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This paper presents a novelmotion planning approach for coherent groups with constant area, and it integrates C-Lmethod into the
probabilistic roadmap algorithm with sampling on the medial axis (MAPRM). In the preprocessing phase, the group is discretized
into a grid-set which represents the configuration of the group. Then, a number of samples are generated on workspace by medial
axis technique. These samples are extended into group’s configuration nodes of the roadmap using an extending strategy. Also,
the group’s deformation degree relative to the desired shape is introduced to improve the evaluation function. It gives users more
flexibility to determine the respective weights of the group’s deformation degree and its distance to the goal in the query phase.
After that, a novel local planner is constructed to connect any two neighbor configurations by using C-L method and the improved
evaluation function. Experiments show that our approach is able to find paths for the coherent group efficiently and keep its area
invariant when moving toward the goal.

1. Introduction

Human crowd is a fascinating social phenomenon which has
been constantly investigated by experts from various areas.
Crowd simulation can be considered as a multiagent system
[1, 2]. And it is enjoying considerable success in numerous
applied domains,most notably in evacuation scenarios where
simulated crowd behaviors can help to improve the safety of
interior building designs [3, 4]. In crowd simulation, groups
are the most important entities that are worth intensive stud-
ies. Groups can be defined as semipermanent collections of
individuals sharing navigation goals who attempt tomaintain
spatial cohesion with each other. But these groups may split
up when moving toward the goal. By contrast, coherent
groups are a class of groups which maintain permanent
gathering and would not split up [5].

At present, coherent groups have gained tremendous
momentum in military and safety training applications. This
type of coherent groups can be seen as deformable objects
with area conservation. And investigating the motion plan-
ning problem for these deformable objects has an important
meaning in computer animation, crowd simulation, and
group behavior generating. For example, we need to simulate

the behavior of a squad of soldiers which have a desired
formation with a constant area on the whole and constant
space between any two soldiers when marching toward the
goal. The formation of the soldier group can reflect their
tactical strategy that can provide different functions for
distinct physical effects, which could be a key factor in
defeating the enemy in a battle. In addition, it can be used to
simulate different motions of the wild congregated animals
in computer animations to create special visual effects, for
example, a crowd of migratory geese that herd to the south in
perfect V formation.However,most currentmotion planning
approaches cannot control the area of the group as a constant
easily, and how to plan paths for these deformable objects
with area conservation is still a challenging problem in these
fields.

As one of the motion planning methods, C-L method
proposed by Chang and Li [6] provides an excellent approach
to planning the path of deformable objects and maintaining
its size conservation when moving toward the goal. Unfortu-
nately, the C-L method is computationally expensive because
it did not use the environment’s information efficiently.
Fortunately, a probabilistic roadmapplanner using themedial
axis technique (MAPRM) which generates samples on the
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medial axis of the workspace has an additional benefit in
this situation to fully take advantage of the environment’s
information [7, 8].

Consequently, in this paper, a novel approach will be
described which is used to plan a path to connect the initial
and goal configuration of the coherent group by combining
MAPRM algorithm and C-L method for size conservation.
Rather than planning the motion for individual entities, the
goal of this paper is planning the motion for the group as a
whole, inwhich the group ismodeled as a deformable grid-set
with a constant area and planned for this particular grid-set.

This paper is organized as follows. The previous works
related to groupmotion planning are introduced in Section 2.
And the framework of our approach, including the flowchart
of the local planner, is proposed in Section 3. In Section 4, we
first describe the sampling mechanism on medial axis briefly
and discretization approach for coherent group. Then we
describe how to generate configuration nodes of the roadmap
by extending the position samples on medial axis. Section 5
shows the detailed designing process of the local planner.
Experiments and results are given in Section 6. Finally, we
draw some conclusions and outline future work in Section 7.

2. Related Work

In the virtual environment the most common approach to
simulating group movement is to use flocking which was
introduced by Reynolds [9]. Bayazit et al. [10] combined
flocking with the probabilistic roadmap algorithm (PRM) to
guide the group’s motion toward the goal. In their works,
the roadmapprovided a convenient abstract representation of
global information in complex environments and associated
rules with roadmap nodes which enables local customization
of behaviors. Li and Chou [11] proposed a novel centralized
planning approach that moves the robots in groups formed
dynamically with a sphere-tree structure. Li et al. [12] com-
bined basic flocking algorithm with leader-follower model to
simulate group’s motion. At the same time, in order to plan
the path of the group, they tried to model the shape of the
group’s region by estimating the longitudinal depth of the
group. However the abovemethods cannot ensure the group’s
coherence whenmoving toward the goal and do not consider
the groups as deformable objects.

Guibas et al. [13] proposed a probabilistic roadmap plan-
ner for flexible objects with a workspace medial-axis-based
sampling approach (MAPRM). In their method, the medial
axis of the workspace was computed at the preprocessing
stage and the configurations of the flexible objects were
fitted at random points along the medial axis. However, this
method is only suitable for planning the path for the objects
like sheets of metal or plastic flexible pipes which only can be
bent. But the coherent group can deform to arbitrary shapes.

Overmars et al. [14–16] introduced a new approach to
motion planning for coherent groups of entities. In their
methods, the group was represented as a deformable shape
of sufficient volume, such as deformable rounded rectangle
or hinged rectangle. Then, an extension of the probabilistic
roadmap method was used to plan the motion for this

deformable shape. In Kamphuis’s method, the designers must
take care to guarantee that the area of the deformable shape
remained the same during its motion. However, the area of
the group cannot be controlled as a constant easily in their
method and the shape of the group cannot be simplified into
rectangle in the complex environment.

