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We apply the Izergin-Korepin analysis to the study of the projected wavefunctions of the generalized free-fermion model. We
introduce a generalization of the L-operator of the six-vertex model by Bump-Brubaker-Friedberg and Bump-McNamara-Nakasuji.
We make the Izergin-Korepin analysis to characterize the projected wavefunctions and show that they can be expressed as a product
of factors and certain symmetric functions which generalizes the factorial Schur functions. This result can be seen as a generalization
of the Tokuyama formula for the factorial Schur functions.

1. Introduction

Integrable lattice models [1-4] are special classes of models
in statistical physics in which many exact calculations are
believed to be able to be done. The most local object in
integrable models is called the R-matrix, and its mathematical
structure was revealed in the mid-1980s [5, 6]. The underlying
mathematical structure was named as the quantum groups,
and the investigation of the quantum groups naturally leads
to immediate constructions of various R-matrices.

From the point of view of statistical physics, R-matrices
are the most local objects, and the study on the R-matrices
is a starting point. The most important objects in statistical
physics are partition functions. For the case of integrable
models, partition functions are objects constructed from
multiple R-matrices and are determined by boundary con-
ditions. One of the most famous partition functions in inte-
grable lattice models are the domain wall boundary partition
functions which was first introduced and analyzed in [7, 8]. In
recent years, a more general class of partition functions which
we shall call as the projected wavefunctions are attracting
attention in its relation with algebraic combinatorics. The
projected wavefunctions are the projection of the off-shell
Bethe vector of integrable models into a class of some simple
states labelled by the sequences of the particles or down
spins. For the case of the free-fermion model in an external
field, it was first shown by Bump-Brubaker-Friedberg [9] that

the projected wavefunctions give a natural realization of the
Tokuyama combinatorial formula for the Schur functions
[10], which is a one-parameter deformation of the Weyl
character formula (note that there are pioneering works
using the free-fermion model implicitly in [11-13], and the
Izergin-Korepin analysis and observation of the factoriza-
tion phenomena on the domain wall boundary partition
functions of the related models are called the Perk-Schultz
(supersymmetric vertex) model [14] and the Felderhof free-
fermion model [15] in [16, 17]. There is also an application to
the correlation functions in [18]). This observation triggered
studies on finding various generalizations and variations of
the Tokuyama-type formula for symmetric functions [19-27]
such as the factorial Schur functions and symplectic Schur
functions, and an interesting notion was introduced further-
more which the number theorists call it the metaplectic ice.
In this paper, we analyze the free-fermion model using
the method initiated by Izergin-Korepin [7, 8]. The method
was developed by them in order to find the explicit expression
of polynomials representing the domain wall boundary parti-
tion functions of the Uq(slz) six-vertex model, from which the
famous Izergin-Korepin determinant formula was found. The
Izergin-Korepin analysis is the important method to study
variants of the domain wall boundary partition functions. For
example, it was applied to the domain wall boundary parti-
tion functions of the U, (sl,) six-vertex model with reflecting
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end by Tsuchiya [28] to find its determinant formula. Extend-
ing the Izergin-Korepin analysis to more general class of
partition functions is also important. Wheeler [29] invented
a method to extend the Izergin-Korepin analysis on a class of
partition functions called the scalar products. And in our very
recent work [30], we extended the Izergin-Korepin analysis
to study the projected wavefunctions of the U, (sl,) six-vertex
model. The resulting symmetric polynomials representing
the projected wavefunctions contains the Grothendieck poly-
nomials as a special case when the six-vertex model reduces
to the five-vertex model [31-33]. We apply this technique to
study the free-fermion model in an external field. To this
end, we first introduce an ultimate generalization of the L-
operator by introducing the inhomogeneous parameters and
factorial parameters. We use an inhomogeneous version of
the generalized L-operator in our forthcoming paper [34]
having two types of factorial parameters, which generalizes
the factorial L-operator by Bump-McNamara-Nakasuji [22].
We next view the projected wavefunctions as a function of the
inhomogeneous parameters and characterize its properties by
using the Izergin-Korepin analysis. We then show that the
product of factors and certain symmetric functions satisfies
all the required properties the projected wavefunctions must
satisfy. The result is a generalization of [9, 22] and hence
can be viewed as a generalization of the Tokuyama for
the factorial Schur functions. The Izergin-Korepin analysis
views the partition functions as functions of inhomogeneous
parameters in the quantum spaces, whereas the arguments
initiated in [9] view the partition functions as functions of
the free parameter in the auxiliary spaces. The comparison of
the two different ways of arguments seems to be interesting.
We will use the results of the projected wavefunctions to
the algebraic combinatorial study of the generalized Schur
functions [34]. For example, two ways of evaluations of the
same partition functions can lead to integrable model con-
structions of algebraic identities of the symmetric functions.
For example, two ways of evaluations of the domain wall
boundary partition functions, a direct evaluation and an
indirect evaluation using the completeness relation and the
projected wavefunctions, can give rise to the dual Cauchy
formula of the generalized Schur functions. This idea can
also be applied to partition functions of integrable models
under reflecting boundary to give dual Cauchy identities of
the generalized symplectic Schur functions. Further detailed
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Izergin-Korepin analysis on the domain wall boundary par-
tition functions and the dual projected wavefunctions are
required for the studies.

There are also studies on deriving Cauchy identities using
the domain wall boundary partition functions like an inter-
twiner, invented in [35]. Deriving algebraic combinatorial
properties of symmetric functions using their integrable
model realizations is an active line of research. See [36-40]
for more examples on Cauchy-type identities and more recent
studies on the Littlewood-Richardson coefficients by [33, 41].

In any case, in order to conduct these studies, we first of all
have to find out what are the explicit functions representing
the projected wavefunctions. We think the Izergin-Korepin
analysis presented in this paper is a fairly simple way to find
out the explicit forms.

