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This paper discusses the notion of context transfer in reinforcement learning tasks. Context transfer, as defined in this paper, implies
knowledge transfer between source and target tasks that share the same environment dynamics and reward function but have
different states or action spaces. In other words, the agents learn the same task while using different sensors and actuators. This
requires the existence of an underlying common Markov decision process (MDP) to which all the agents’ MDPs can be mapped.
This is formulated in terms of the notion ofMDPhomomorphism.The learning framework is𝑄-learning. To transfer the knowledge
between these tasks, the feature space is used as a translator and is expressed as a partial mapping between the state-action spaces of
different tasks.The𝑄-values learned during the learning process of the source tasks aremapped to the sets of𝑄-values for the target
task.These transferred𝑄-values are merged together and used to initialize the learning process of the target task. An interval-based
approach is used to represent andmerge the knowledge of the source tasks. Empirical results show that the transferred initialization
can be beneficial to the learning process of the target task.

1. Introduction

The notion of transfer learning is a challenging area in the
field of reinforcement learning (RL) [1–3]. The goal is to
accelerate the learning process of a target task by an agent
by using the knowledge of a different agent that has already
learned a related task. Lazaric [1] classifies the transfer prob-
lems in RL into three categories: goal, dynamics, and domain
transfer problems. A goal transfer problem is a problem in
which agents share the same context (i.e., state and action
spaces) and the same transition model but have different
reward functions. A dynamics transfer problem is a problem
in which agents share the same context and the same reward
function but have different transition models. In the case
of domain transfer, the agents may have different dynamics,
goals, and state-action spaces. This is the most general and
complex problem of transfer.

Taylor and Stone [4] discuss another category of problems
in which the agents have different representations. They re-
ferred to it as representation transfer. In this paper, the agents

are assumed to have different contexts (state and action
spaces). In other words, the agents act in the same environ-
ment with the same reward function even as their states and
actions are different.

For example, consider two learning robots acting in the
same grid world problem. The first robot uses the global
positioning system (GPS) sensor and the second robot uses
the proximity sensor to represent their locations. So, every
location of the grid is represented by the robots, differently.
The robots may use different actuators, as well. In this paper,
the problem of knowledge transfer between such agents is
called context transfer.This is formulated and discussed using
the notion of Markov decision process (MDP) homomor-
phism [5, 6].

We use the feature spaces of the tasks as a translator
between them. We assume that there is a partial one-to-
manymapping between the features of the tasks. An interval-
based approach is used to represent, transfer, and merge the
knowledge of the source tasks.
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In Section 2, the context transfer problem is formally
formulated and discussed. The importance and applications
of the problem are described in Section 3. The mappings
between feature spaces are discussed in Section 4.The knowl-
edge fusion and transfer method is explained in Section 5.
Two case studies and results are discussed in Section 7.
Section 8 contains a brief conclusion.

2. Context Transfer Problem

Context transfer, as defined in this section, is the problem of
knowledge transfer between agents that are in the same envi-
ronment doing the same task even as their state-action spaces
are different. This is because the agents may use different sets
of sensors or actuators. There may also be some agents using
the same set of sensors although their encoding and repre-
sentation of sensory information are different. In practical
domains, the encoding of the sensory information is usually
redundant, as one does not have access to a minimal repre-
sentation of the states. In this case, some agents may have
different state spaces and models of the same environment.
We will discuss this problem in terms of the notion of MDPs.

An MDP is a model of an agent’s interaction with the
environment [7]. We limit the discussion to discrete state-
action RL agents and formulate the problem in terms of the
notion of finite-state MDP homomorphism. In the case of
continuous state-action agents, the problem is more complex
and cannot be modeled in terms of MDP homomorphism.
This will be a challenging problem and invokes a completely
different approach, which is out of scope of this paper. To
formulate the problem, firstly, the notion of MDP and its
elements are reviewed and discussed.

Definition 1. AnMDP is a tuple ⟨𝑆, 𝐴, 𝑃, 𝑟⟩, where 𝑆 is the set
of all states, 𝐴 is the set of all actions, 𝑃 : 𝑆 × 𝐴 × 𝑆 → [0, 1]

is the transition probability function, and 𝑟 : 𝑆 × 𝐴 → 𝑅 is
the reward function.

At each time step, 𝑡, the agent senses the environment’s
state, 𝑠

𝑡
∈ 𝑆, and performs an action, 𝑎

𝑡
∈ 𝐴. As a consequence

of its action, the agent receives a numerical reward, 𝑟
𝑡+1

∈ 𝑅,
and finds itself in a new state 𝑠

𝑡+1
. The objective of the agent

is to learn a policy for acting, 𝜋 : 𝑆
𝑡

→ 𝐴
𝑡
, in order to

maximize its cumulative reward.
To discuss different kinds of RL knowledge transfer

problems, Lazaric [1] defines three elements of an MDP.

Definition 2. A task 𝑇
𝑖
is an MDP defined by the tuple ⟨𝑆

𝑖
,

𝐴
𝑖
, 𝑃
𝑖
, 𝑟
𝑖
⟩, in which the state and action spaces define the

context, the transitionmodel𝑃
𝑖
defines the dynamics, and the

reward function 𝑟
𝑖
defines the goal.

The problem of knowledge transfer is defined as follows.

Definition 3. Let T = {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑙
} be a family of tasks,

and some knowledge is gained in the learning of tasks
𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑙−1
. The problem of knowledge transfer is to use

this knowledge to improve the learning of task 𝑇
𝑙
.

These elements are used to classify the knowledge transfer
problems [1].

Definition 4. Goal transfer is a problem in which all the tasks
ofT share the same context (i.e., state and action space) and
the same transition model. Dynamics transfer is a problem
in which tasks share the same context and the same reward
function. In the case of domain transfer, the agents may have
different dynamics, goals, and contexts.