Because of the defects of the above methods, Chang
and Li [6] proposed a novel method to investigate the
motion planning problem for deformable objects with size
conservation which is named as C-L method in this paper.
In C-L method, the deformable object was firstly discretized
into a series of small grids. Together, these grids formed a
grid-set that represented the configuration of the deformable
object. Then, C-L method planned paths for the whole grid-
set to generate the paths of the deformable objects. So,
these grids became the smallest units to be operated by
C-L method in which a new configuration was generated
according to the current information of the environment
and the configuration of the grid-set. At the same time,
the deformation degree of the object which represented the
difference between the current configuration of the object
and the desired configuration was introduced to improve
the evaluation function of the searching algorithm. Later,
Chang and Li [17, 18] made the crowd conform to a specific
shape while avoiding collisions with other agents in the
crowd orwith obstacles by combiningC-Lmethodwith fuzzy
controller. The C-L method was used to generate the global
motion of the group, while the fuzzy controller was used to
move the agents in the group to conform to a desired shape.

Chen et al. presented a modelling and simulation of
extra-large-scale crowd evacuation using massively parallel
computing technology [19]. Each individual in the scenario
is modeled as an adaptable and autonomous agent driven
by a weight-based decision-making mechanism. The simu-
lation is intended to characterize the individuals’ adaptable
behaviors. Their approach adopts GPGPU to successfully
sustain massively parallel modeling and simulation of a huge
evacuation scenario consisting of hundreds of thousands of
individuals. Their approaches for handling big scientific data
with GPGPU are also applicable for dynamic data driven
applications (DDDAS) of online simulation studies [20–22].

Planning paths for deformable objects or flexible objects
has gained various applications in industrial automation,
computer generated animation, and virtual environments
where the deformable properties of objects need to be con-
sidered for the creation of realistic motion. In this paper, we
restrict ourselves to motion planning approaches to compute
paths for a special flexible object which is the coherent
group with area conservation.The group’s contour changes in
different environments; however the group’s area must keep
constant when moving along the planned path.

3. Planning Framework

In general, this study was inspired by the discretization
technique in C-L method [17, 18], medial axis technique [7],
and Kamphuis and Overmars’ work [14, 16]. The goal of our
approach is twofold. On one hand we should make the group
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Figure 1: Flowchart of our approach.

move toward the goal with optimal evaluation function; on
the other hand the group can be changed into any shape
according to the environment and the group’s area must be
kept constant in this process. In this paper, the evaluation
function is the weighted sum of the distance to the goal
and the difference between the group’s configuration and the
desired configuration. Optimal evaluation function means
that the value of evaluation function is the smallest at every
run step. Our approach consists of the following steps.

(1) Specify the initial, goal, anddesired shape of the group
and discretize these shapes into grid-sets which,
respectively, represent the group’s initial, goal, and
desired configurations.

(2) Generate a series of position samples on the medial
axis of the workspace and extend these position
samples into group’s configuration samples whichwill
be seen as the nodes of the roadmap.

(3) Design the local planner based on C-L method and
the improved evaluation function. Then, construct
a roadmap of possible motions for the deformable
configuration of the group between any two neighbor
nodes using this local planner.

(4) To answer a motion query, use the roadmap to
compute a collision-free path for the deformable
configuration.

The flowchart of our approach is illustrated in Figure 1
and the detailed process of the local planner is illustrated in
Figure 2 in which we combine C-L method and improved
evaluation function. Our local planner has two advantages:
one is that the configuration nodes extended from position
samples can provide guidance for C-L method and the other
is that C-Lmethod can ensure the constant of the group’s area.

4. Generate Configuration Nodes

4.1. Medial Axis Sampling Technique and Discretization of the
Group. Firstly, the medial axis technique for sampling strives
to generate samples on the medial axis of the workspace
[17, 18]. This approach has been used previously in motion
planning for deformable objects [13]. The technique is as
follows: generate a uniformly random point in workspace
(or 2D configuration space in [18]). According to whether
this point lies in free space or not, compute different retrac-
tion directions and then retract this point to medial axis.
Repeat this process until a series of position samples on
medial axis of the workspace are generated. These position
samples are represented as (𝑥

𝑤,𝑖
, 𝑦
𝑤,𝑖
) 𝑖 = 1, . . . , 𝑁 where

𝑁 represents the total number of the position samples. The
fact that medial axis technique provides the largest clearance
from obstacles for the group is advantageous. Secondly,
the group’s shape is discretized into a grid-set, denoted by
𝐶set = {𝐺

1
(𝑥
1
, 𝑦
1
, 𝜃
1
), 𝐺
2
(𝑥
2
, 𝑦
2
, 𝜃
2
), . . . , 𝐺

𝑀
(𝑥
𝑀
, 𝑦
𝑀
, 𝜃
𝑀
)},

inwhich𝐺
𝑖
(𝑥
𝑖
, 𝑦
𝑖
, 𝜃
𝑖
) 𝑖 = 1, . . . ,𝑀 represents the information

of the 𝑖th grid and 𝑀 represents the total number of the
grids. Obviously, 𝐶set is the configuration of the coherent
group. In the grid-set, there are two types of grids: inner
grids and boundary grids.The inner grids are the ones whose
neighbor grids are also the grids of 𝐶set, while this is not
true for the boundary grids. Moreover, we suppose that the
group is compact; that is, no grid is isolated and no hole exists
in 𝐶set and the directions of all the grids are the same. An
isolated gridmeans that there is no common border or vertex
between it and any other ones. Figure 3 graphically illustrates
the compact group versus incompact ones. Obviously, the
compact property ensures the group’s coherence.

4.2. The Extending Strategy of Generating Configuration
Nodes. The goal of this section is to extend the 2D position
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samples into group’s configuration samples which are 𝑀
dimensions. The extending strategy is divided into two steps.