This paper is organized as follows. In the next section,
we first list the generalized L-operator and introduce the
projected wavefunctions. In Section 3, we make the Izergin-
Korepin analysis and list the properties needed to determine
the explicit form of the projected wavefunctions. In Section 4,
we show that the product of factors and certain symmetric
functions satisfies all the required properties extracted from
the Izergin-Korepin analysis, which means that the product
is the explicit form of the projected wavefunctions. Section 5
is devoted to the conclusion of this paper.

2. The Generalized Free-Fermion Model and
the Projected Wavefunctions

The most fundamental objects in integrable lattice models are
the R-matrices and L-operators. The R-matrix of the free-
fermion model we treat in this paper is given by

l+tz 0 0 0
0 t(l-2) t+1 0

Rap (@) = 0 (t+l)zz-1 0 | @
0 0 0 z+t

acting on the tensor product W, ® W, of the complex two-
dimensional space W,.

The L-operator of the free-fermion model we use as bulk
pieces of the projected wavefunctions in this paper is given by

w; —y;z 0 0 0
( ) 0 tw; +y;z w; 0
Llz,w,a,y;) = > ()
“ rer 0 (t+1)z (xjwj+(1—cxjy]-)z 0
0 0 0 —tajw; + (1 - ocjyj) z

acting on the tensor product W, ® % ; of the space W, and the
two-dimensional Fock space at the jth site ;.

The parameters w;, a;, and y; can be regarded as param-
eters associated with the quantum space & ;. The L-operators
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wj - y;z twj + vz w

(1= ajyjz+ | (1 - ajy;)z—

aw; tocjwj

t+1)z

F1GURE 1: The L-operator Luj(z, w;, o yj) (2). The horizontal line is the space W, and the vertical line is the space & i

giving the Schur functions [9] and factorial Schur functions
[22] are a special limit of the generalized L-operator (2) given

by

1 0 00
0 t 10
L, (2,1,0,0) = , 3)
0 (t+1)z z 0O
0 0 0z
1 0 0 0
0 t 1 0
L“j(z’l’“j’o): 0 t+1)z a;+2 0 @)
0 0 0 —ta;+z

respectively.
The L-operator (2) together with the R-matrix (1) satisfies
the RLL relation:

Rab <z_;> Laj (Zl’ w]', (Xj, '}/]) Lh] (ZZ’ wj’ (x]., '})])
©)

:Lw(zrwr“r%)Lw(%’wP“P”)R%(gi)’

actingon W, ® W, ® F ..

Let us denote the orthonormal basis of W, and its
dual as {|0),,[1),} and { (0|, ,(1]} and the orthonormal
basis of 97]- and its dual as {IO)]-, II)J-} and {J-(OI, j(ll}.
The matrix elements of the L-operator can be written as
u(ylj (8|Laj(z, (N yj)loc)ulﬁ)j, which we will use this form
in the next section. See Figure 1 for a pictorial description of
the L-operator (2).

The R-matrices and the L-operators have origins in
statistical physics, and |0) or its dual (0| can be regarded as
a hole state, while |1) or its dual (1| can be interpreted as
a particle state from the point of view of statistical physics.
We sometimes use the terms hole states and particle states
to describe states constructed from |[0), (0|, |1), and (1],
since they are convenient for the description of the states. In
the quantum inverse scattering method, the Fock spaces W,
and # ; are usually called the auxiliary and quantum spaces,
respectively.

For later convenience, we also define the following Pauli
spin operators o' and ¢~ as operators acting on the (dual)
orthonormal basis as

o"[1) =0),
o |0) =0,
(0lo™ = (1],
(116" =0,
(6)
o |0) =11),
o 1) =0,
(1o =(0l,
(0lo” = 0.

To construct projected wavefunctions, we introduce the
monodromy matrix T,(z | w,,...,w,,) (Figure 2(a)) from
the generalized L-operator (2) as

T,(z | wy,...,wy)

= Loy (2w @ Yir) -+ Ly (25w, 00, 11)
_(A(zlwl,... .,wM)> (7)
) a

C(zlwy,...,wy) D(z|w,,...,wy)

,wy) B(z | w,,..

€eEnd(W, @ F,®- @ F,,).

The matrix elements A(z | wy,...,wy), Bz | wy,...,
wy), C(z | wy,...,wy), and D(z | wy,...,w,,) are called
the ABCD operators, which are 2™ x 2™ matrices acting on
the tensor product of the quantum spaces F, ® --- ® F .

To create projected wavefunctions, what is important is
the B-operator B(z | wy, ..., w,,) (Figure 2(b)) which has the
role of creating particles in the quantum spaces #,®: - -®F ;.
We next introduce the following state vector.

[Py n(Zpse 2y | Wy swyy)) € Fp®---® Fy uses
the B-operators as

[Py (21 r 2y [ wys e wyy)) ©

=B(z, |wy,...,wy) - Blzy | wy,...swy) 1) s

where |Q),; = 10);®:--®|0); € F,®--®F ,, is the vacuum
state in the tensor product of quantum spaces.



T,(z | wy,...,wyp)

Whps Xpvps YM

B(z | wy,...,wy)

FIGURE 2: The monodromy matrix T,,(z | w, ...

Due to the so-called ice rule of the L-operator
a{Y1;OIL (2, w)s & y)le) | B)j = O unless a + § =y + 6,
each B-operator creates one particle in the quantum spaces.
From this fact and since the state vector (8) is constructed
from N-layers of the B-operators acting on the vacuum state
|Q) 5> the state vector (8) is an N-particle state for N < M.
To construct a nonvanishing inner product, we introduce the
dual N-particle state:

N
<'xl le = (1<0|®® M<O|)HO';J
j=1 (9)

which are states labelling the configurations of particles 1 <
X <xy << xy <M.

The projected wavefunctions Wy, (z,..., 25 | wy,...,

wy | xq,...,xy) is defined as the inner product between
the state vector (off-shell Bethe vector) |®y; \(z,...,2x5 |
wy, ..., wy,)) and the N-particle state (x, --- xyl:
Wyn (255 zn lw o wy | x,..0xy)
(10)

=(x; x| Oppn (2152 LWy, wyy))
See Figure 3 for a pictorial description of (10).