In this paper, we define another category of transfer
problems called context transfer; the tasks ofT share the same
dynamics and reward but have different contexts. In fact,
this requires the existence of an underlying common MDP
to which all the agents’ MDPs can be mapped. This can be
explained using the notion of MDP homomorphism [5, 6].

Definition 5. An MDP homomorphism ℎ from an MDP 𝑇 =

⟨𝑆, 𝐴, 𝑃, 𝑟⟩ to an MDP 𝑇


= ⟨𝑆

, 𝐴

, 𝑃

, 𝑟

⟩ is a surjection ℎ :

Ψ → Ψ
, Ψ = 𝑆 × 𝐴, and Ψ


= 𝑆


× 𝐴
, defined by the tuple

of surjections ⟨𝑓, {𝑔
𝑠

| 𝑠 ∈ 𝑆}⟩, with ℎ(𝑠, 𝑎) = (𝑓(𝑠), 𝑔
𝑠
(𝑎)),

where 𝑓 : 𝑆 → 𝑆
 and 𝑔

𝑠
: 𝐴 → 𝐴

, such that

𝑃

(𝑓 (𝑠) , 𝑔

𝑠
(𝑎) , 𝑓 (𝑠


))

= ∑

𝑠

∈[𝑠

]
𝐵
ℎ|𝑆

𝑃 (𝑠, 𝑎, 𝑠

) , ∀𝑠, 𝑠


∈ 𝑆, 𝑎 ∈ 𝐴 (1)

𝑟

(𝑓 (𝑠) , 𝑔

𝑠
(𝑎)) = 𝑟 (𝑠, 𝑎) . (2)

As ℎ is a surjection, it induces a partition on Ψ denoted by
𝐵
ℎ
, and [(𝑠

1
, 𝑎
1
)]
𝐵
ℎ

denotes the block of 𝐵
ℎ
to which (𝑠

1
, 𝑎
1
)

belongs, such that

∀ (𝑠
1
, 𝑎
1
) , (𝑠
2
, 𝑎
2
) ∈ 𝑆 × 𝐴;

[(𝑠
1
, 𝑎
1
)]
𝐵
ℎ

= [(𝑠
2
, 𝑎
2
)]
𝐵
ℎ

⇐⇒ ℎ (𝑠
1
, 𝑎
1
) = ℎ (𝑠

2
, 𝑎
2
) .

(3)

𝐵
ℎ|𝑆

is the projection of 𝐵
ℎ
on 𝑆, which is a partition on 𝑆,

and [𝑠

]
𝐵
ℎ|𝑆

is the block containing 𝑠
; for every 𝑠

1
, 𝑠
2

∈ 𝑆,
[𝑠
1
]
𝐵
ℎ|𝑆

= [𝑠
2
]
𝐵
ℎ|𝑆

if and only if every block of 𝐵
ℎ
containing

a pair in which 𝑠
1
(𝑠
2
) is a component also contains a pair in

which 𝑠
2
(𝑠
1
) is a component.

We call 𝑇
 the homomorphic image of 𝑇 under ℎ. From

condition (1) we can see that state-action pairs that have the
same image under ℎ have the same block transition behavior
in 𝑇, that is, the same probability of transiting to any given
block of states with the same image under 𝑓. Condition (2)
says that state-action pairs that have the same image under ℎ

have the same expected reward. These conditions mean that
𝑇
 preserves the dynamics and rewards of𝑇 eliminating some

of the details of the original task 𝑇.
Now, the notion of context transfer is defined in terms of

MDP homomorphism.

Definition 6. The tasks of T are assumed to have the same
environment’s dynamics and reward function, if there is a task
𝑇


= ⟨𝑆

, 𝐴

, 𝑃

, 𝑟

⟩ and 𝑙 homomorphisms ℎ

1
, ℎ
2
, . . . , ℎ

𝑙
so

that one of these conditions aremet: (i)𝑇
 is an homomorphic

image of 𝑇
𝑘
under ℎ

𝑘
and 𝑘 ∈ {1, 2, . . . , 𝑙} or (ii) 𝑇

𝑘
is an

homomorphic image of 𝑇
 under ℎ

𝑘
and 𝑘 ∈ {1, 2, . . . , 𝑙}.
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These tasks are called context transferable, and the problem
of knowledge transfer onT is called context transfer.

In other words, the tasks are context transferable, if there
is a task 𝑇

 where all the tasks are homomorphic images of
task𝑇

, or task𝑇
 is a homomorphic image of all the tasks. To

explain the relation of the tasks ofT, consider the following
Definition andTheorem [6].

Definition 7. State-action pairs (𝑠
1
, 𝑎
1
) and (𝑠

2
, 𝑎
2
) ∈ Ψ

are equivalent if homomorphism ℎ of 𝑇 exists such that
ℎ(𝑠
1
, 𝑎
1
) = ℎ(𝑠

2
, 𝑎
2
). States 𝑠

1
and 𝑠
2

∈ 𝑆 are equivalent if (i) for
every action 𝑎

1
∈ 𝐴, there is an action 𝑎

2
∈ 𝐴 such that (𝑠

1
, 𝑎
1
)

and (𝑠
2
, 𝑎
2
) are equivalent, and (ii) for every action 𝑎

2
∈ 𝐴,

there is an action 𝑎
1

∈ 𝐴, such that (𝑠
1
, 𝑎
1
) and (𝑠

2
, 𝑎
2
) are

equivalent.

The notion of equivalence leads us to the following the-
orem on optimal value equivalence.

