
Scientific Programming 10 (2002) 35–44 35
IOS Press

Dynamic performance tuning supported by
program specification

Eduardo Césara, Anna Morajkoa, Tomàs Margalefa, Joan Sorribesa, Antonio Espinosab and
Emilio Luquea

aComputer Science Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Tel.: +34 93 5812888; Fax: +34 93 5812478;
E-mail: ania@aows10.uab.es,{eduardo.cesar, tomas.margalef, joan.sorribes, emilio.luque}@uab.es
bIsoco(Intelligent Software Components)
E-mail: Tonie@isoco.com

Abstract: Performance analysis and tuning of parallel/distributed applications are very difficult tasks for non-expert programmers.
It is necessary to provide tools that automatically carry out these tasks. These can be static tools that carry out the analysis on
a post-mortem phase or can tune the application on the fly. Both kind of tools have their target applications. Static automatic
analysis tools are suitable for stable application while dynamic tuning tools are more appropriate to applications with dynamic
behaviour. In this paper, we describe KappaPi as an example of a static automatic performance analysis tool, and also a general
environment based on parallel patterns for developing and dynamically tuning parallel/distributed applications.

1. Introduction

The main goal of parallel and distributed computing
is to obtain the highest performance in a due environ-
ment. Designers of parallel applications are respon-
sible for providing the best possible behaviour on the
target system. To reach this goal it is necessary to carry
out a tuning process of the application through a perfor-
mance analysis and the modification of critical appli-
cation/system parameters. This tuning process implies
the monitoring of application execution in order to col-
lect the relevant related information, then the analysis
of this information to find the performance bottlenecks
and determination of the actions to be taken to eliminate
these bottlenecks.

The classical way of carrying out this process has
been to use a monitoring tool that collects the informa-
tion generated during the execution and use a visualisa-
tion tool to present users with the information in a more
comprehensive way that tries to help in the performance
analysis [1–3]. These tools help users in the collection
of information and the presentation, but obliges them to
carry out the performance analysis on their own. There-

fore, this process requires a high degree of expertise
detecting the performance bottlenecks and, moreover,
in relating them to the source code of the application
or to the system components. To complete the tuning
cycle, it is necessary to modify the application code or
the system parameters in order to improve application
performance. Consequently, the participation of users
in the whole process is very significant.

Many tools have been designed and developed to
support this approach. However, the requirements
asked of users with respect to the degree of expertise
and the time consumed in this process, have not facili-
tated widespread use of such tools in real applications.

To overcome these difficulties, it is very important
to offer users a new generation of tools that guide them
in the tuning process, avoiding the degree of expertise
required by the visualisation tools. This new generation
of tools must introduce certain automatic features that
help users and guide them in the tuning process or even
carry out certain steps automatically in such a way that
user participation can be reduced or even avoided. In
this sense, two approaches can be distinguished: the
static and the dynamic.

ISSN 1058-9244/02/$8.00 2002 – IOS Press. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194623514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

36 E. César et al. / Dynamic performance tuning supported by program specification

In the static approach, the objective is to analyse ap-
plication performanceand then modify the source code,
recompile it and re-run the application. Usually, this
approach is based on a post-mortem analysis performed
on a trace file obtained during the execution of the ap-
plication. On the other hand, the dynamic approach
tries to tune the application during the execution with-
out stopping, recompiling or even re-running the appli-
cation. To accomplish this objective, it is necessary to
use dynamic instrumentation techniques that allow the
modification of the application code on the fly.

These two approaches might appear to be opposed,
but can actually be considered as complementary, since
they cover different application ranges and there are
several techniques and methodologies that are common
to them. Both have their advantages and disadvantages,
depending on the features of the application. The static
approach has the advantage that, when the applications
have a regular and stable behaviour, they can be tuned
and once the tuning process has been completed, the
application can be executed as many times as necessary
without introducing any [monitoring] intrusion during
the application execution.

However, there are many applications that do not
have such a stable behaviour and change from run to
run according to the input data, or even change their
behaviour during one single run due to the data evo-
lution. In this situation, the dynamic approach allows
for following the application behaviour on the fly. This
requires a continuous intrusion into the program that
is not necessary when application behaviour is stable.
Moreover, if the analysis is carried out on the fly dur-
ing the execution of the application, the information
available and time spent on analysis is considerably re-
stricted, due to the need to modify the application in
this particular run.