In the next section, we examine the properties of the pro-
jected wavefunctions. Here we just remark that the projected
wavefunctions of the free-fermion model treated in this paper
is not symmetric with respect to the spectral parameters
{z,,...,zy}. This is in contrast to the case of the projected
wavefunctions of the U, (sl,) six-vertex model, where they are
symmetric with respect to the spectral variables, and in that
case the Grothendieck polynomials and its quantum group
deformation appear. This fact for the properties of the spectral
variables of the free-fermion model leads to the Tokuyama
formula [10] for the Schur functions, as was first found in [9].

,wyy) (7) (a) and the B-operator B(z | w, ...
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Wy, &5 Y1

»wy) (b).

Wy, &5 Y1

F1GURE 3: The projected wavefunctions Wy, \ (215 ..., 2y | Wy, ..., wy |
X15...,Xy) (10). This figure illustrates the cases M =5, N = 3, x; =
2,x,=3,x3=5.

3. Izergin-Korepin Analysis

By the Izergin-Korepin analysis, we examine the properties of
the projected wavefunctions Wy, (21, ..., 25 | wy, ..., wy, |
Xi,...,X)y) in this section.

Proposition 1. The projected wavefunctions Wy, y(z15. ..,

Zy | Wy wy | Xy, ., xyy) satisfy the following properties.
(D) Wyn(z--zy | wyeowy |oxp,..,xy) is a
polynomial of degree N in w,.
(2) The projected wavefunctions Wy, (251> -+ -5 Zo(ny |

Wy,..., Wy | Xp,...,xy) with the ordering of the spectral
parameters permuted z, ), . .., Z,\) O € Sy are related to the
unpermuted one Wy, n(2y, ..., 25 | Wy, wyy | X500, Xy)
by the following relation:
[T (Zop +t2ew)
1<j<k<N
a(j)>o(k)
Wyn (2 ozy Ty wy [ X0, xy)
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= H (zo(k)+tza(j))

1<j<k<N
o(j)>o(k)

W | Xy Xy) -

. WM,N (Zo'(l)7"" (N) | Wy, ..

(11)

(3) The following recursive relations between the projected
wavefunctions hold if xy = M:

,zZn | wl,...,wMle,...,xN)|

Wyn (215 .

N-1
= yaen] | (25 +t2n)
j=1

WM=YMZN

M-1

{(1-ay) oy + oy} (12)

j=1

XWaino1 (25 Zncy T Wy X, X)) -

When evaluated at wy, = 0, we have

Wyn (21 02y Twy . owy [ X,

’xN)|wM:0

(13)
=0.

If xy # M, the following factorizations hold for the
projected wavefunctions:

Wyn (212 lwp o wy | x50, xy)
N
= (wM_YMZj) (14)
=1
'WM*I,N(ZI""’ZN | wl,...,wM71 | xl,...,xN).

(4) The following holds for the case N = 1, x5y = M:
Wiy (z | wy,...,wy | M)

M-1 (15)
= wMH {(1 = oeyi) z + gy}
k=1
Proof. Let us first show Properties (1) and (3) for the case

Xy =M.

To show Property (1) when x5 = M, we first express
the projected wavefunctions in terms of the vertical transfer
matrix:

N
9] (w]-;Zl,..

)
= Lo (zhwpapy;) - Loy (zmwpay;)  (16)
€End(W, ® - ®W, 8F,).

Using this vertical transfer matrix, the projected wavefunc-
tions can be rewritten as

Wy (215 zn lwy o wy | xg, . xy_1 M)
= ("N (1 (xy -+ x|
(17)
N N N
T Wanzs o zy) T, (W2, zx) DT
Qs
&N
OFN =, Ol o, (0] (18)
N
Y = 1), & ®1), . (19)

Inserting the completeness relation in one particle sector

i |of‘1, 1,07 (o, 1,0N‘f| =1d,

j=1
0!, 1,0N7)
=10),, ®---®]0), @), ®[|0), ®:
(20)
®[0),, »
(01,0
=, - aj_1<0|®aj<1|®aj+l(0|®~~
® , (0],
into (19), we have
Wy (215 zny lwy o wy | x50 x5, M)
& N N
= YO (U Ty (W 25 2y)
j=1
(21

07 10N 10) 00 x (o e x| (077, 1,087

"0711\\7/1—1 (wM—l;ZI"'"ZN)"'gi\r(wl;zl""’zN)

1)y 1D

In the right-hand side of (21), the parameter w,; depends only
on (01N (LT N (wap 215 . 2010771, 1,0N77)0) 1, whose
matrix elements can be easily calculated from its graphical
representation as

O\ (1 T3y (Wags 215 20) [0, 1,07 [0)
i1 N (22)
= wyr| | (twpr + yrzi) H (War = Ym2i) -
k=1 k=j+1

Since the matrix elements (22) are a polynomial of degree
N in w,,, one finds that the projected wavefunctions are a
polynomial of degree N in w,,.

Let us next show Property (3) for the case x5 =
M. We first remark that since the projected wavefunctions
Wyn(zps. .2y | Wy, wyy | x50, X)) are a polynomial
of degree N in w,,, one needs to evaluate N + 1 distinct
points in w,, for the Izergin-Korepin trick to be successful.
Equation (12) is the result of the evaluation at the point w,, =
Ym#n- The (N = 1) points wy, = yyzj j = 1,...,N -1
can be evaluated using Property (2); hence if one shows that
certain functions satisfy Property (2), it remains to consider
the evaluation at wy,; = y,,2y. The evaluation at wy, = yyzxn
essentially gives evaluations at N distinct points. We need one
more point to be evaluated. An easy point to be evaluated is
wy, = 0, whose result is (13). Let us show these two results of
the evaluations.