Step 1. Find the center grid of 𝐶set and then place it on the
position samples. The center grid of 𝐶set is represented as
𝐺
𝑐
(𝑥
𝑐
, 𝑦
𝑐
, 𝜃
𝑐
) whose information can be computed by

(𝑥
𝑐
, 𝑦
𝑐
, 𝜃
𝑐
)

= argmin
(𝑥𝑗 ,𝑦𝑗,𝜃𝑗)∈𝐺set

(√(
∑
𝑀

𝑖=1
𝑥
𝑖

𝑀
− 𝑥
𝑗
)

2

+ (
∑
𝑀

𝑖=1
𝑦
𝑖

𝑀
− 𝑦
𝑗
)

2

).

(1)

So, at every position sample, we make 𝑥
𝑐
= 𝑥
𝑤,𝑖
, 𝑦
𝑐
= 𝑦
𝑤,𝑖
,

and 𝜃
𝑐
equal to the tangent direction of the medial axis at

(𝑥
𝑤,𝑖
, 𝑦
𝑤,𝑖
).

Step 2. After placing the center grid on (𝑥
𝑤,𝑖
, 𝑦
𝑤,𝑖
), we should

decide the positions of the other 𝑀 − 1 grids according to
the environment around (𝑥

𝑤,𝑖
, 𝑦
𝑤,𝑖
), the desired configuration

𝐶
𝑃
, and the compact property of the group. In this process,

the desired configuration is regarded as a template to provide
guidance for generating configuration samples.

At first, we place a duplicate 𝐶
𝑃
of 𝐶
𝑃
on (𝑥

𝑤,𝑖
, 𝑦
𝑤,𝑖
)

by making its center grid coincide with (𝑥
𝑤,𝑖
, 𝑦
𝑤,𝑖
) and its

direction aligns with the tangent direction of medial axis;
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Input. The desired Configuration 𝐶
𝑃
, Obstacle space 𝐶obs, (𝑥𝑤,𝑖, 𝑦𝑤,𝑖) 𝑖 ∈ {1, . . . , 𝑁}
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)} 𝑖 ∈ {1, . . . , 𝑁}

/
∗ Step 1–9 are used to place a copy of 𝐶

𝑃
on (𝑥

𝑤,𝑖
, 𝑦
𝑤,𝑖
) and move the grids which collide with

𝐶obs to the free space ∗/
(1) Clone 𝐶

𝑃
from 𝐶

𝑃
and ensure that the center grid of 𝐶

𝑃
coincides with (𝑥

𝑤,𝑖
, 𝑦
𝑤,𝑖
) and the

direction of 𝐶
𝑃
is aligned with the tangent direction of medial axis at (𝑥

𝑤,𝑖
, 𝑦
𝑤,𝑖
)

(2) for 𝑗 = 1, . . . ,𝑀
(3) if 𝐺

𝑗
(𝑥
𝑗
, 𝑦
𝑗
, 𝜃
𝑗
) collides with 𝐶obs

(4) find the boundary grid of 𝐶
𝑃
which is represented as 𝐺nearest

𝑗,boundary nearest to (𝑥𝑤,𝑖, 𝑦𝑤,𝑖) and
collision-free with 𝐶obs
(5) find the neighbor grid of 𝐺nearest

𝑗,boundary which is represented as 𝐺nearest neighbor
𝑗,boundary nearest to

(𝑥
𝑤,𝑖
, 𝑦
𝑤,𝑖
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𝑗
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𝑗
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, 𝜃
𝑗
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𝑗,boundary
(7) end if
(8) update 𝐶

𝑃

(9) end for
/
∗ Step 10–22 are used to iteratively adjust the center of 𝐶

𝑃
to (𝑥
𝑤,𝑖
, 𝑦
𝑤,𝑖
)
∗/

(10) compute the center of 𝐶
𝑃
which is represented as 𝐺

𝑐
(𝑥
𝑐
, 𝑦
𝑐
, 𝜃
𝑐
)

(11) if the distance between 𝐺
𝑐
(𝑥
𝑐
, 𝑦
𝑐
, 𝜃
𝑐
) and (𝑥

𝑤,𝑖
, 𝑦
𝑤,𝑖
) is bigger than a small positive value
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1
(𝑥
1
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, 𝜃
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(13) move {𝐺
1
(𝑥
1
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1
) , 𝐺
2
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) , . . . , 𝐺
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1
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, 𝜃
1
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2
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𝑀
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, 𝜃
𝑀
) + ^} in which ^ is the vector from

𝐺
𝑐
(𝑥
𝑐
, 𝑦
𝑐
, 𝜃
𝑐
) to (𝑥

𝑤,𝑖
, 𝑦
𝑤,𝑖
)

(14) return 𝐶sampling
𝑖

= {𝐺
1
(𝑥
1
, 𝑦
1
, 𝜃
1
) + ^, 𝐺

2
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) + ^, . . . , 𝐺

𝑀
(𝑥
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, 𝜃
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(15) else find the farthest boundary grid from 𝐺
𝑐
(𝑥
𝑐
, 𝑦
𝑐
, 𝜃
𝑐
) which is denoted as 𝐺𝛼farthest (𝑥, 𝑦, 𝜃)

satisfying the condition that (𝐺𝛼farthest (𝑥, 𝑦, 𝜃) − 𝐺𝑐 (𝑥𝑐, 𝑦𝑐, 𝜃𝑐)) ⋅ ^ < 0
(16) find the farthest boundary grid from 𝐺