Theorem 8. Let M = ⟨𝑆

, 𝐴

, 𝑃

, 𝑟

⟩ be the homomorphic

image of theMDPM = ⟨𝑆, 𝐴, 𝑃, 𝑟⟩ under ℎ. For any (𝑠, 𝑎) ∈ Ψ,
𝑄
⋆
(𝑠, 𝑎) = 𝑄

⋆
(ℎ(𝑠, 𝑎)), where 𝑄

⋆ is the optimal action value
function. In fact, the homomorphism ℎ

𝑖
induces the partition

𝐵
ℎ
𝑖

on Ψ
𝑖
as explained before. This partition actually encodes

the redundancy in the representations of states and actions
of task 𝑇

𝑖
. Theorem 8 states that if (𝑠

1
, 𝑎
1
), (𝑠
2
, 𝑎
2
) ∈ Ψ

𝑖
,

and ℎ
𝑖
(𝑠
1
, 𝑎
1
) = ℎ

𝑖
(𝑠
2
, 𝑎
2
), then 𝑄

⋆
(𝑠
1
, 𝑎
1
) = 𝑄

⋆
(𝑠
2
, 𝑎
2
) =

𝑄
⋆
(ℎ
𝑖
(𝑠
1
, 𝑎
1
)). It means that the elements of a block of the

partition 𝐵
ℎ
𝑖

have the same optimal 𝑄-value, which is equal to
an optimal 𝑄-value of the task 𝑇

. It concludes that for every
(𝑠, 𝑎) ∈ Ψ

𝑙
there exists a (𝑠

1
, 𝑎
1
) ∈ Ψ

𝑖
where 𝑄

⋆
(𝑠, 𝑎) =

𝑄
⋆
(𝑠
1
, 𝑎
1
) and vice versa. Let 𝑇

𝑖
be a source task. Consider the

following definition.

Definition 9. A partition 𝐾
𝑖
on Ψ
𝑖

= 𝑆
𝑖

× 𝐴
𝑖
is said to

be 𝑄-value respecting if for (𝑠
1
, 𝑎
1
), (𝑠
2
, 𝑎
2
) ∈ Ψ

𝑖
and

(𝑠
1
, 𝑎
1
) ≡
𝐾
𝑖

(𝑠
2
, 𝑎
2
) implies 𝑄

⋆
(𝑠
1
, 𝑎
1
) = 𝑄
⋆
(𝑠
2
, 𝑎
2
).

In other words, the blocks of a 𝑄-value respecting
partition on Ψ

𝑖
= 𝑆
𝑖

× 𝐴
𝑖
have the same optimal 𝑄-values.

The set of all blocks of this partition is denoted by Ψ
𝑖
/𝐾
𝑖
. Let

𝐶 ∈ Ψ
𝑖
/𝐾
𝑖
be a block of partition 𝐾

𝑖
. The corresponding 𝑄-

value of this block is denoted by 𝑄
⋆

𝐶
, where

𝑄
⋆

𝐶
= 𝑄
⋆

(𝑠
1
, 𝑎
1
) ; (𝑠

1
, 𝑎
1
) ∈ 𝐶. (4)

The set of all optimal 𝑄-values of task 𝑇
𝑖
is denoted by

Q
⋆

𝑖
= {𝑄
⋆

𝐶
| 𝐶 ∈

Ψ
𝑖

𝐾
𝑖

} . (5)

This is an immediate corollary of Theorem 8.

Corollary 10. If the tasks of T are context transferable, then
𝑓𝑜𝑟𝑎𝑙𝑙 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑙}

Q
⋆

𝑖
= Q
⋆

𝑗
. (6)

The proof is straightforward. As all the MDPs of T
have the same homomorphic image 𝑇

 or are homomorphic

Table 1:Theoutput of the sensormodule for different kinds of crops.

Crops B&W camera Color Weight
Tomato Small globe Red Light
Cucumber Rod Green Light
Watermelon Big globe Green or yellow Heavy

images of 𝑇
, then all of them have the same set of optimal

𝑄-values as that of 𝑇
. Therefore, the sets of optimal 𝑄-values

are the same for all tasks.
This corollary states that the optimal 𝑄-values of the

source tasks can be used by the target task to accelerate the
learning. In the context transfer problem, we assume that
the homomorphisms ℎ

1
, ℎ
2
, . . . , ℎ

𝑙
are not given, and we do

not know the exact equivalent relation between state-action
pairs of different tasks. Instead, we use a partial one-to-many
mapping between the features of the target and source tasks
to transfer the knowledge. This knowledge is expressed and
combined using some intervals on 𝑄-values. The following
example clarifies the problem of context transfer.

Example 11. Consider a 10 × 10 grid as a farm with three dif-
ferent crops; tomato, cucumber, and watermelon (Figure 1).
There are three harvesting robots that are collecting crops and
gathering them into three different goal locations; tomatoes
in G1, cucumbers in G2, and watermelons in G3. There are
five types of sensor modules; GPS, beam’s signal distance
indicator, compass, black&white camera, and color&weight
sensor.The robots are using different sensors to estimate their
states as shown in Figure 1. The output of the GPS is a pair of
numbers (𝑥, 𝑦), 1 ≤ 𝑥, 𝑦 ≤ 10, indicating the vertical and
horizontal positions, and the output of the beams’ distance
indicator is a pair of numbers (𝑏

1
, 𝑏
2
), 2 ≤ 𝑏

1
, 𝑏
2

≤ 20,
where 𝑏

1
and 𝑏
2
are the 1-norm distance to the beams. The

compass sensor gives the direction of the robot and the other
sensor modules are used to distinguish the kind of crops as in
Table 1. Robots 1 and 3 use the color&weight sensor and robot
2 uses black&white camera to distinguish the kind of crops as
explained in Figure 1.