In the following sections of this paper, new tools cov-
ering both approaches are presented. In Section 2, we
describe an automatic performance analysis tool based
on a static approach. Section 3 introduces the principles
of a dynamic tuning tool supported by pattern-based
design environment. Section 4 describes the pattern-
based design environment; Section 5 introduces the dy-
namic instrumentation techniques required to carry out
the tuning on the fly, and finally, Section 6 presents
certain conclusion to this work.

2. A static automatic performance analysis tool:
KappaPi

KappaPi (Knowledge based Automatic Parallel Pro-
gram Analyser for Performance Improvement) [4] is a

static automatic performance analysis tool that helps
users in the performance improvement process by de-
tecting the main performance bottlenecks, analysing
the causes of those problems, relating the causes to the
source code of the application and providing certain
suggestions about the bottlenecks detected and the way
of avoiding them. KappaPi was designed and devel-
oped at Computer Architecture and Operating System
Group of the Universitat Autònoma de Barcelona.

This tool is based on a trace file post-mortem analy-
sis and a knowledge base that includes the main bottle-
necks found in message passing applications. The goal
of KappaPi is to provide users with some certain hints
that allow them to modify the application in order to
improve performance.

2.1. KappaPi operation cycle

The first step is to execute the application with a
monitoring tool in order to get the trace file that will
be analysed by the KappaPi analyser. The trace file
includes all the events occurred during the execution
of the application, related to the communication ac-
tions undertaken by the different processes of the ap-
plication. There are several tools that provide this kind
of trace file, but for our purpose it is necessary that
each event includes additional information that will be
useful during the analysis phase. Besides the kind of
event that has occurred (the source process, the desti-
nation process in a communication action and so on)
it is very important that the monitoring tool inserts the
time stamp of each event and the source code line that
is responsible for that particular event during the ex-
ecution of the application. TapePVM is a monitoring
tool for PVM applications that includes these features,
and VampirTrace for MPI applications also includes
the required information.

Once the trace has been generated, KappaPi tool can
be invoked. As a first step, KappaPi makes a gen-
eral overview of application performance by measur-
ing the efficiency of the different processors of the sys-
tem. KappaPi considers as performance inefficiencies
those intervals where processors are not doing any use-
ful work; they are simply blocked, waiting for a mes-
sage. So, the efficiency of a processor is considered as
the percentage of time where it is doing useful work.
When there are idle time intervals, these time intervals
should be avoided in order to improve application per-
formance. The best situation would be to have all the
processors completely busy doing useful work during
the execution of the application. In this first step, users

E. César et al. / Dynamic performance tuning supported by program specification 37

get some information about the overall behaviour of the
application, but have no idea about the bottlenecks and
their causes.

After this initial classification, KappaPi starts the
deep analysis by looking for performance bottlenecks.
KappaPi takes chunks from the trace file and classifies
the performance inefficiencies detected in that chunk.
It must be pointed out that several inefficiencies can
correspond to the same performance bottleneck, be-
cause, in many cases, the inefficiencies are repeated
throughout the execution of the application. The de-
tected bottlenecks are classified in a table according to
the inefficiency time incurred. After analysing the first
chunk, the second chunk is analysed and a new table is
built and joint to the initial one in such a way that the
new inefficiency time of the same bottleneck is added to
the first one. The process is repeated for all the chunks
and finally KappaPi provides a sorted table indicating
the worst performance bottlenecks.

The next stage in the KappaPi analysis is the classi-
fication of the most important inefficiencies. For this
purpose, it relates these inefficiencies with certain ex-
isting categories of behaviour using a rule-based knowl-
edge system. From this point, inefficiencies are trans-
formed into specific performance problems that must
be studied in order to build up certain hints to for users.

To carry out this classification, KappaPi tool takes
the trace file events as input and applies the set of rules
deducing a list of facts. The deduced facts are kept in a
list so that, in the next iteration of the algorithm, higher
order rules apply to them. The process terminates when
no more facts are deduced.

The query process finishes after the performance
problem has been identified (when fitting in one of the
categories of the rule-based system). The next step in
the analysis is to take advantage of the problem-type
information to carry out a deeper analysis that deter-
mines the causes of the performance bottleneck with
the objective of building an explanation of this problem
for users.