𝑐
(𝑥
𝑐
, 𝑦
𝑐
, 𝜃
𝑐
) which is denoted as 𝐺𝛽farthest (𝑥, 𝑦, 𝜃)

satisfying the condition that (𝐺𝛽farthest (𝑥, 𝑦, 𝜃) − 𝐺𝑐 (𝑥𝑐, 𝑦𝑐, 𝜃𝑐)) ⋅ ^ > 0
(17) find the neighbor grid of 𝐺𝛽farthest (𝑥, 𝑦, 𝜃) which is farthest to 𝐺

𝑐
(𝑥
𝑐
, 𝑦
𝑐
, 𝜃
𝑐
) and is

represented as 𝐺𝛽,neighborfarthest (𝑥, 𝑦, 𝜃)

(18) move 𝐺𝛼farthest (𝑥, 𝑦, 𝜃) to 𝐺
𝛽,neighbor
farthest (𝑥, 𝑦, 𝜃)

(19) update 𝐶
𝑃

(20) go to Step 10 until the distance between 𝐺
𝑐
(𝑥
𝑐
, 𝑦
𝑐
, 𝜃
𝑐
) and (𝑥

𝑤,𝑖
, 𝑦
𝑤,𝑖
) is small enough

(21) end if
(22) end if

Algorithm 1: The extending strategy of generating configuration samples.

then we move the grids in 𝐶
𝑃
which have collided with the

obstacles to free space according to the compact property
and the distance to (𝑥

𝑤,𝑖
, 𝑦
𝑤,𝑖
). However, as these collision

grids move to free space, the center of 𝐶
𝑃
may change. Then

we should adjust the center of 𝐶
𝑃
so that it coincides with

(𝑥
𝑤,𝑖
, 𝑦
𝑤,𝑖
) once again.This is done by adjusting the boundary

grids and the whole position of𝐶
𝑃
iteratively. Using𝐶

𝑃
as the

template to guide the generation of configuration samples, it
can reduce the differences between the desired configuration
and the generated configuration. The detailed algorithm
for generating the configuration samples is illustrated in
Algorithm 1 and Figure 4 gives graphic depictions of the
results computed by Algorithm 1.

It is important to note that the medial axis is prone to
having small “twigs” in the obstacle boundaries. These are of

no use during the planning stage and are discarded if their
length is less than a specified threshold [13].

5. Local Planner

5.1. The Node Neighbors and Shape Differences. Based on
the medial axis technique and Algorithm 1, 𝑁 config-
uration samples 𝐶sampling

1
, 𝐶

sampling
2

, . . . , 𝐶
sampling
𝑁

have been
generated which will be regarded as the nodes of the
roadmap. The role of the local planner is to connect any
two neighbor configuration samples and then construct
the roadmap. Suppose 𝐶sampling

𝑞
= {𝐺

sampling
𝑞,1

(𝑥
1
, 𝑦
1
, 𝜃
1
), . . .,

𝐺
sampling
𝑞,𝑀

(𝑥
𝑀
, 𝑦
𝑀
, 𝜃
𝑀
)} and 𝐶sampling

𝑤
= {𝐺

sampling
𝑤,1

(𝑥
1
, 𝑦
1
, 𝜃
1
),

. . . , 𝐺
sampling
𝑤,𝑀

(𝑥
𝑀
, 𝑦
𝑀
, 𝜃
𝑀
)} are two neighbour configuration
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samples. Making the judgment that 𝐶sampling
𝑞

is the neighbor
node of 𝐶sampling

𝑤
is based on the two conditions in

√(𝑥
sampling
𝑐,𝑤

− 𝑥
sampling
𝑐,𝑞

)
2

+ (𝑦
sampling
𝑐,𝑤

− 𝑦
sampling
𝑐,𝑞

)
2

≤ max distance,

𝑆shape(𝐶
sampling
𝑞

, 𝐶
sampling
𝑤

) ≤ max deformation,

(2)

where (𝑥sampling
𝑐,𝑞

, 𝑦sampling
𝑐,𝑞

) and (𝑥sampling
𝑐,𝑤

, 𝑦sampling
𝑐,𝑤

) represent
the center grid of 𝐶sampling

𝑞
and 𝐶sampling

𝑤
, respectively.

max distance and max deformation are the predefined
thresholds. 𝑆shape(𝐶

sampling
𝑞

, 𝐶sampling
𝑤

) represents the shape dif-
ference between 𝐶sampling

𝑞
and 𝐶sampling

𝑤
.

The two conditions in (2) represent two criteria deciding
which configuration samples we should try to connect using
the local planner. One of the criteria we use is the distance
of the center grid in the workspace between 𝐶sampling

𝑞
and

𝐶sampling
𝑤

. If they are too far apart, the chance of finding a free
path between them is small.The second criterion is the shape
difference between them. If they are bigger than a predefined
threshold, the chance of finding a path between them is also
small. 𝑆shape(𝐶

sampling
𝑞

, 𝐶sampling
𝑤

) is formulated in

𝑆shape(𝐶
sampling
𝑞

, 𝐶
sampling
𝑤

)

=

𝑀

∑
𝑗=1

𝑟(𝐺
sampling
𝑞,𝑗

(𝑥
𝑗
, 𝑦
𝑗
, 𝜃
𝑗
), 𝐶

sampling
𝑤

).
(3)

In formulation (3), 𝑟(𝐺sampling
𝑞,𝑗

(𝑥
𝑗
, 𝑦
𝑗
, 𝜃
𝑗
), 𝐶sampling
𝑤

) is
used to compute the minimum distance from the grid
𝐺
sampling
𝑞,𝑗

(𝑥
𝑗
, 𝑦
𝑗
, 𝜃
𝑗
) to 𝐶sampling

𝑤
and is formulated in

𝑟(𝐺
sampling
𝑞,𝑗

(𝑥
𝑗
, 𝑦
𝑗
, 𝜃
𝑗
), 𝐶sampling
𝑤

)