Consider an abstract robot whose state is a pair (𝑛, 𝑘) ∈ 𝑆


where 1 ≤ 𝑛 ≤ 100 is the number of grid when numbering
the grids from left to right and bottom to top, and 𝑘 ∈

{to, cu,wa, 0}. The terms to, cu, wa, and 0 represent tomato,
cucumber, watermelon, and nothing, respectively. The set
of action is the same as the set of actions of robot 1; that
is, 𝐴


= 𝐴
1
. One can easily check that there are three

homomorphisms ℎ
1
, ℎ
2
, and ℎ

3
from the MDPs of robots 1,

2, and 3 to the MDP of the abstract robot, relating equivalent
pairs of state-action in the MDPs. For example, we have

ℎ
1

((3, 4, 𝑅𝐿) , 𝑁) = ((33, to) , 𝑁) ,

ℎ
1

((2, 1, 𝑌𝐻) , 𝑊) = ((2,wa) , 𝑊) ,

ℎ
2

((5, 1, 𝐸, 𝑇) , 𝐿) = ((5, cu) , 0) ,

ℎ
2

((10, 2, 𝑁, 0) , 𝑃) = ((20, 0) , 𝑃) ,

ℎ
3

((6, 7, 𝑆, 𝐺𝐿) , 𝐿𝐹) = ((85, cu) , 𝐸) ,

ℎ
3

((18, 8, 𝑊, 0) , 𝐹) = ((93, 0) , 𝑊) .

(7)
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G3

G1 G2

y

xx

Robot 1
Robot 2
Robot 3

North

Tomato

Watermelon
Cucumber

Beam

Puddle

Figure 1: A 10 × 10 grid as a farm with three crops and three
harvesting robots. Robot 1: Sensor modules: GPS, color&weight
sensor, 𝑆

1
= {(𝑥, 𝑦, 𝑘) | 1 ≤ 𝑥, 𝑦 ≤ 10, 𝑘 ∈ {𝑅𝐿, 𝐺𝐿, 𝐺𝐻, 𝑌𝐻, 0}},

𝑥: column number, 𝑦: row number, 𝑅: Red, 𝐺: Green, 𝑌: Yellow,
𝐿: Light, 𝐻: Heavy, 0: Nothing, 𝐴

1
= {𝑁, 𝑆, 𝐸, 𝑊, 0, 𝑃, 𝐷}, 𝑁:

Move North, 𝑆: Move South, 𝐸: Move East, 𝑊: Move West, 0:
Nothing, 𝑃: Pickup, 𝐷: Dropoff. Robot 2: Sensor modules: GPS,
Compass, B&W camera, 𝑆

2
= {(𝑥, 𝑦, 𝑑, 𝑐) | 1 ≤ 𝑥, 𝑦 ≤ 10, 𝑑 ∈

{𝑁, 𝑆, 𝐸, 𝑊}, 𝑐 ∈ {SG, 𝑇,BG, 0}}, 𝑥, 𝑦 are the same as robot 1, 𝑑:
direction, SG: Small Globe,𝑇: Rod, BG: Big Globe, 0: Nothing,𝐴

2
=

{𝐹, 𝐵, 𝐿, 𝑅, 𝐿𝐹, 𝑅𝐹, 0, 𝑃, 𝐷}, 𝐹: Move Forward, 𝐵: Move Backward,
𝐿: Turn left, 𝑅: Turn Right, 𝐿𝐹: Turn left & 𝐹, 𝑅𝐹: Turn right &
𝐹, 0: Nothing, 𝑃: Pickup, 𝐷: Dropoff. Robot 3: Sensor modules:
beam’s signal distance indicator, Compass, color & weight sensor,
𝑆
3

= {(𝑏
1
, 𝑏
2
, 𝑑, 𝑘) | 1 ≤ 𝑏

1
, 𝑏
2

≤ 20, 𝑑 ∈ {𝑁, 𝑆, 𝐸, 𝑊}, 𝑘 ∈

{𝑅𝐿, 𝐺𝐿, 𝐺𝐻, 𝑌𝐻, 0}}, 𝑏
𝑖
: 1-norm distance to beam 𝑖, 𝑑 is the same

as robot 2 and 𝑘 as robot 1, 𝐴
3

= 𝐴
2
.

Therefore, robots 1, 2, and 3 have the same environment’s
dynamics and reward and are context transferable, although
they do not have the same MDP and there are no one-to-
one mappings between their sets of states and actions. This
is because of the existence of redundancy in their representa-
tions of the environments, which is the case in most practical
applications.

3. Why Context Transfer Is Important

Most of the current transfer learning approaches in RL are
typically framed as leveraging knowledge learned on a source
task to improve learning on a related, but different, target task.
These approaches are able to successfully transfer knowledge
between agents in different tasks.

This paper discusses context transfer in RL, that is, trans-
ferring knowledge between agents with different states and
action spaces. The goal in this type of transfer problem is the
same: reduce the time needed to learn the target with transfer,
relative to learning without transfer. We think that this is an
important problem for the following reasons.

Firstly, there may be different agents with different sen-
sors or actuators in an environment and cooperation between
them may improve the learning process. These agents can be
similar to the robots of Example 11. Solving the problem of
context transfer can facilitate the cooperation between such
agents.

Secondly, inmany real-world scenarios, one actually does
not have access to a minimized MDP model of the envi-
ronment, and usually there is a lot of redundancy in theMDP
model. In this case, there may be an agent that has already
been training on a task with a certain internal representation
of the states and actions but the performance is poor. A
different internal representation could allow the agent to
achieve higher performance. Context transfer enables the
agent to use the previous knowledge to accelerate the learning
with new state and action spaces.

Thirdly, consider a real-world working learning system.
At some point, we decide to upgrade its sensor and/or actu-
ator modules. Any change in these modules will result in a
different description of the environment’s dynamics and the
reward function. Therefore, the learning algorithm and the
trained knowledge are no longer applicable. If experience is
expensive in the environment, it is preferable to leverage the
existing knowledge of the agents to improve the learning with
new sensors or actuators. Context transfer can resolve the
problem.