2.2. KappaPi knowledge base

Three main types of problems are differentiated [5]:
communication related, synchronisation and program
structure problems. This classification does not claim
to be a complete taxonomy of the performance prob-
lems in message passing programs. It only reflects dif-
ferent types of scenarios that commonly appear when
analysing the performance of message-passing applica-
tions. These reflect very different situations that require

special care when trying to improve the performance
of an application.

Given an execution interval of low efficiency, the de-
scription of a problem allows the possibility of engag-
ing a searching process that looks for the existence of
the problem in the interval of interest. Consequently,
the ultimate objective of performance-problemdescrip-
tions is to automate the search process for problems in
the performance data. As with any search process, it
can be viewed as a two-step process of query formula-
tion and the execution of this query in the performance
data space.

The queries define the high level constructs of the
application programming model. In this way, the sys-
tem recognises a programming structure that is close to
users with the subsequent objective of finding its per-
formance limitations and suggesting possible improve-
ments to users.

Therefore, we must build a language to express these
queries and a system with which execute them. Ad-
ditionally, the need for automation also requires the
creation of the queries that will implement the search
process. For this purpose, we have built a simple rule-
based system that carries out a process of deduction
using the trace file events and the deduced facts of the
system.

Rules are divided into different levels. The deduc-
tion process applies all rules in the first level to the
trace events until no further facts are deduced. Then,
these recently deduced facts serve as input to the next
level of rules and the deduction process applies again.
This process will continue until the last level of rules is
finished. In this way, higher order facts can be deduced
from lower level events. For example, a couple of a
send and a receive event can deduce a communication
between two processes Building facts on others previ-
ously deduced allows the system to detect higher order
execution situations. In principle, this system can al-
low the detection of any high level construction that de-
composes afterwards in small, lower level operations.

Rules encapsulate special program execution config-
urations that commonly represent performance prob-
lems. These configurations range from the detailed
low-level situations such as the behaviour of the com-
munication receives of certain processes to certain
global collaboration schemes of the application such
as the master/worker. The actual classification used
contains the following situations:

Communication problems

– Blocked Sender

38 E. César et al. / Dynamic performance tuning supported by program specification

Communication problem caused by two blocked
linked receives. In this case, one process is
blocked waiting for a message from a process,
which is also blocked, waiting for a message from
a third process. Rules defined for this problem
are:

(blocked sender, process p1, process p2, pro-
cess p3) is deduced when finding:
(receive at process p3 from process p2) &
(receive at process p2 from process p1) &
(send from process p1 to process p2)

– Multiple output
Communication problem caused by a serialisation
of the output messages of a process. The rule
needed to detect this problem is:

(multiple output, from process p1, to process
p2, process p3, . . .) =
(receive at process p2 from process p1) &
(receive at process p3 from process p2) &
(send from process p1 to process p2) &
(send from process p1 to process p3)

Synchronisation problems

– Barrier synchronisation
Barrier waiting times create a delay in the execu-
tion of the application. The rule needed for detec-
tion is:

(barrier problem, process p1 blocked time xx,
process p2 blocked time yy, . . .) =
(barrier call, process p1, blocked time)
(barrier call, process p2, blocked time)

Program structure problems

– Master/worker
Master/worker collaboration scheme generates
idle intervals. The rules defined for this problem
are:

(master/worker, p1 and p2) =
(dependence, p1, p2)&
(relationship, p1, p2)
(dependence, p1, p2) =
(communication, p1, p2) &
(blocked, p2, from p1)
(relationship, p1, p2) =
(communication, p1, p2) &
(communication, p2, p1)
(communication, p1, p2) =
(send, from p1, to p2) &
(receive, at p2, from p1)

– SPMD unbalance problems
Data partition between a group of processes de-
rives in a loss of performance. Rules needed re-
fer to the detection of a task link graph where all
task are connected to each other (rel is equal to
relationship):

(complete subgraph, p1, p2, p3, . . . , pn) =
(rel p1, p2) & (rel p1, p3) & . . . & (rel p1, pn)
& (complete subgraph, p2, p3, . . . , pn)
(rel p1, p2) =
(communication, p1, p2) &
(communication, p2, p1)

2.3. Building recommendations for users

The process of building a recommendation for users
starts with the simpler objective of building an expres-
sion of the highest-level deduced fact that includes the
situation found, the importance of such a problem and
the program elements involved in the problem. In some
cases, it is possible to evaluate the impact of a certain
change in the program that created the problem. Only
then will it be possible to calculate the impact of a
different solution and build a suggestion for users.