=

{{{{{

{{{{{

{

0 if 𝐺sampling
𝑞,𝑗

(𝑥
𝑗
, 𝑦
𝑗
, 𝜃
𝑗
) is in 𝐶sampling

𝑤

min{distance(𝐺sampling
𝑞,𝑗

(𝑥
𝑗
, 𝑦
𝑗
, 𝜃
𝑗
), 𝐺

sampling
𝑤,𝑘

(𝑥
𝑘
, 𝑦
𝑘
, 𝜃
𝑘
)) :

∀𝐺
sampling
𝑤,𝑘

(𝑥
𝑘
, 𝑦
𝑘
, 𝜃
𝑘
) ∈ 𝐶

sampling
𝑤

}

if 𝐺sampling
𝑞,𝑗

(𝑥
𝑗
, 𝑦
𝑗
, 𝜃
𝑗
) is outside 𝐶sampling

𝑤
.

(4)

Formulation (3) denotes that 𝑆shape(𝐶
sampling
𝑤

, 𝐶sampling
𝑞

) is the
sum of all the distances from𝑀 grids in 𝐶sampling

𝑞
to 𝐶sampling
𝑤

.
The bigger the 𝑆shape(𝐶

sampling
𝑤

, 𝐶sampling
𝑞

) is, the larger the
shape difference between𝐶sampling

𝑞
and 𝐶sampling

𝑤
is. Obviously,

(3) can also be used to compute the deformation degree of a
configuration relative to 𝐶

𝑃
.

5.2. Improved Evaluation Function. In C-L method, an
improved evaluation function is proposed which is worthy of
being used for reference and is formulated in

𝑓(𝐶set) = 𝛼 ⋅ ℎ(𝐶set) + 𝛽 ⋅ 𝑆shape(𝐶set, 𝐶𝑃). (5)

In formulation (5), ℎ(𝐶set) represents the estimated dis-
tance from 𝐶set to the goal. 𝑆shape(𝐶set, 𝐶𝑃) represents the
deformation degree of 𝐶set relative to 𝐶

𝑃
. 𝛼 and 𝛽, respec-

tively, represent the weight of the distance to the goal and the
weight of deformation degree.They also satisfy the restriction
of 𝛼 + 𝛽 = 1.

Different allocations of 𝛼 and 𝛽 produce diverse evalu-
ation function values which will have a great effect on the
configuration to be extended at the next run step. Therefore,
𝛼 and 𝛽 reflect the priorities between maintaining similarity
to 𝐶
𝑃
and the distance to the goal. When we increase 𝛼,

the next extended configuration will be prone to the one
which has smaller distance to the goal. Conversely, the
configuration which has a smaller shape difference with 𝐶

𝑃

will be preferred.

5.3. Local Planner and Roadmap Generation. After establish-
ing the evaluation function and the neighboring relationship
between 𝐶sampling

𝑞
and 𝐶sampling

𝑤
, the local planner can be con-

structed, the process of which is illustrated in Algorithm 2.
In Algorithm 2, 𝐿 represents a list whose elements are all

the neighbor configurations of the current ones 𝐶
𝑄
updated

by Dequeue(𝑄), that is, the first element in 𝑄. Moreover,
the neighbor configuration of 𝐶

𝑄
is generated by moving

its boundary grids on the basis of the compact property or
rotating 𝐶

𝑄
in one run step.

It must be noted that, in Section 5.1, the expression
“node neighbors” means the configuration nodes that satisfy
the condition in (2). In order to generate the neighbor
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Input. 𝐶sampling
𝑞

, 𝐶sampling
𝑤

, The desired Configuration 𝐶
𝑃
, Obstacle space 𝐶obs, 𝛼, 𝛽

Output. Local path P which connects 𝐶sampling
𝑞

and 𝐶sampling
𝑤

(1) Initialize a priority queue 𝑄
(2) SUCCESS = false;
(3) Insert 𝐶sampling

𝑞
into 𝑄

(4) while 𝑄 is not empty and SUCCESS = false do
(5) 𝐶

𝑄
= {𝐺
𝑄,1
(𝑥
1
, 𝑦
1
, 𝜃
1
) , 𝐺
𝑄,2
(𝑥
2
, 𝑦
2
, 𝜃
2
) , . . . , 𝐺

𝑄,𝑀
(𝑥
𝑀
, 𝑦
𝑀
, 𝜃
𝑀
)} =Dequeue(𝑄)

(6) for every neighbor configuration 𝐶neighbor
𝑄

in 𝐿 = Generate neighbor configuration(𝐶
𝑄
)

(7) if 𝐶neighbor
𝑄

is collision-free with 𝐶obs

(8) Insert 𝐶neighbor
𝑄

into 𝑄 according to the improved evaluation function 𝑓(𝐶neighbor
𝑄

)

(9) end if
(10) if 𝐶neighbor

𝑄
= 𝐶sampling
𝑤

(11) SUCCESS = true
(12) end if
(13) end for
(14) end while
(15) if SUCCESS = true
(16) return the constructed path P by tracing the configuration from 𝐶sampling

𝑤
to 𝐶sampling
𝑞

(17) else return failure
(18) end if

Algorithm 2: The local planner connecting any two neighbor configurations.

configurations of 𝐶
𝑄
, a local coordinate system is defined

with its origin coinciding with the center grid of 𝐶
𝑄
and 𝑥-

axis aligning with the direction of 𝐶
𝑄
. There are two ways

to generate the neighbor configurations of 𝐶
𝑄
in one run

step. One is moving the boundary grids in the direction of
𝑥-axis or 𝑦-axis with a distance unit 𝑥step and 𝑦step according
to the compact property; the other is rotating 𝐶

𝑄
with a

predefined angle unit 𝜃step. The detailed process is illustrated
in Algorithm 3.