To solve the problem, one needs amapping between state-
action spaces of the agents. Taylor et al. [8] use a hand-
coded mapping between the states and actions of the source
and target tasks, namely 𝜒

𝑆
and 𝜒

𝐴
. The mapping 𝜒

𝑆
maps

each state variable of the target task to the most similar state
of the source task. Similarly, the mapping 𝜒

𝐴
maps each

action of the target task to the most similar action of the
source task.This pair ofmappings is called intertaskmapping.
They use the intertask mapping to transfer the action-value
functions from the source to the target task, thus improving
the learning of the target task. In [9], the intertask mapping
is used to transfer the samples from the source to the target
task. In [10], Taylor and Stone use the intertask mapping to
transfer the source task policy to the target task as some
rules.The transferred rules summarize the source task policy.
The intertask mapping acts as a translator for the rules to be
used in the target task. In some cases, it is not possible to
define the relation of the state-action spaces of the agents by
the intertask mapping (a pair of mappings). For instance, in
Example 11, one cannot define a direct mapping as a relation
between the actions of robots 1 and 2; for example, there is no
equivalent action of robot 1 (up, down, left, and right) to the
action of “move forward” of robot 2. Although it is possible to
define amapping between the state-action pairs of the robots,
when the state of robot 2 is “up” and moves forward, it equals
tomove “up” of robot 1.Therefore, we use amapping between
the state-action pairs instead of intertask mapping.
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Blockeel et al. [11] transfer relational macros among tasks
with different state features and actions. In this approach,
relational macros are defined as finite-state machines in
which the transition conditions and the node actions are
represented by first-order logical clauses.Themacros charac-
terize successful behavior in the source task. Inductive logic
programming is used to learn a macro and then use it in the
early learning stages of the target task.

Ravindran and Barto [12], Soni and Singh [13] use the
homomorphism framework to map tasks to a common
abstract level. The options are defined on an abstract MDP,
called relativized options, and their policies are then trans-
formed according to the specific target task.More specifically,
a set of possible transformations is provided and the goal of
transfer is to identify the most suitable transformation of the
relativized options depending on the current target task.

Konidaris and Barto [14, 15] define options at a higher
level of abstraction that can be used by the target task without
any explicit mapping between the states and actions of the
tasks. In this approach, the tasks’ similarities are modeled as
agent-space and the tasks’ differences are modeled as prob-
lem-space. The tasks are assumed to share common features
and to be reward-linked; rewards are allocated similar to
tasks. An agent learns a portable shaping function from
experience in the source tasks in the agent-space to improve
the performance in the target task.Thepresented definition of
the notion of reward-linked is mostly qualitative rather than
a precise mathematical definition.

This paper tries to present a formal definition of the
context transfer problem. This definition has some overlap
with the mentioned approaches, but its framework and
mathematical formulation is given for the first time. We use
the notion of MDP homomorphism to exactly formulate
context transferable tasks. The presented algorithm to solve
the problem does not require an exact intertask mapping
or the existence of some shared features between tasks as
mentioned in the previous approaches; it only requires a
partial mapping between some features of the source and
target tasks. It also has the capability of combining the
knowledge of several different source tasks to be used by the
target task.

4. Feature Space as a Translator between Tasks

In [14], the notion of shared features is used for knowledge
transfer among tasks.The shared features are used by an agent
to learn a portable shaping function in a sequence of tasks
to significantly improve performance in a later related task.
In this paper, we follow the same idea of using the feature
space as a tool of knowledge transfer. However, our problem,
its formulation, and the proposed solution are different.
Generally, an agent is equipped with a suite of sensors and
actuators. The agent senses the state of the environment
using the output of the sensors and performs an action using
its actuators. The tuple of the outputs of the sensors and
actuators is considered as a feature vector. Let the number of
the sensors and actuators of task𝑇

𝑖
be 𝑛, and𝑓

𝑗
denote the 𝑗th

element of the feature vector.The feature vector is represented
by (𝑓

𝑖

1
, 𝑓
𝑖

2
, . . . , 𝑓

𝑖

𝑛
) ∈ 𝐹

𝑖, where 𝐹
𝑖

= 𝐹
𝑖

1
× 𝐹
𝑖

2
⋅ ⋅ ⋅ × 𝐹
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Figure 2:The process of context transfer between source task𝑇
𝑖
and

target task 𝑇
𝑙
in which all mappings are known except 𝑄

𝑙
.

the space of the feature vectors. 𝐹
𝑖

𝑗
is the set of all feature

values of the 𝑗th feature.This mapping assigns a pair of state-
action to every feature vector:

𝐿
𝑖
: 𝐹
𝑖
→ 𝑆
𝑖
× 𝐴
𝑖
, (8)

where 𝑆
𝑖
and 𝐴

𝑖
are the set of states and actions of task 𝑇

𝑖
,

respectively.
To transfer the knowledge of the source to the target task

(which has a different context), one needs some information
to relate the 𝑄-values of the state-action pairs of the source
to the target task. Such information may be uncertain and
ambiguous or even not available in some cases. To solve the
problem in such situations, we use the domain knowledge
of the feature space as some relations between the feature
vectors of the source and target tasks. This information can
be expressed by a mapping as

𝐾
𝑖
: 𝐹
𝑙
→ 𝐹

𝑖
. (9)

This mapping relates a feature vector of the source task 𝑖 to a
feature vector of the target task. Generally, this mapping can
be a one-to-many mapping. If this is a one-to-one mapping,
then there is an exact correspondence between the feature
vectors of the source and target tasks and the knowledge
can be transferred between tasks without any ambiguity. The
process of context transfer between source task 𝑇

𝑖
and target

task 𝑇
𝑙
is shown in Figure 2.