The recursion relation (12) can be shown as follows. First,
from the decomposition (21) and the explicit form of the



matrix elements (22), one finds that, after the substitution
Wy = YamZn- only the term j = N of the sum in (21) survives
and we have

Wyn (Z1 ez Twp e wy [ xg, ., xns, M)

Wpm=YMZN

N-1
= yzle_[ (zj +tzy ) x (x| (0871
j=1 (23)

N N

T Wy 20 2y) T (W20, 002y)
oN

Q) 117

Since we can calculate the right-hand side of (23) furthermore
as

(%10 x| <0N_1’ II 97174_1 (Wrr 1521525 2n)

N N
T Wiz 28) [ 11T

= (o x| <ON71| gAN/I:ll (War-13215 -«

’ZN—l)
N-1 ®N-1
T Wiz 2ne) 1) 1)

X g (Upe1 (U L a1 (28 Wat-1> a1 1> Vag-1)

s Lga (zn> w01, 1) |1>‘1N 103y

Wyn (255 zn lwp o wy | x,..0xy)
ON N

= (01" 2 (O] (xy -+~ x| T g (Wass 215 - -
oN N

= (Ol M(0|9M (wM;Zl,...

x (0| (%, "'xNI 9711:]4_1 (Wyp-13215 -

—

<.
Il
—

—.

-.
]
—_

This shows Properties (1) and (3) for the case x5 # M.

Property (2) can be shown as follows. Using the RLL rela-
tion repeatedly, one gets the intertwining relation between the
monodromy matrices:

z
Rab<Z_I>Ta(zl |w1;...,wM)Tb(Zz | ‘LUI,...,U)M)
2

=T, (z, | wy,...,wp) T, (2 | wys ..o wyy) (27)

Z
Ry ().
ab ( z, >
An element of the intertwining relation (27) gives the com-
mutation relation between the B-operators:
»Wy)

(z, +tz;) B(z; | wy,...,wy) B(z, | wy, ...

vzn) TN (w2,
,Zx) 1002 10) o

’ZN)"‘giV(w1;Zl’--

a; Olar (OI Ly (Zj’ Whp> K> YM) 10}, 10} p X War_1,n (212w wpy Xy

(wM_YMZj)WM—l,N(zl""’ZN wl,...
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=Wyrinet (2o znoy Twys o wyy X e,xn0)
M-1
j=1

{(1=apy)) 2y +agu},

(24)

we can express the evaluation of Wy, y(zy,. ..
Wy | X1, .., Xy) at Wy = Va2 s

zn | wp..,

s Wy | Xp,. . xy)|

Wyn (Z1- .2y lwys. .. I

{(1-ayy) an + oy} (25)

XWrinot (21 zney Twp o wyy [ xg, e xn0).

The evaluation at w,; = 0 (13) can be easily seen by the
expansion (21) and the fact that all the matrix elements (22)
contain the factor wy,.

Properties (1) and (3) for the case x,; # M can be
shown much easier. Using the ice rule ,(y| j(GILaj(z,
w;, ot yj)loc)u|ﬁ)j = 0, one can easily find the following
factorization:

,zn) 1IN 1Q)

S z0) 1DV 1) s

(26)
»XN)
S Wy | X, xy)-
=B(z, |wy,...,wy) B(z; |wy,...,wy)
(2, +tz,).
(28)
Since the projected wavefunctions Wy, n(2y,..., 2y | Wy, .. .,

wy | xp,...,x5) (10) are constructed from N-layers of B-
operators, the effect of reordering the spectral parameters of
the B-operators can be traced using the commutation relation
(28).

What finally remains is Property (4), which can also easily
calculated. O

Before presenting the solution in the next section, we
explain here why the Izergin-Korepin analysis uniquely
defines the projected wavefunctions. The idea is based on the
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following fact: if there are two polynomials f(w) and g(w) of
w of degree N, and the evaluations of the two polynomials at
N + 1 distinct points are the same (f(w) = g(w) for w = Zjs
j=1...,N+ 1suchthatz; # 2, j # k), then the two
polynomials are exactly the same, that is, f(w) = g(w) for all
w. The idea of Izergin-Korepin analysis is to relate the pro-
jected wavefunctions Wy, (215 .., 25 | Wy, .., Wy | Xp5. 00y
xy) to smaller ones by using the above fact. The point is
to regard Wy (21,2 | wy,..wpy | x5, xy) as
a polynomial of a single variable w,;. By Property (1) in
Proposition 1, Wy, n(2),.. o2y | wysewyy | xp5.00,xy)
is a polynomial of degree N in w,,. If x5y = M, one can
evaluate the projected wavefunction at the following N + 1
points: wy; = Yz .» N, wy; = 0. The evaluations at
wy = Y2y and wM 0 can be obtained by its graphical
representation and can be expressed by using the smaller
projected wavefunction Wy, |y 1(215...,25 1 | wis..o,
Wyq | %q5-..,x5_1), which is (12) and (13) of Property (3)
The evaluations at (N —1) points wy, = ypzj, j = 1,...,N-1
can be obtained from the evaluation at w,; = yMzN using
Property (2). This idea is essentially the same with the Izergin-
Korepin analysis for the domain wall boundary partition
functions.

For the case of projected wavefunctions, there is another
case we have to consider: the case when x; # M. For
this case, it is easier to connect the projected wavefunctions
from its graphical description, and we have (14). Note
that the smaller projected wavefunctions connected are
Wy an(Z oz | wpsewy g | oxg,..0, xy) which are
different from the one for the case when x5 = M.

Inboth cases xy = M and xy # M, we are able to connect
the projected wavefunctions of different sizes, and, contin-
uing this process successively, the relations can be regarded
as recursion relations between projected wavefunctions. For
the Izergin-Korepin analysis to be successful such that it gives
the uniqueness of the projected wavefunctions, we need the
initial condition for the recursion relations, and it is Property
(4) in Proposition 1. Hence, if one finds an explicit function
satisfying all the properties in Proposition 1, it is the one
representing the projected wavefunctions. This is given in the
next section.