Compared with previous researchers’ works, Algorithm 3
has the advantage of keeping the group’s area constant in
the planning. After the above procedures, the roadmap is
constructed.

5.4. Querying. When performing a query, we connect the
start and goal configurations to the roadmap and determine
the shortest path in the roadmap between them.Thequerying
procedure in our approach is the same as the one in classic
PRM algorithm. The difference is that, in every node of the
roadmap, we make use of the improved evaluation function
once again. So the evaluation function at the 𝑖th node of the
roadmap can be represented as

𝑓(𝐶
sampling
𝑖

) = 𝛼 ⋅ ℎ(𝐶
sampling
𝑖

) + 𝛽

⋅ 𝑆shape(𝐶
sampling
𝑖

, 𝐶
𝑃
), 𝑖 ∈ [1,𝑁].

(6)

By allocating different values of 𝛼 and 𝛽, we can influence
whether we prefer a path that is short but has lots of
deformation relative to 𝐶

𝑃
or a path that is longer but with

less deformation.

Complexity Analysis.The computational cost of our approach
comes from the above three stages. In the stage of generating

configuration nodes, we generate 𝑁 position samples by
the medial axis technique and extend each position sample
into group’s configuration samples in𝑀 dimensions. In the
second stage, the local planner is to connect any two neighbor
configuration samples. We use the 𝑆shape(𝐶

sampling
𝑞

, 𝐶sampling
𝑤

)

formulation for 𝑀 times to compute the minimum dis-
tance from the grid 𝐺sampling

𝑞,𝑗
(𝑥
𝑗
, 𝑦
𝑗
, 𝜃
𝑗
) to 𝐶sampling

𝑤
and use

Algorithm 3 to generate the neighbor configurations of 𝐶
𝑄

for 𝑀 times at most. In the third stage, the evaluation
function in PRM algorithm at every node of the roadmap
is called 𝑀 times. Then the complexity of our planner is
𝑂(𝑁 ⋅ 𝑀 + 𝑁 ⋅ 𝑁 ⋅ 𝑀 ⋅ 𝑀 + 𝑁 ⋅ 𝑀) < 𝑂(𝑁2𝑀 + 𝑁2𝑀2)

which is equivalent to 𝑂(𝑁2𝑀2).
Through the analysis of the corresponding computational

complexity, the computational cost of the classic C-L method
is vast; however, the configuration nodes extended from
position samples in the first stage can provide guidance for
the local planner and reduce the complexity of our approach.

6. Results

In this section we will show some experiment results of the
approach described above. The experiment environment is
in 3D, and we use two experiments to test our approach.
The experiment environments are illustrated in Figure 5 in
which there are four corridors A, B, C, and D, respectively.
The widths of them are 2.3m, 3.7m, 2.3m, and 0.8m. In
experiments 1 and 2, the desired shape of the group is a square
which size is 3.5m × 3.5m. And we discretize the group into
25 grids with the size of 0.7m × 0.7m. The initial and goal
configurations are placed in Figure 5. 𝑥step and 𝑦step are set to
the size of the grid, that is, 0.7m. 𝜃step is set to 5

∘.
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Input. 𝐶
𝑄
= {𝐺
𝑄,1
(𝑥
1
, 𝑦
1
, 𝜃
1
) , 𝐺
𝑄,2
(𝑥
2
, 𝑦
2
, 𝜃
2
) , . . . , 𝐺

𝑄,𝑀
(𝑥
𝑀
, 𝑦
𝑀
, 𝜃
𝑀
)}, Obstacle space 𝐶obs, 𝑥step, 𝑦step, 𝜃step

Output. A neighbor list 𝐿 of 𝐶
𝑄

(1) Initialize a queue 𝑄, Initialize a list 𝐿
(2) Clone 𝐶󸀠

𝑄
from 𝐶

𝑄

(3) if all grids in boundary grid of 𝐶󸀠
𝑄
have no collision-free neighbors

(4) return null
(5) end if
/∗ Step 6–8 are used to rotate 𝐶

𝑄

∗/
(6) if {𝐺

𝑄,1
(𝑥
1
, 𝑦
1
, 𝜃
1
± 𝜃step) , 𝐺𝑄,2 (𝑥2, 𝑦2, 𝜃2 ± 𝜃step) , . . . , 𝐺𝑄,𝑀 (𝑥𝑀, 𝑦𝑀, 𝜃𝑀 ± 𝜃step)} is collision-free

(7) add {𝐺
𝑄,1
(𝑥
1
, 𝑦
1
, 𝜃
1
± 𝜃step) , 𝐺𝑄,2 (𝑥2, 𝑦2, 𝜃2 ± 𝜃step) , . . . , 𝐺𝑄,𝑀 (𝑥𝑀, 𝑦𝑀, 𝜃𝑀 ± 𝜃step)} into 𝐿

(8) end if
/∗ Step 9–23 are used to moving the boundary grids of 𝐶

𝑄
according to the compact property ∗/

(9) let 𝐶
𝑄
(𝑘) represent the kth boundary grid of 𝐶

𝑄
, num(𝐶

𝑄
) represents the total number of

boundary grid of 𝐶
𝑄

(10) for (𝑘 = 1; 𝑘 <= num(𝐶
𝑄
); 𝑘++)

(11) if 𝐶
𝑄
(𝑘) have collision-free neighbors

(12) let 𝜇 be the vector from 𝐶
𝑄
(𝑘) to one of its free neighbors with step size of 𝑥step or