The creation of this description strongly depends on
the nature of the problem found, but in the majority of
cases, there is a need to collect more specific informa-
tion to complete the analysis. In these cases, it is neces-
sary to access the source code of the application and to
look for specific primitive sequence or data reference.
Therefore, some specialised pieces of code (or “quick
parsers”), which look for specific source information,
must be called to complete the performance analysis
description.

This last stage of the performance analysis can be
thought of as an information gathering process. Its ob-
jective is to use the identification of the performance
problems found in the analysis to build a description of
these problems for users. This description represents
the feedback that the tool is giving to users. Therefore,
the given information includes a description of the per-
formance problems found; the importance of the prob-
lem related to the global execution, and the program
elements that are involved in the problem. Sometimes,
this gathering can create a new, deeper analysis of the
problem to describe the causes of its generation. In
such cases, it is useful to look for specific details in the
application or in the trace file under analysis.

E. César et al. / Dynamic performance tuning supported by program specification 39

3. Dynamic performance tuning supported by
program specification

As was mentioned in the introduction, a different
approach from static automatic performance analysis
is that of dynamic performance tuning. This fits a set
of applications that can behave in a different way for
different executions. Such an approach would require
neither developer intervention nor even access to the
source code of the application. The running parallel ap-
plication would be automatically monitored, analysed
and tuned without the need to re-compile, re-link and
restart.

Dynamic performance tuning of parallel applications
is a task that must be carried out during application
execution and, therefore, there are certain points to be
considered:

– It is necessary to minimise the intrusion of the tool.
Besides the classical monitoring intrusion, in dy-
namic performance tuning there are certain addi-
tional overheads due to monitor communication,
performance analysis and program modifications.

– The analysis must be quite simple, because deci-
sions must be taken in a short time to be effective
in the execution of the program.

– The modifications must not involve a high degree
of complexity, because it is not realistic to assume
that any modification can be done on the fly.

For all these reasons, the analysis and modifications
cannot be very complex. Since monitoring, evalua-
tion and modification must be done in execution time,
it is very difficult to carry this out without previous
knowledge of the structure and functionality of the ap-
plication. The programmer can develop any kind of
program; hence, the generated bottlenecks can be ex-
tremely complicated. In such a situation, the analysis
and the modifications might be extremely difficult. If
knowledge about the application is not available, the
applicability and effectiveness of our approach is sig-
nificantly reduced. Therefore, an effective solution is
to extract as much information from the application
development framework as possible.

We therefore propose an environment that covers all
of the aspects mentioned above. The environment con-
sists of two main parts: an application development
framework and a dynamic performance tuning tool.
The first part provides the programmers with the de-
sign and development of their application. Users are
constrained to use a set of programming patterns, but
by using them, they skip the details related to the low

level parallel programming. The main goal of the sec-
ond part – the dynamic performance tuning tool – is to
improve performance by modifying the program dur-
ing its execution without recompiling and rerunning it.
This task is achieved by monitoring the application,
analysing the performance behaviour and finally tun-
ing selected parts of the running program. The whole
environment (the application design tool together with
the dynamic performance-tuning tool) allows the pro-
grammer to concentrate on the application design with-
out taking into account low level details and without
having to worry about program performance.

When developers builds the application in our envi-
ronment, they use the patterns provided by the frame-
work. Hence, the kind of structures and paradigms that
a developer has chosen is a known entity. On the other
hand, patterns provided by the framework are well-
known structures that may present certain well-known
performance bottlenecks. We can therefore define in-
formation about the application that is capable of be-
ing used by the tuning environment. This information
allows the tuning tool to know what must be monitored
(measure points), what the performance model is and
what can be changed to obtain better performance (tun-
ing points). Using this knowledge, the dynamic per-
formance tuning tool is simplified, because the set of
performance bottlenecks to be analysed and tuned are
only those related to the programming patterns offered
to users.