In this diagram, the 𝑄
𝑖
mapping is the result of the

learning process of the source task 𝑇
𝑖
and assigns an optimal

𝑄-value from the set of optimal 𝑄-values, Q⋆
𝑖
, as defined

in Section 2, to every state-action pair. As the source and
target tasks are context transferable, therefore, Q⋆

𝑖
= Q⋆
𝑙
. The

learning process of the target agent estimates the mapping
𝑄
𝑙
. We use the other mappings to estimate an approximate

mapping as CT as an initial estimation of 𝑄
𝑙
and thus
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accelerating the learning process of the target task. This is
shown in the diagram of Figure 2. For every (𝑠

𝑙
, 𝑎
𝑙
) ∈ (𝑆

𝑙
, 𝐴
𝑙
):

CT
𝑖
(𝑠
𝑙
, 𝑎
𝑙
) = 𝑄

𝑖
∘ 𝐿
𝑖
∘ 𝐾
𝑖
∘ 𝐿
−1

𝑙
(𝑠
𝑙
, 𝑎
𝑙
) , (10)

where 𝐺 ∘ 𝐻(⋅) denotes the mapping composition of 𝐺 and
𝐻, namely 𝐺 ∘ 𝐻(⋅) = 𝐺(𝐻(⋅)). The mapping 𝐿

−1

𝑖
denotes

the inverse mapping of 𝐿
𝑖
, and CT

𝑖
(𝑠
𝑙
, 𝑎
𝑙
) is an estimation of

𝑄
𝑙
(𝑠
𝑙
, 𝑎
𝑙
) using context transfer.

Example 12. Referring to Example 11, suppose that the tasks
of robots 2 and 3 are the source and target tasks, respectively.
The shared features among tasks are the values of the compass
sensor and actuators. We also know that both the values of
𝑐 = 0 for robot 2, and 𝑘 = 0 for robot 3 refers to the value of
“Nothing.” We use this information to relate the state-action
pairs of the source and target tasks. For instance, we have

𝐾
2

(3, 12, 𝑁, 𝑅𝐿, 𝐹)

= {(𝑥, 𝑦, 𝑁, 𝑐, 𝐹) | 1 ≤ 𝑥, 𝑦 ≤ 10, 𝑐 ∈ {𝑆𝐺, 𝑇, 𝐵𝐺}} .

(11)

5. Knowledge Fusion and Transfer

In [3], the solution methods of RL transfer problems are
grouped into five categories; starting-point methods, imi-
tation methods, hierarchical methods, alteration methods,
and new RL algorithm methods. In starting-point methods,
instead of zero or random initialization in the target task,
the target task is initialized based on the knowledge from the
source task. Imitationmethods involves the transfer methods
in which the source-task policy is applied to choose some
actions when learning the target task. The third class of RL
transfer includes hierarchical methods. These methods view
the source as a subtask of the target. The next class of RL
transfer methods involves altering the state space, action
space, or reward function of the target task based on source-
task knowledge. It involves simplifying the state space by state
abstraction, decreasing the action space and reward shaping.
The new RL algorithm methods consist of entirely new RL
algorithms.These approaches address transfer as an inherent
part of RL.

In this paper, we adopt a starting-pointmethod to transfer
the knowledge; we use the knowledge of the source tasks
to initialize the learning of the target task, instead of zero
or random initialization. Suppose that the learning of the
source tasks are stopped at a certain time because of a learning
criteria and the 𝑄-values of the source tasks are used by the
target task, which is at the initial steps of the learning.

Now, consider the set of T = {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑙
} where

𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑙−1
are the source and 𝑇

𝑙
is the target task as

explained in Section 2. The mapping CT
𝑖
(𝑠
𝑙
, 𝑎
𝑙
) relates an

optimal 𝑄-value to state-action pair (𝑠
𝑙
, 𝑎
𝑙
) ∈ 𝑆

𝑙
× 𝐴
𝑙
. As

the mapping 𝐾
𝑖
may be a one-to-many mapping, therefore,

CT
𝑖
is a multivalued function, and CT

𝑖
(𝑠
𝑙
, 𝑎
𝑙
) is a set-value

instead of being a single value, that is, CT
𝑖
(𝑠
𝑙
, 𝑎
𝑙
) ⊆ Q⋆

𝑙
. For

𝑖 ∈ {1, 2, . . . , 𝑙 − 1}, we will have 𝑙 − 1 different set-values for

a state-action pair of the target task. One can easily combine
the knowledge of different source tasks using the intersection
operator on the 𝑙 − 1 set-values, as

CT (𝑠
𝑙
, 𝑎
𝑙
) = ⋂

𝑖∈{1,...,𝑙−1}

CT
𝑖
(𝑠
𝑙
, 𝑎
𝑙
) . (12)

This is the set of possible 𝑄-values for the pair of (𝑠
𝑙
, 𝑎
𝑙
)

using the knowledge of the source tasks. These definitions
are used to initialize the 𝑄-values of the target task. We can
use a statistical average operator to estimate a single value
from the set-valueCT(𝑠

𝑙
, 𝑎
𝑙
) as an initial value of𝑄

𝑙
(𝑠
𝑙
, 𝑎
𝑙
). For

example, we can usemean,median, ormidrange operators. In
this paper, we use themidrange operator, defined as follows:

𝑄
𝑙
(𝑠
𝑙
, 𝑎
𝑙
) = midrange (CT (𝑠

𝑙
, 𝑎
𝑙
)) , (13)

where 𝑄
𝑙
(𝑠
𝑙
, 𝑎
𝑙
) is an initial estimation of 𝑄

𝑙
(𝑠
𝑙
, 𝑎
𝑙
) and

midrange ({𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
})

=
max (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
) + min (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
)

2
.

(14)

This operator has some advantages over the mean or median
operators because of some implementation issues. There are
also some intuitive explanations for using this operator as
discussed in the next section.

