝛼𝑘𝑤𝑘} ; (49)

hence Property (4) is shown.
Since we have proved that the function 𝐺𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 |𝑤1, . . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) satisfies all Properties (1), (2), (3),

and (4) in Proposition 1, we conclude that it is the explicit
form of the projected wavefunctions 𝑊𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1,. . . , 𝑤𝑀 | 𝑥1, . . . , 𝑥𝑁) = 𝐺𝑀,𝑁(𝑧1, . . . , 𝑧𝑁 | 𝑤1, . . . , 𝑤𝑀 | 𝑥1,. . . , 𝑥𝑁).
5. Conclusion

In this paper, we studied the generalized free-fermion model
in an external field. We applied the Izergin-Korepin analysis
on the projected wavefunctions which is a generalization of
the Izergin-Korepin analysis on the domain wall boundary
partition functions, which was recently done for the case
of the 𝑈𝑞(𝑠𝑙2) six-vertex model in [30]. We extracted the
properties about the degree, symmetry, recursion relations,
and initial conditions the projected wavefunctions satisfy.
Next we proved that the product of factors and certain
symmetric functions satisfies all the required properties;
hence it represents the projected wavefunctions. The result
can be regarded as an extension of the Tokuyama formula for
the (factorial) Schur functions by Bump-Brubaker-Friedberg
[9] and Bump-McNamara-Nakasuji [22].

The result obtained in this paper can also be proved
by using the arguments initiated in [9], which views the
partition functions as functions of the free parameter in
the auxiliary spaces. The Izergin-Korepin analysis used in
this paper views the partition functions as functions of
inhomogeneous parameters in the quantum spaces. The
comparison of the two different ways of arguments seems to
be interesting. We use the result obtained in this paper to
study algebraic combinatorial properties of the generalized
Schur functions in our forthcoming paper [34]. Extending
the Izergin-Korepin analysis to other boundary conditions of
the generalized free-fermion model is one of the interesting
topics regarding this paper. There may be some cases in
which the Izergin-Korepin analysis is suitable and some other
cases in which the arguments in [9] are useful. We think

that developing various techniques are useful for the study
of partition functions of integrable lattice models.
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