𝑦step
(13) add 𝐶

𝑄
(𝑘) + 𝜇 to 𝐶󸀠

𝑄
and add all other grids in 𝐶

𝑄
except 𝐶

𝑄
(𝑘) into a queue 𝑄

according to the distance to 𝐶
𝑄
(𝑘)

(14) while 𝑄 is not empty
(15) 𝑄

𝑘
=Dequeue(Q)

(16) if 𝑄
𝑘
+ 𝜇 is collision-free, add 𝑄

𝑘
+ 𝜇 to 𝐶󸀠

𝑄

(17) else add 𝑄
𝑘
+ 𝜇󸀠 to 𝐶󸀠

𝑄
, where 𝜇󸀠 is the new direction which ensures the gird-set

satisfying the compact property
(18) end if
(19) end while
(20) add 𝐶󸀠

𝑄
into 𝐿

(21) end if
(22) end for
(23) return 𝐿

Algorithm 3: Generating all the neighbors of 𝐶
𝑄
.

The goal configuration of 
experiment 1

A

B

D

C

Obstacle
The initial configuration of 

experiment 1

The goal configuration of 
experiment 2

The initial configuration of 
experiment 2

The medial axis of the workspace

50m

25m

Figure 5: Generating the neighbors of one configuration.

Firstly, the medial axis technique is used to generate
100 position samples. And 12 position samples are discarded
because they are too close to the obstacle boundaries. Then
we use Algorithm 1 to extend the remaining ones into
88 configuration samples, part of which are illustrated in
Figure 6. In experiments 1 and 2, we set 𝛼 = 0.9, 𝛽 = 0.1 and
𝛼 = 0.3, 𝛽 = 0.7, respectively. Experiment 1 and experiment

2 were implemented using Microsoft Visual C++ using the
Solid collision detection package [23] and run on an Intel
Core i5-2400 CPU @ 3.10Ghz with 4GB internal memory.
The results are depicted in Figures 7 and 8.

Figure 7 depicts the shape difference between the group
and the desired configuration at every step of our planning
approach. Figure 8 depicts the distance between the group
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Experiment 1

(a) 𝛼 = 0.9, 𝛽 = 0.1

Experiment 1

(b) 𝛼 = 0.3, 𝛽 = 0.7

Experiment 2

(c) 𝛼 = 0.9, 𝛽 = 0.1

Experiment 2

(d) 𝛼 = 0.3, 𝛽 = 0.7

Figure 6: Some representative configuration samples.
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Figure 7: The shape difference at every step.

and the goal at every step. The experiment results show that
when 𝛼 = 0.9, 𝛽 = 0.1, our approach selects the path across
corridor A in experiment 1 and the path across corridor D
in experiment 2. When 𝛼 = 0.3, 𝛽 = 0.7, our approach
selects the path across corridor B in experiment 1 and the path
across corridor C in experiment 2.These two paths are longer
but have less deformation than the paths across corridors
A and D. In Figure 7 we can see that because the initial
configuration is different from the desired configuration, the
group tries to make its shape approach the desired shape in
the beginning of the planning steps. So, the shape difference
declines before entering the corridors.When the group enters
the corridors, the deformation begins. In the worst case
(corridor D), the maximum shape difference equals 85m. In
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𝛼 = 0.9; 𝛽 = 0.1 in experiment 1
𝛼 = 0.3; 𝛽 = 0.7 in experiment 1
𝛼 = 0.9; 𝛽 = 0.1 in experiment 2
𝛼 = 0.3; 𝛽 = 0.7 in experiment 2

Figure 8:The distance between the group and the goal at every step.

the best case (corridor B), because its width is bigger than the
size of the desired shape, the shape difference remains zero
after reducing to zero. Therefore, increasing 𝛽 will make the
group less deformedwhen passing through narrow corridors.
However, this will lead to the increase of the distance from
the group to the goal in some planning steps, as can be seen
in Figure 8.

Moreover, the computational cost of C-L method is com-
pared with our approach in the query phase in experiments 1
and 2. The results are depicted in Figure 9.

In Figure 9 we can see that our approach has a bet-
ter performance than C-L method. This is because the
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Figure 9: The consumed time of our approach versus C-L method in the query phase.

Initial
configuration

Goal
configurationT1

T2

T3

T4

Figure 10: The virtual environment of the experiment.

configuration samples which are regarded as nodes of the
roadmap provide guidance in planning the group’s path.
Further, the computational time of our approach mainly
comes from the collision detection of the boundary grids. So
if there are two paths whose lengths are the same, the one
which has more deformations will need more computational
time.

Furthermore, in order to prove the effectiveness of our
approach, we perform an experiment in a more complicated
environment with more grids. The scenario can be depicted
in Figure 10: there are somemotionless vehicles which can be
regarded as parts of obstacles, and the coherent group consists
of a hundred virtual individuals.

Both the proposed approach and C-L method are used to
plan a path connecting the initial and goal configurations of
the coherent group. And the visualization simulation results
of our approach in 3D space are illustrated in Figure 11. The
experimental results show that the coherent group can find a
path to reach the destination in the goal configuration and be
collision-free with the obstacles.

Moreover, the computational cost of our approach is
compared with C-L method in this experiment, and the

comparison result is 627 s to 703 s, which means that our
approach has a better performance than C-L method.

7. Conclusions

We present a novel planning method for the coherent group
whose area is constant when moving toward the goal. Our
approach has two advantages: compared with the method
which is based on classic PRM or its variants, our approach
embeds the discretizationway of C-Lmethod in local planner
to keep the area invariant in the planning. Compared with
C-L method, the medial axis technique in the preprocessing
phase can provide guidance for generating roadmaps, which
decreases the blindness of the C-L method. Moreover, differ-
ent weights of𝛼 and𝛽 can produce different paths which have
diverse features. And the computational cost of our approach
means that it is suitable for planning paths for the coherent
group.
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(a) 𝑇
1
= 0 s (b) 𝑇
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Figure 11: The configurations of the coherent group at different times.