3.1. Environment modules

Our pattern-based programming and dynamic per-
formance tuning environment consists of several mod-
ules:

1. Application framework– this tool is based on
common parallel patterns and offers support to
users in developing their parallel application. The
framework provides specific information to the
dynamic performance tuning environment that
can simplify the tuning of the pattern-based ap-
plication on the fly.

2. Monitor – this tool collects events produced dur-
ing the execution of the parallel application. To
collect them, the monitor dynamically inserts in-
strumentation into the original program execu-
tion, taking into account all the running processes
of the application. Generally, the instrumentation
is specified by the framework (measure points),
but it can also be specified interactively by a user

40 E. César et al. / Dynamic performance tuning supported by program specification

before program execution. If the analyser re-
quires more or less information, it can notify the
monitor to change the instrumentation dynami-
cally during run-time.

3. Performance Analyser– this module is responsi-
ble for the automatic performance analysis of a
parallel application “on the fly”. During the exe-
cution, the analysis tool receives selected events
that occur in the application’s processes. Using
received events and the knowledge given by the
framework (performance model), the analyser de-
tects the performance bottlenecks, determines the
causes and decides what should be tuned in the
application to improve performance. Detected
problems and recommended solutions are also re-
ported to users.

4. Tuner– this module automatically modifies a par-
allel application. It utilises solutions given by the
analyser as well as information provided by the
framework (tuning points). Tuner manipulates
the running process and improves the program
performance by inserting appropriate modifica-
tions. It has no need to access a source code or
program restart.

Figure 1 shows how the described modules dynam-
ically interact among themselves and with the appli-
cation (in the run-time phase), also indicating the in-
formation that they obtain from the framework used in
building the application (development phase).

On the one hand, our approach requires an applica-
tion framework, which includes knowledge about the
patterns and the behaviour of their implementation in
the parallel application. On the other hand, to ac-
complish the goals of our dynamic tuning approach,
we need to use a dynamic instrumentation technique.
Only this technique allows the inclusion of certain new
code in a running program without accessing the source
code. The following sections describe two main parts
of our environment in further detail. These are: the ap-
plication framework and dynamic performance tuning
supported by dynamic instrumentation.

4. Application framework

The solution to most concurrent problems could be
obtained from the application of a finite set of design
patterns [6,7]. Moreover it is possible to offer a finite
set of pattern implementations (frameworks),which de-
pend on the design pattern used and also on the imple-

mentation paradigm (message passing, shared mem-
ory).

We have focused our work on the frameworks de-
voted to message passing systems, with two main ob-
jectives in mind:

– Allow programmers to concentrate on codifying
application-related issues, concealing low-level
details of the communication library from them.

– Facilitate the dynamic performance tuning of the
application, defining a performance model for
each framework.

To obtain the first objective, we provide a library
to offer users the possibility of developing an applica-
tion based on parallel programming paradigms such as
Master-Worker, Pipeline, SPMD, and Divide & Con-
quer.

Object-oriented programming techniques are the nat-
ural way for implementing patterns, not only due to
their capacity for encapsulating behaviour, but also of-
fering a well-defined interface to users. For these rea-
sons, we have designed a class hierarchy in C++, which
encapsulates the pattern behaviour, and also a class to
encapsulate the communication library. In this sense,
using our API the programmer simply has to fill in
those methods related to the particular application be-
ing implemented, indicating the computation that each
process has to perform, and the data that must be com-
municated with other processes.

A configuration tool complements this library, where
users indicate the general structure of the application
and the data structures that will be communicated by
each process. The tool uses this configuration informa-
tion to generate the adequate object structure and the
communication classes.

To fulfil the second objective, it is necessary to de-
velop a performance model for each framework that
allows knowing what the ideal behaviour of the pattern
should be, how far is the real behaviour from this ideal
and how this ideal behaviour could be reached. Conse-
quently, we have to analyse possible performance bot-
tlenecks for each framework, which measures have to
be taken to detect these bottlenecks, and what actions
might be taken to overcome them.

The objective is to detect from outside the applica-
tion that there is some (possibly undetermined) per-
formance problem using very little information, and
then try to isolate the specific problem by gathering
new data from the application. The measures that have
to be obtained to detect and isolate the performance
problems are defined by the performance model of the

E. César et al. / Dynamic performance tuning supported by program specification 41

Run-time phaseDevelopment phase

Application

Low leve details

Application
development

API

Application
framework

Monitor

Performance
analyser

Measure
points

Perform.
model

Tuning
points

Tuner

Fig. 1. Design of the dynamic tuning environment supported by program specification.

used framework, which in turn is used by the tuning
tool to decide where, and when, to introduce corrective
actions.