4. Generalized Schur Functions

Definition 2. We define the following symmetric function
Fyn(zps..ozy | wy,..,wy | xp,..., x) which depends
on the symmetric variables z,, ..., zy, complex parameters
Wysews Wags Opsees Opp Poo---» Yy and integers xg,...,xy
satisfying 1 < x; < -+ <xpy < M:

> xN)

! Y -1y

X
H1<]<k<N (zk Zj)aeSN

Fyn (Z1secnzy lwy, .o wy | xg, .

52

29
(wk - ykzg(j)) 29

1

~.
Il

—

=

=
\f,:l:

b
<
|
—

—-

{(1 ~ V) Zo() + “kwk} -
k=1

.
I
—_

The symmetric function Fy; n(25..., 25 | wys. . wyy |
X1,...,xy) (29) is a generalization of the (factorial) Schur
functions. Equation (29) can be rewritten in the form using
Young diagrams as
Wy | X xy)

Fyn (zp-- 02y lwy,..

’wM) (30)

H1§j<kSN (Zj - Zk)

_ F/\+5(z|w1,...

Here,z = {z,...,2y} is a set of variables and A denotes a
Young diagram A = (A, A,, ..., Ay) with weakly decreasing
nonnegative integers A, > 1, >--- > Ay >0,and§ = (N -1,
N-2,...,0). Fﬂ(z | {a} | {y}) isan N x N determinant:

F (2| wy,...,wy) = dety (f,, (2 |wp,..owy)), (D
where

fﬂ(zlwl,...

= wu“!j{(l

’wM)

M (32)
ajy;) 2 + aqw} ‘Hz (w; - v52)
J=ut

The Young diagrams A = (A, A,,...,Ay) € ZN (M - N >

A=A, > > Ay > 0) in form (30) and the sequence of
integers x;, ..., xy satisfying 1 < x; < --- < xy < M in (29)
representing Fy; (21, ..., 2y | wys...,wyy | Xp,...,xy) are
connected by the translation rule A; = xy_;;; ~N+j -1,
j=1...,N.

Inthelimitw; =1,j=1,...,M,y;=0,j=1,..., M, we
can see from form (30) that Fy; \(21,...,25 | Wy, .., wyy |

X1,...,xy) reduces to the factorial Schur functions. If one
furthermore sets o = 0, j = 1,..., M, it further reduces to
the Schur functions.

We have the following correspondence between the
projected wavefunctions of the integrable model and the
generalized Schur function Fy; y(z,...,25 | wy,...

X1seeor XN)-

>wM |

Theorem 3. The projected wavefunctions of the generalized
Sfree-fermion model Wy, \(2y,...,25 | wi,..owy | xp,..0,
xy) are explicitly expressed as the product of factors
[Ti<jcken(z; + t2) and the symmetric function Fy; (21, ...,

Zn l Wy Wy | X, xN):
Wy (21 zn Twp o wy | X, xy)
= [1 (z+1z) (33)
1<j<ks<N
Fyn (Z e oman Tw o wy [ x50, xy).

Inthelimitswj =1,j=1...,M, Yj = 0,j=1,...,M,
(33) reduces to the main theorem of Bump-McNamara-
Nakasuji [22]. Taking the limit a; = 0, j = 1,..., M fur-
thermore, one gets the main theorem of Bump-Brubaker-
Friedberg [9].



Proof. Let us denote the right-hand side of (33) as G, n(z2),
cozy lwh s wy | xg, LX)

JZn l Wy wpg | Xy, xy)

Gun (215

= I (z+e=)

1<j<k<N

JZn LWy wpg | x50, xy)

-Fyn (25 ..

N . .
o, R Gem) o e
j=1

Xj
Hlsj<ksN (Zk - zj) o€Sy

M

N
1_! H (wk - szow)
=

xj—l

{(1 — Vi) Zo(j) + “kwk} -
k=1

—

-
Il
—

We prove this theorem by showing that Gy, (21, ..., 2y |
wy,..., Wy | xp,...,xy) satisfies all four properties in
Proposition 1.

To show Property (1), first note that the factor
H;ill_[,i\ixjﬂ(wk = ViZo(j) N G (21 2y f W wyy |
X1,...,xy) is a polynomial of degree N — 1 in wy,
if xy = M and degree N if x5y # M. For the case
Xy # M, one sees that the dependence on wy just only
comes from this factor. For the case x5, = M, there is a
factor wy, coming from the overall factor ]—[jilwxj. Thus,
Gyn(zp -z | wy, .. wyy | X, .., xyy) is a polynomial
of degree N in w,, for both cases x5y = M and xy # M;
hence Property (1) is proved.

Let us next show Property (2). First, note that Fy; \(z;,

<2y | Wy way | Xy, ..., xy) whichis a part of Gy (25,
coZy | wy e wy, |oxg, .o, xyy) that is symmetric with
respecttozy, ..., z since both the denominator [ [, jeken(Zk—

z j) and the numerator

N N M
[Tw, 2 COTTT T (we-nezor)
=1

o€Sy j=lk=x;+1
(35)
N xjfl
H {(1 = Ye) Zo)) +‘kak}>
=1 k=1

are antisymmetric with respect to simple permutations of the
spectral parameters z,, ..., zy. This means

ey lwp . wy | x5, xy)

Fyn (21
(36)

:FM,N(ZO'(I)""’ZU(N) | wl,...,wM | Xl,...,xN).