6. 𝑄-Intervals for Knowledge Fusion

As explained in the previous section, the context transfer
mapping, CT

𝑖
, usually is a one-to-many mapping. Therefore,

the value of CT
𝑖
(𝑠
𝑙
, 𝑎
𝑙
) ⊆ Q⋆

𝑙
and (𝑠

𝑙
, 𝑎
𝑙
) ∈ (𝑆

𝑙
, 𝐴
𝑙
) is

a set-value rather than a single-value. We use an interval-
based approach to represent the uncertainty of this set-value.
Consider the following definition:

𝐼𝑄
𝑖
(𝑠
𝑙
, 𝑎
𝑙
) = [𝑄

−

𝑖
(𝑠
𝑙
, 𝑎
𝑙
) , 𝑄
+

𝑖
(𝑠
𝑙
, 𝑎
𝑙
)] , (15)

where

𝑄
−

𝑖
(𝑠
𝑙
, 𝑎
𝑙
) = Min
𝑄
⋆
∈CT
𝑖(𝑠𝑙 ,𝑎𝑙)

𝑄
⋆
,

𝑄
+

𝑖
(𝑠
𝑙
, 𝑎
𝑙
) = Max
𝑄
⋆
∈CT
𝑖
(𝑠
𝑙
,𝑎
𝑙
)

𝑄
⋆
.

(16)

We call it a 𝑄-interval. To every 𝑄-interval, two measures are
related as

Cntr ([𝑄
−
, 𝑄
+
]) =

(𝑄
−

+ 𝑄
+
)

2
,

Uncr ([𝑄
−
, 𝑄
+
]) = 𝑄

−
− 𝑄
+
.

(17)

These measures are called center and uncertaintymeasures of
the𝑄-interval, respectively. Let [𝑄

−

1
, 𝑄
+

1
] and [𝑄

−

2
, 𝑄
+

2
] be two

𝑄-intervals.These definitions induce two orderings on the𝑄-
intervals, as follows:

[𝑄
−

1
, 𝑄
+

1
] ≤
𝑅

[𝑄
−

2
, 𝑄
+

2
] ⇐⇒ 𝑄

−

1
≤ 𝑄
−

2
, 𝑄
+

1
≤ 𝑄
+

2
,

[𝑄
−

1
, 𝑄
+

1
] ≤
𝐾

[𝑄
−

2
, 𝑄
+

2
] ⇐⇒ 𝑄

−

1
≤ 𝑄
−

2
, 𝑄
+

2
≤ 𝑄
+

1
.

(18)
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The first ordering can be understood as more rewarding, and
the second one can be considered as more accurate ordering.
These orderings can induce amathematical bilattice structure
[16–18] on the set of 𝑄-intervals. In [19, 20], bilattices are dis-
cussed as a tool of reasoning about knowledge whenmultiple
agents are present. Consider the following definitions.

We use the following operators to combine the knowledge
of different agents:

[𝑄
−

1
, 𝑄
+

1
] ⊕ [𝑄

−

2
, 𝑄
+

2
] = [min (𝑄

−

1
, 𝑄
−

2
) ,max (𝑄

+

1
, 𝑄
+

2
)] .

(19)

This operator is called gullibility in bilattices.
One can easily show that the set-values of context transfer

mapping and their corresponding 𝑄-intervals have the fol-
lowing properties:

midrange (CT
𝑖
(𝑠
𝑙
, 𝑎
𝑙
)) = Cntr (𝐼𝑄

𝑖
(𝑠
𝑙
, 𝑎
𝑙
)) ,

CT
𝑖
(𝑠
𝑙
, 𝑎
𝑙
) ⊆ CT

𝑗
(𝑠
𝑙
, 𝑎
𝑙
) ⇒ 𝐼𝑄

𝑖
(𝑠
𝑙
, 𝑎
𝑙
) ≤
𝐾

𝐼𝑄
𝑗
(𝑠
𝑙
, 𝑎
𝑙
) ,

CT
𝑘

(𝑠
𝑙
, 𝑎
𝑙
) = CT

𝑖
(𝑠
𝑙
, 𝑎
𝑙
) ∩ CT

𝑗
(𝑠
𝑙
, 𝑎
𝑙
)

⇒ 𝐼𝑄
𝑘

(𝑠
𝑙
, 𝑎
𝑙
) = 𝐼𝑄

𝑖
(𝑠
𝑙
, 𝑎
𝑙
) ⊕ 𝐼𝑄

𝑖
(𝑠
𝑙
, 𝑎
𝑙
) .

(20)

There are some intuitive explanations for these relations, as
well. For example, the second relation says that as the set-
value goes to a single-value, the corresponding𝑄-interval will
go to an exact value and represent higher-ordered knowledge.
The third relation has the same intuition as the gullibility
operator of the bilattices. Therefore, we just need to record
the minimum and maximum values of the set-values (or the
corresponding 𝑄-interval) and use the following relation to
combine the knowledge of different source tasks:

𝑄
𝑙
(𝑠
𝑙
, 𝑎
𝑙
) = Cntr( ⨁

𝑖∈{1,2,...,𝑙−1}

𝐼𝑄
𝑖
(𝑠
𝑙
, 𝑎
𝑙
)) . (21)

7. Case Studies and Results

To verify the validity of the proposed algorithms, two case
studies are considered. We discuss these case studies in the
next sections.

7.1. Agents withDifferent Sensors or Actuators. There are some
agents in an environment doing the same tasks even as using
different sensors or actuators. Cooperation or knowledge
transfer between these agents can improve the learning.These
agents can share their knowledge using context transfer.
Consider the robots of Example 11; let the robots 1 and 2
be the source and robot 3 be the target agent. Suppose that
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Figure 3:The comparison of average reward of learning for the four
cases of transfer: without transfer, with transfer from robot 1, with
transfer from robot 2, and with transfer from both robots.

the farm is a 50×50 gridwith some randomly located puddles.
The reward function is as follows:
Reward

=

{{

{{

{

−1 Taking an action except the following
−10 Entering a puddle,wrong pickup or dropoff
100 Reaching the goal.