We have adopted a methodology that allows a unified
approach to the definition, analysis and implementation
of each framework, but which also defines a way to
define new frameworks in the future (flexibility). The
methodology includes:

– A general description of the framework.
– Establishing the elements to specify user-application

in terms of the selected framework (interface).
This includes initialisation and ending, functional
description, and communication management.

– Characterising the associated framework bottle-
necks.

– Determining the parameters needed to detect these
bottlenecks (measure points).

– Determining the parameters that could be changed
to overcome these bottlenecks and the actions that
could be taken on them (tuning points).

The frameworks that have been included up to this
point are the following:

– Master-Worker:

∗ Description: this framework consists of a mas-
ter process that generates requests to other pro-
cesses called workers. These workers make a
computation on the requests and then send the
results back to the master.

∗ Interface: how the master generates tasks, the
actual computation that must be undertaken by
each worker and the processing that the master
must carry out on the received results.

∗ Bottlenecks: performance differences among
workers, too few workers, too many workers,
computational differences in requests process-
ing (due, for example, to the task granularity).

∗ Measure points:communications times, work-
ers computation times.

∗ Tuning points:task distribution (which includes
message size, i.e., the number of tasks sent at
one time to a worker), and worker numbers.

– Pipeline:

∗ Description: this pattern represents those algo-
rithms that can be divided in an ordered chain
of processes, where the output of a process is
forwarded to the input of the next process in the
chain.

∗ Interface:work that must be carried out at each
stage of the pipe, input and the output data and
connection among stages.

∗ Bottlenecks: significant performance differ-
ences among stages, bad communication/
computation ratio.

∗ Measure points:computing the time and data
load for each stage, stage waiting time.

∗ Tuning points:the number of consecutive stages
per node, the number of parallel instances of a
stage.

– SPMD(Single Program Multiple Data):

∗ Description: this represents those algorithms
where the same processing is applied on dif-
ferent data portions, with some communication
patterns among processing elements.

∗ Interface: this specifies the task that must be
carried out for all the processes, including the

42 E. César et al. / Dynamic performance tuning supported by program specification

data communication (send-receive) pattern and
protocol (all-to-all, 2D mesh, 2D torus, 3Dcube,
and so on).

∗ Bottlenecks: performance differences among
processes.

∗ Measure points:computing time and data load
of each process, waiting time for other pro-
cesses.

∗ Tuning points:number of intercommunicating
processes per node, number of instances of a
process, and, in certain cases, data distribution.

– Divide and Conquer:

∗ Description: each node receives some data and
decides to process it or to create certain new
processes with the same code and distribute the
received data among them. The results gener-
ated at each level are gathered to the upper level.
Each process receives partial results, carries out
some computation based on them and passes the
result to the upper level.

∗ Interface: processing of each node, the amount
of data to be distributed and the initial configu-
ration of nodes.

∗ Measure points: completion time for each
branch, computation time for each process,
branch depth.

∗ Tuning points:number of branches generated in
each division, data distribution among branches,
and branch depth.

5. Dynamic performance tuning by dynamic
instrumentation

The main goal of our work is to provide an envi-
ronment that automatically improves the performance
of parallel programs during run-time. To be able to
achieve this objective, we make use of a special dy-
namic instrumentation technique. The implementation
of the technique is provided by a library called DynInst,
which is presented in the first subsection. The sec-
ond subsection describes further details on our dynamic
tuning tool that is based on DynInst and the application
framework.

5.1. Dynamic instrumentation: DynInst

The principle of dynamic instrumentation is to defer
program instrumentation until it is in execution and
insert, alter and delete this instrumentation dynamically

during program execution. This approach was first
used in the Paradyn tool developed at the University
of Wisconsin and University of Maryland. In order to
build an efficient automatic analysis tool, the Paradyn
group developed a special API that supports dynamic
instrumentation. The result of their work was called
DynInst API [8].