Advances in Mathematical Physics

Looking at the other factor [],.;4<n(2; + t2;) which con-
structs the function Gy (2, ..., 25 | Wy, wyy | xp5. .0,
Xp), we have

Z(r(')+tza(k) Z-+tZk
[T (zq ) I1 (z+t2)

1<j<k<N 1<j<k<N
a(j)>a(k) )
= H (Zo<k> + tzou)) H (Zau) + tZa(k)) .
1<j<k<N 1<j<k<N
o(j)>o(k)

From (36), (37), and the fact that Gy, (2,..., 2y | Wy, ..,
wy | Xp5...,xy) is defined as a product of [ ], ;qn(z;+

tz;) and Fy; (21, .. 2 | wys .o way | X, . .05 X)), we have
[T (20 +tzew)
1<j<k<N
o(j)>o(k)
Gy (2 Twy s wy | xg,.,xy)
(38)
= 1 (2w +tz)
1<j<ksN
o(j)>o(k)
.GM,N(ZU(I)""’ (N) | Wy ..., Wyr | xl,...,xN).
We have shown that Gy n(2),....25 | wy,..owy | xy,

.., X)) satisfies the same relation the projected wavefunc-
tions Wy, (215525 | wys..swyy | X, ..., X)) must sat-
isty. Hence Property (2) is proved.

Next we show Property (3). We first prove that the
function Gy (215 .. .5 2 | Wi, .., wyp | X5, Xyy) satisfies
(12) and (13) for the case x5y = M. To prove (12), we first note
that the factor

(“’k - szao')) > (39)

1k 1

<.
Il

1=
E et

in each summand essentially becomes

z

I}
==

-1
(wk - Ykzou)) : (40)

k 1

.
Il
—

Concentrating on the factor ]_[;\]:_ll(wM = YMZo(j) from (40),
one finds this factor vanishes unless o satisfies 0(N) = N if
one substitutes wy,; = Yy Zn-

Therefore, only the summands satistying o(N) = N in
(29) survive after the substitution w,, = y,.zy. Keeping
this in mind, one rewrites Gy, n(25..., 25 | Wys... Wy |
X1,...,xy) evaluated at w,; = y,,2z5 by using the symmetric
group Sy_, where every o’ € Sy_, satisfies {0’ (1),...,0" (N -
1} ={1,...,N — 1} as follows:

2N | W wy | X, X))

Gy (205 I

N-1
= YMZN waj
j=1
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. [Ticjeren (Zj + tzk) l_[j-i_ll (zj + tzN)

H1§j<ksN—1 (zk - Zj) Hi\sl (zN - Zj)

, N-1 M-1 N-1
x 2 DT T TT (we-mzo) [Trm (2w
o'eSn., j=lk=x;+1 j=1
N-1%;— 1
— 240 )XH {l—ockyk )+<kak}
j=1 k=1
M-1

{(1 = aeyi) 2y + oy}
k=1

(41)

One easily notes that the factors 1‘[,‘}1;1{(1 — A Y)ZN W)
in the sum are independent of the permutation Sy, ;. One
also finds that the product of factors 1/ Hﬁ.\i_ll(zN - zj) and

H;i_llyM(zN — Zy(j)) can be simplified as

N-
z Za/
H]l(zN Z)U (N (J))
(42)

ZH?r_l (ZN Z)HYM(ZN Z) YM

Thus, (41) can be rewritten furthermore as

2N | Wy | Xy, X))

Gy (25 I

M-1

I\lj(z +tzy) | {(a

j=1

“ﬂ’j) Nt “jwj}

o H1<]<k<N 1 (Z + tzk)
% [ Tw.

Y o

j=1 K H1gj<ksN—1 (Zk Zj) 0’ €SNy (43)
N-1 M-1
H (wk - Ykza’(j))
j=1 k:xj+1
N-1%;-1
X {(1 = ap) zo0j + .
j=1 k=1

Nl H15j<ksN—1 (Zj + tzk) o
[Te, >
j=1 H15j<ng—1 (zk - Zj) oSy,

N-1 M-1

[TT1I (wk - Ykza’u))
j=lk=x;+1
N-1%;-1
X {(1 - Ye) Zo1(j) +¢kak}

j=1 k=1

= Gpoinet (2o znoy [ Wy wy g [,

xN—l) >

(44)

one finds that (43) is nothing but the following recursion
relation for the function Gy n(zy,...,2y | wys..., Wy

X1seeor XN
Gun (21 2y Twy, . wy | xl,...,xN)le:yMzN
N-1 M-1
Nle_[ (zj + tzN) {(1 - ocjyj) Zy + ocjwj} (45)
j=1 j=1
X Gpoinet (21 2ney T Wy wyy | X Xn0) s

which is exactly the same recursion relation the projected
wavefunctions Wy n(zy, ...z | wys..wyy | xp,..05 %)
must satisfy; hence (12) is shown. Equation (13) can be
shown immediately since Gy, n(2p5...,25 | wy,... wyr |
X,...,xy) evaluated at wy; = 0 becomes zero due to the
overall factor H?Llwxj in Fyn(2)5 .. ,Wyy |
X1,...,xy) and the fact that we are dealing the case x; = M.
Now let us examine the case x5 # M. This can
be shown in a similar but much simpler way. We rewrite
Gun(zps o ozy [ wy . wy | x50, %) as

,zn | owy, ...

JZn Wy wpg | x50, xy)

Gy (215

N 1_[1<]<k<N(Z +tzk) Z ( 1)

/
j=1 H1<]<k<N( 2k = Zj) oeSy

N M-1 N (46)
H H (wk - Ykzau)) H (“’M - YMZa(j>)
j=Tk=x;+1 =1
N xj—l
XH {(1 - oY) Zo(j) +ckak}.
j=1 k=1
Noting that

N N
[T (wn = vmzory) = [T (wrr = vuez;) (47)

=1 =1

-

we can take this factor out of the sum in (46) and we get

co Wy | X, xyN)

_ N B N Hlsj<k§N (ZJ' + tzk)
H (wM VMZJ) wa} Hlsj<ng (zk B Zj)

Wy — Ykzow)
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{(1 - oY) Zo(j) T ‘kak}

j=1 k=1
N
= [T(wn =)
j=1
“Gpan (21 Twy e wy g | X, xy) s

(48)

which is also exactly the recursion relation the projected

wavefunctions Gy y(zy5..., 2y | Wy, wy | xp5..0,xy)
must satisfy for the case x,; # M.
Finally it is trivial to check from its definition that
Gy (2 lwy, .. wy | M)
M-1 (49)
= wMH {(1 = aeye) 2 + ogwye} s
k=1
hence Property (4) is shown.
Since we have proved that the function G (25, ..., 2y |