(22)

The source agents (robots 1 and 2) have learned their task
for 1000 episodes. To examine the algorithm, the learning
process of the target task is run four times; first without any
transfer, secondwith transfer from robot 1, thirdwith transfer
from robot 2, and forth with transfer from both robots 1 and
2 after knowledge fusion.

The target agent learns for 500 episodes, and the whole
learning is repeated for 50 times. The action selection policy
is softmax, and the learning parameters are as follows; the
learning rate (𝛼) is 0.1, the discount factor (𝛾) is set to 0.9 and
the temperature (𝜏) decreases by the exponential function
(𝜏 = 𝑒

−0.1𝑛
+ 0.5) where 𝑛 is the number of episodes.

The final learning curves are averages of 50 independent
learning curves. The average reward and regret function of
the learning are shown in Figures 3 and 4, respectively. The
regret is the expected decrease in reward because of executing
the algorithm instead of acting optimally from the beginning
[21]. The results show the increase of average reward and
decrease of regret at the beginning episodes of the learning.
The knowledge fusion of robots 1 and 2 significantly improves
the learning.

7.2. Changes in the Sensory-Motor System of a Learning
Agent. Representation is one of the key components of
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Figure 4: The comparison of regret of learning for the four cases of
transfer: without transfer, with transfer from robot 1, with transfer
from robot 2, and with transfer from both robots.

any reinforcement learning algorithm. Any change in the
representation will result in a different description of the
environment’s dynamics and the reward function, and the
learning algorithm is no longer applicable. The reinitializa-
tion of the whole learning process is undesirable, especially,
when the experience is expensive. For example, upgrading the
sensory-motor system of an agent even as saving the previous
knowledge. Context transfer from the task with old sensory-
motor system to the task with new sensory-motor system can
solve this problem.

We use the “Crossroad Traffic Controller” task as an
example. This problem is a modified version of the scenario
discussed in [22], which is a stochastic task. There is a
crossroad with two-way road resulting in a four-square grid
at the center, a horizontal and a vertical one. The task is to
control the traffic light by switching the green light between
the vertical and horizontal lanes to keep the queues in front
of the traffic light as small as possible (Figure 5). In front of
the light of each lane, only five squares are considered. The
reward is the total amount of cars in front of the traffic light
times −1. Switching the light causes a transition period of 4
time steps in which one traffic light is orange and the other
one is red. During this transition period no cars can pass the
crossroad and actions taken in this period have no effect.The
speed of the cars is one square per time step.

The system is working with an old sensor that gives the
distance to the first car approaching the crossroad in each
lane. Therefore, the old system has 5 × 5 × 5 × 5 × 2 states
as described in Figure 5. The aim is to upgrade the sensor of
the system to a sensor that gives the existence of cars in each
square. The actions of the system are also changed as shown
in Figure 5. We use the relation between features of the old
and new sensors to transfer the knowledge.

Figure 5: Crossroad Traffic Controller. Old system: Sensors: dis-
tance sensor, 𝑆old = {(𝑥, 𝑦, 𝑑) | 1 ≤ 𝑥, 𝑦 ≤ 10, 𝑑 ∈ {𝑉, 𝐻}},
𝑥: distance to first car in vertical lane, 𝑦: distance to first car in
horizontal lane, 𝑉: vertical lane is green, 𝐻: horizontal lane is green,
𝐴old = {𝐺𝑉, 𝐺𝐻, 𝑁}, 𝐺𝑉: change the vertical lane to green, 𝐺𝐻:
change the horizontal lane to green, 𝑁: no action. New system:
Sensors: camera, 𝑆new = {(𝑥, 𝑦, 𝑑) | 0 ≤ 𝑥, 𝑦 ≤ 1023, 𝑑 ∈ {𝑉, 𝐻}}, 𝑥:
cars’ existence coding in the first ten squares of the vertical lane, 𝑦:
cars’ existence coding in the first ten squares of the horizontal lane,
𝑉: vertical lane is green, 𝐻: horizontal lane is green, 𝐴new = {𝐶, 𝑁},
𝐶: change the light, 𝑁: no action.

Passing of 100 cars is considered as an episode of learning.
The learning is repeated for 40 000 episodes. The action
selection policy is softmax and the learning parameters are
as follows; the learning rate (𝛼) is 0.1, the discount factor
(𝛾) is set to 0.9 and the temperature (𝜏) decreases by the
exponential function (𝜏 = 5𝑒

−0.1𝑛
+0.5) where 𝑛 is the number

of episodes.
The final learning curves are averages of 50 independent

learning curves and are shown in Figures 6 and 7. Smoothing
is performed on the curves with a moving window average
for better representation. The length of the window is 50
episodes. The results show the increase of average reward
and decrease of regret of the learning when using knowledge
transfer.

8. Conclusion

Transfer learning in heterogeneous RL tasks is a challenging
area. The heterogeneity between tasks may be because of
the difference between state-action spaces and transition
models of the environment or reward functions. Context
transfer, as defined in this paper, discusses knowledge transfer
between tasks with different state-action spaces. The tasks
with the same environment’s dynamics and reward function
but with different state-action spaces were called context
transferable tasks. The problem was formulated in terms
of MDP homomorphism. It was shown that the context
transferable tasks have the same set of optimal action values.
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Figure 6: The comparison of average reward of learning with and
without transfer for crossroad traffic controller.
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Figure 7: The comparison of regret of learning with and without
transfer for crossroad traffic controller.

The feature space was used as a translator between different
tasks to transfer the knowledge from the source to the target
tasks. An interval-based approach was used to represent and
combine the knowledge of the source tasks. The proposed
knowledge transfer approach was tested in two different case
studies. The results show the effectiveness of the proposed
approach.
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