Acknowledgment

This paper is supported by the National Natural Science
Foundation of China (Grants no. 61170160 and no. 61374185).

References

[1] A. Lomuscio, W. Penczek, and H. Qu, “Partial order reductions
for model checking temporal-epistemic logics over interleaved
multi-agent systems,” Fundamenta Informaticae, vol. 101, no. 1-2,
pp. 71–90, 2010.

[2] N. Wijermans, R. Jorna, and W. Jager, “CROSS: modelling
crowd behaviour with social-cognitive agents,” Journal of Artifi-
cial Societies and Social Simulation, vol. 16, no. 4, pp. 1–18, 2013.

[3] D. Chen, L. Wang, X. Wu et al., “Hybrid modelling and
simulation of huge crowd over a hierarchical Grid architecture,”
Future Generation Computer Systems, vol. 29, no. 5, pp. 1309–
1317, 2013.

[4] N. Magnenat-Thalmann and D. Thalmann, “Virtual humans:
thirty years of research, what next?” The Visual Computer, vol.
21, no. 12, pp. 997–1015, 2005.

[5] C. Peters and C. Ennis, “Modeling groups of plausible virtual
pedestrians,” IEEE Computer Graphics and Applications, vol. 29,
no. 4, pp. 54–63, 2009.

[6] J.-Y. Chang and T.-Y. Li, “Motion planning for reshapable
objects with size conservation,” in Proceedings of National
Computer Symposium, 2005.

[7] C. Holleman and L. E. Kavraki, “Framework for using the
workspace medial axis in PRM planners,” in Proceedings of
the IEEE International Conference on Robotics and Automation
(ICRA ’00), pp. 1408–1413, April 2000.

[8] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “MAPRM: a
probabilistic roadmap plannerwith sampling on themedial axis
of the space,” inProceedings of the IEEE International Conference
on Robotics and Automation, pp. 1024–1031, May 1999.

[9] C. W. Reynolds, “Flocks, herds, and schools: a distributed
behavioral model,” Computer Graphics, vol. 21, no. 4, pp. 25–34,
1987.

[10] O. B. Bayazit, J. M. Lien, and N. M. Amato, “Better flocking
behaviors using rule-based roadmaps,” in Algorithmic Founda-
tions of Robotics V, Springer Tracts in Advanced Robotics, pp. 95–
111, Springer, Berlin, Germany, 2004.

[11] T.-Y. Li and H.-C. Chou, “Motion planning for a crowd of
robots,” in Proceedings Of the IEEE International Conference
on Robotics and Automation, pp. 4215–4221, Taipei, Taiwan,
September 2003.

[12] T. Y. Li, Y. J. Jeng, and S. I. Chang, “Simulating virtual human
crowds with a leader-follower model,” in Proceedings of the
Computer Animation Conference, Seoul, Korea, 2001.

[13] L. Guibas, C. Holleman, and L. Kavraki, “A probabilistic
roadmap planner for flexible objects with a workspace medial-
axis-based sampling approach,” in Proceedings of IEEE Interna-
tional Conference on Intelligent Robots, 1999.

[14] A. Kamphuis and M. H. Overmars, “Motion planning for
coherent groups of entities,” inProceedings of IEEE International



12 Mathematical Problems in Engineering

Conference on Robotics and Automation, vol. 4, pp. 3815–3822,
2004.

[15] R. Geraerts and M. H. Overmars, “Clearance based path
optimization for motion planning,” in Proceedings of IEEE
International Conference on Robotics and Automation, vol. 3, pp.
2386–2392, 2004.

[16] A. Kamphuis andM. H. Overmars, “Finding paths for coherent
groups using clearance,” in Eurographics/ACM SIGGAPH Sym-
posium on Computer Animation, pp. 193–202, Grenoble, France,
August 2004.

[17] J.-Y. Chang and T.-Y. Li, “Simulating crowd motion with
shape preference and fuzzy rules,” in Proceedings of the 12th
International Symposium on Artificial Life and Robotics (AROB
’07), pp. 364–367, Oita, Japan, January 2007.

[18] J. Y. Chang and T. Y. Li, “Simulating virtual crowd with fuzzy
logic andmotion planning for shape template,” in Proceedings of
the IEEE International Conference on Cybernetics and Intelligent
Systems, 2008.

[19] D. Chen, L. Wang, A. Zomaya et al., “Parallel simulation of
complex evacuation scenarios with adaptive agent models,”
IEEE Transactions on Parallel and Distributed Systems, vol. PP,
no. 99, p. 1, 2014.

[20] D. Chen, X. Li, L. Wang et al., “Fast and scalable multi-
way analysis of massive neural data,” IEEE Transactions on
Computers, vol. PP, no. 99, p. 1, 2014.

[21] D.Chen, X. Li, D. Cui, L.Wang, andD. Lu, “Global synchroniza-
tion measurement of multivariate neural signals with massively
parallel nonlinear interdependence analysis,” IEEE Transactions
on Neural Systems and Rehabilitation Engineering, vol. 22, no. 1,
pp. 33–43, 2014.

[22] D. Chen, D. Li, M. Xiong, H. Bao, and X. Li, “GPGPU-aided
ensemble empirical-mode decomposition for EEG analysis dur-
ing anesthesia,” IEEE Transactions on Information Technology in
Biomedicine, vol. 14, no. 6, pp. 1417–1427, 2010.

[23] G. van den Bergen, Collision Detection in Interactive 3D Envi-
ronments, Morgan Kaufmann, Boston, Mass, USA, 2003.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