Wy,..., Wy | Xq,...,xy) satisfies all Properties (1), (2), (3),
and (4) in Proposition 1, we conclude that it is the explicit
form of the projected wavefunctions Wy, (2, ..., 2y | wy,
cowy | X xn) = Gyn(zy ey [ ws s wyy | oxg,
CHXN)- O

5. Conclusion

In this paper, we studied the generalized free-fermion model
in an external field. We applied the Izergin-Korepin analysis
on the projected wavefunctions which is a generalization of
the Izergin-Korepin analysis on the domain wall boundary
partition functions, which was recently done for the case
of the Uq(slz) six-vertex model in [30]. We extracted the
properties about the degree, symmetry, recursion relations,
and initial conditions the projected wavefunctions satisfy.
Next we proved that the product of factors and certain
symmetric functions satisfies all the required properties;
hence it represents the projected wavefunctions. The result
can be regarded as an extension of the Tokuyama formula for
the (factorial) Schur functions by Bump-Brubaker-Friedberg
[9] and Bump-McNamara-Nakasuji [22].

The result obtained in this paper can also be proved
by using the arguments initiated in [9], which views the
partition functions as functions of the free parameter in
the auxiliary spaces. The Izergin-Korepin analysis used in
this paper views the partition functions as functions of
inhomogeneous parameters in the quantum spaces. The
comparison of the two different ways of arguments seems to
be interesting. We use the result obtained in this paper to
study algebraic combinatorial properties of the generalized
Schur functions in our forthcoming paper [34]. Extending
the Izergin-Korepin analysis to other boundary conditions of
the generalized free-fermion model is one of the interesting
topics regarding this paper. There may be some cases in
which the Izergin-Korepin analysis is suitable and some other
cases in which the arguments in [9] are useful. We think

Advances in Mathematical Physics

that developing various techniques are useful for the study
of partition functions of integrable lattice models.

Conflicts of Interest

The author declares that there are no conflicts of interest.

Acknowledgments

This work was partially supported by Grant-in-Aid for Scien-
tific Research (C) no. 16K05468.

References

[1] H. Bethe, “Zur Theorie der Metalle,” Zeitschrift fiir Physik, vol.
71, no. 3, pp. 205-226, 1931.

[2] L. D. Faddeev, E. K. Sklyanin, and E. K. Takhtajan, “Quantum
inverse problem method. 1 Theoretical and Mathematical
Physics, vol. 40, p. 194, 1979.

[3] R. J. Baxter, Exactly Solved Models in Statistical Mechanics,
Academic Press, London, UK, 1982.

[4] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum
Inverse Scattering Method and Correlation Functions, Cam-
bridge Monographs on Mathematical Physics, Cambridge Uni-
versity Press, Cambridge, UK, 1993.

[5] V. Drinfeld, “Hopf algeras and the quantum Yang-Baxter equa-
tion,” Soviet Mathematics: Doklady, vol. 32, p. 254, 1985.

[6] M. Jimbo, “Ag-difference analogue of U(g) and the Yang-Baxter
equation,” Letters in Mathematical Physics, vol. 10, no. 1, pp. 63—
69, 1985.

[7] V. E. Korepin, “Calculation of norms of Bethe wave functions,”
Communications in Mathematical Physics, vol. 86, no. 3, pp. 391-
418, 1982.

[8] A.lIzergin, “Partition function of the six-vertex model in a finite
volume,” Soviet Mathematics: Doklady, vol. 32, p. 878, 1987.

[9] B. Brubaker, D. Bump, and S. Friedberg, “Schur polynomials
and the Yang-Baxter equation,” Communications in Mathemat-
ical Physics, vol. 308, no. 2, pp. 281-301, 2011.

(10] T. Tokuyama, “A generating function of strict Gelfand patterns
and some formulas on characters of general linear groups,
Journal of the Mathematical Society of Japan, vol. 40, no. 4, pp.
671-685, 1988.

S. Okada, “Alternating Sign Matrices and Some Deformations
of Weyl's Denominator Formulas,” Journal of Algebraic Combi-
natorics. An International Journal, vol. 2, no. 2, pp. 155-176,1993.

[12] A. M. Hamel and R. C. King, “Symplectic shifted tableaux
and deformations of Weyl’s denominator formula for sp(2n);,
Journal of Algebraic Combinatorics. An International Journal,
vol. 16, no. 3, pp. 269-300 (2003), 2002.

[13] A.M. Hamel and R. C. King, “U-turn alternating sign matrices,
symplectic shifted tableaux and their weighted enumeration,”
Journal of Algebraic Combinatorics. An International Journal,
vol. 21, no. 4, pp- 395-421, 2005.

[14] J. H. Perk and C. L. Schultz, “New families of commuting
transfer matrices in state vertex models,” Physics Letters. A, vol.
84, no. 8, pp. 407-410, 1981.

[15] B. U. Felderhof, “Direct diagonalization of the transfer matrix
of the zero-field free-fermion model,” Physica, vol. 65, no. 3, pp.
421-451, 1973.

(11



Advances in Mathematical Physics

(16]

(17]

(20]

(21]

(22]

(23]

[24]

(31]

S.-Y. Zhao and Y.-Z. Zhang, “Supersymmetric vertex models
with domain wall boundary conditions,” Journal of Mathemati-
cal Physics, vol. 48, no. 2, Article ID 023504, 12 pages, 2007.

O. Foda, A. Caradoc D, M. Wheeler, and M. Zuparic L,
“On the trigonometric Felderhof model with domain wall
boundary conditions,” Journal of Statistical Mechanics, vol. 0703,
p. P03010, 2007.

S.-Y. Zhao, W.-L. Yang, and Y.-Z. Zhang, “Determinant rep-
resentation of correlation functions for the Uq(gl(ll)) free
Fermion model,” Journal of Mathematical Physics, vol. 47, no.
1, Article ID 013302, 15 pages, 2006.

D. Ivanov, “Symplectic ice;” in Multiple Dirichlet Series, L-
Functions and Automorphic Forms, vol. 300 of Progr. Math., pp.
205-222, Birkhduser Springer, New York, NY, USA, 2012.

B. Brubaker, D. Bump, G. Chinta, and P. E. Gunnells, “Meta-
plectic whittaker functions and crystals of type B,” in Multiple
Dirichlet Series, L-Functions and Automorphic Forms, vol. 300
of Progr. Math., pp. 93-118, Birkhduser Springer, New York, NY,
USA, 2012.

S. Tabony J, Deformations of characters, metaplectic Whittaker
functions and the Yang-Baxter equation [Ph.D. thesis], Mas-
sachusetts Institute of Technology, Cambridge, Mass, USA, 2011.

D. Bump, P. McNamara, and M. Nakasuji, “Factorial schur
functions and the Yang-. Baxter equation,” Commentarii Math-
ematici Universitatis Sancti Pauli, vol. 63, p. 23, 2014.

A. M. Hamel and R. C. King, “Tokuyama’s identity for factorial
Schur P and Q functions,” Electronic Journal of Combinatorics,
vol. 22, no. 2, Paper 2.42, 30 pages, 2015.

B. Brubaker and A. Schultz, “The six-vertex model and defor-
mations of the Weyl character formula,” Journal of Algebraic
Combinatorics. An International Journal, vol. 42, no. 4, pp. 917-
958, 2015.

B. Brubaker, V. Buciumas, and D. Bump, “A Yang-Baxter
equation for metaplectic ice,” https://arxiv.org/abs/1604.02206.

K. Motegi, “Dual wavefunction of the Felderhof model,” Letters
in Mathematical Physics, pp. 1-29, 2016.

K. Motegi, “Dual wavefunction of the symplectic ice,” https://
arxiv.org/abs/1703.01395.

O. Tsuchiya, “Determinant formula for the six-vertex model
with reflecting end,” Journal of Mathematical Physics, vol. 39, no.
11, pp. 59465951, 1998.

M. Wheeler, “An Izergin-Korepin procedure for calculating
scalar products in the six-vertex model,” Nuclear Physics. B.
Theoretical, Phenomenological, and Experimental High Energy
Physics. Quantum Field Theory and Statistical Systems, vol. 852,
no. 2, pp. 468-507, 2011.

K. Motegi, “Symmetric functions and wavefunctions of the six-
vertex model by Izergin-Korepin analysis,” https://arxiv.org/
abs/1703.07924.

K. Motegi and K. Sakai, “Vertex models, TASEP and
Grothendieck polynomials,” Journal of Physics. A. Mathematical
and Theoretical, vol. 46, no. 35, Article ID 355201, 26 pages,
2013.

K. Motegi, “Combinatorial properties of symmetric polynomi-
als from integrable vertex models in finite lattice,” https://arxiv
.org/abs/1608.02269.

M. Wheeler and P. Zinn-Justin, “Littlewood-Richardson coef-
ficients for Grothendieck polynomials from integrability,” in
Wheeler M and Zinn-Justin P Littlewood-Richardson coefficients
for Grothendieck polynomials from integrability, pp. 1607-02396,
arXiv, 1607.02396.

(34]
(35]

(36]

(37]

(38]

(39]

(40]

[41]

1

K. Motegi, K. Sakai, and S. Watanabe, in preperation.

M. Wheeler and P. Zinn-Justin, “Refined Cauchy/Littlewood
identities and six-vertex model partition functions: IIL
Deformed bosons,” Advances in Mathematics, vol. 299, pp.
543-600, 2016.

D. Betea and M. Wheeler, “Refined Cauchy and Littlewood
identities, plane partitions and symmetry classes of alternating
sign matrices,” Journal of Combinatorial Theory. Series A, vol.
137, pp. 126-165, 2016.

D. Betea, M. Wheeler, and P. Zinn-Justin, “Refined Cauchy/
Littlewood identities and six-vertex model partition functions:
II. Proofs and new conjectures,” Journal of Algebraic Combina-
torics. An International Journal, vol. 42, no. 2, pp. 555-603, 2015.
C. Korff and C. Stroppel, “The sl(n)k-WZNW fusion ring a
combinatorial construction and a realisation as quotient of
quantum cohomology,” Advances in Mathematics, vol. 205, p.
200, 2010.

C. Korff, “Quantum cohomology via vicious and osculating
walkers,” Letters in Mathematical Physics, vol. 104, no. 7, pp. 771-
810, 2014.

A. Borodin, “On a family of symmetric rational functions,”
Advances in Mathematics, vol. 306, pp. 973-1018, 2017.

M. Wheeler and P. Zinn-Justin, “Hall polynomials, inverse
Kostka polynomials and puzzles,” https://arxiv.org/abs/1603
.01815.


https://arxiv.org/abs/1604.02206
https://arxiv.org/abs/1703.01395
https://arxiv.org/abs/1703.01395
https://arxiv.org/abs/1703.07924
https://arxiv.org/abs/1703.07924
https://arxiv.org/abs/1608.02269
https://arxiv.org/abs/1608.02269
https://arxiv.org/abs/1603.01815
https://arxiv.org/abs/1603.01815

Advances in
Op ranons Research

Advances in

DeC|5|on SC|ences

Journal of

Ap ||ed Mathemancs

Algebra

Journal of
bability and Statistics

The Scientific
Wo‘rld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Journal of

Mathematics

Journal of

clﬂhMbhemahcs

in Engmeermg

Mathematical Problems

Journal of

tion Spaces

Abstract and
Applied Analysis

International Journal of

Stochastic Analysis

International Journal of
D|fferent|a| Equations

Discrete Dynamics in
ure and Society

Optimization