DynInst is an API for runtime code patching. It
provides a C++ class library for machine independent
program instrumentation during application execution.
DynInst API allows attaching to an already-running
process or starting a new process, creating a new piece
of code and finally inserting created code into the run-
ning process. The next time the instrumented program
executes the block of code that has been modified, the
new code is executed. Moreover, the program being
modified is able to continue its execution and does not
need to be re-compiled, re-linked, or restarted. DynInst
manipulates the address-space image of the running
program and, thus, this library only needs to access
a running program, not its source code. However,
DynInst requires an instrumented program to contain
debug information.

The process to be instrumented is simply called ap-
plication or mutatee. A separate process that modifies
an application process via DynInst is called mutator.
The DynInst API is based on the following abstrac-
tions:

– point – a location in a program where new code
can be inserted, i.e. function entry, function exit.

– snippet– a representation of a piece of executable
code to be inserted into a program at a given point;
a snippet must be built as an AST (Abstract Syntax
Tree). It can include conditionals, function calls,
loops, etc.

– thread– a thread of execution (this means process
or a lightweight-thread).

– image– refers to the static representation of a pro-
gram on disk. Each thread is associated with ex-
actly one image.

Taking into account the possibilities offered by the
DynInst library, it is possible to insert code into the
running application. Our dynamic tuning tool uses this
library for two main objectives:

– Insert code for monitoring purposes to collect in-
formation on the behaviour of the application. The
module supporting this function will be called the
“monitor”.

E. César et al. / Dynamic performance tuning supported by program specification 43

Change instrumentation

Apply modificationsApply modifications

Events

Change instrumentation

Machine 3
Performance analyser

Machine 2Machine 1

MonitorTuner

Process

Process

TunerMonitor

Process

Performance model

Fig. 2. Dynamic tuning system design.

– Insert code for performance tuning. The main goal
of dynamic tuning is to improve the performance
on the fly. Therefore, it is necessary to change the
code of the application. The module supporting
this function will be called the “tuner”.

5.2. Dynamic performance tuning architecture

The current version of our dynamic tuning tool is im-
plemented in C++ language and is dedicated to PVM-
based applications. However, the system architecture
is open and could be easily extended to support appli-
cations that use other message passing communication
libraries. In fact, the communication library details
are hidden in our approach, since the low-level code is
generated automatically by the application framework.

In general, the parallel application environment usu-
ally collects several computers. A parallel application
consists of several intercommunicating processes that
solve a common problem. Processes are mapped on a
set of computers and hence each process may be phys-
ically executed on a different machine. This situation
means that it is not enough to improve processes sepa-
rately without considering the global application view.
To improve the performance of the entire application,
we need to access global information about all pro-
cesses on all machines. And to obtain this objective,
we need to distribute the modules of our dynamic tun-
ing tool (monitors and tuners) to all machines where
application processes are running.

In Fig. 2, we present a scheme for the dynamic tuning
tool indicating the distribution of the modules. The
figure also illustrates the interactions between all the
modules of the dynamic tuning system that we describe
in the following paragraphs in more detail.

To collect events that happen during the execution
of each process, the monitor makes use of the DynInst
library and dynamically inserts the instrumentation

into the original process execution. Using informa-
tion given by the framework, this module can instru-
ment each process at points that are highly specific for
the monitored application (it knows the points where
a bottleneck can occur) thus minimising intrusiveness.
From the implementation point of view, we insert a
piece of monitoring code (snippet) into the running
program at all points that are needed to discover per-
formance problems. Such a snippet logs events that
happen during program execution. The logging snip-
pet may be inserted at arbitrary points defined by the
used patterns, for instance at the entry and/or exit of
pvm send and pvm recv functions if communication is
a potential bottleneck. When the function is executed,
the snippet code logs timestamp, all function parame-
ters and execution time, and sends them as events to
the analyser.

The monitor distribution indicates that events from
different tasks are collected on different machines.
However, our approach to dynamic analysis requires
the global and ordered set of events, and thus we have
to send all events to a central location. The analyser
module can reside on a dedicated machine collecting
events from all distributed monitors. For faster and
easier analysis, this module also uses information given
by the framework – especially the performance model
that is the consequence of the pattern or patterns chosen
to develop an application. Although this module has
such knowledge from the framework, the analysis is
still assumed to be time-consuming. It can significantly
increase application execution time if both – the anal-
yser and the application – are running on the same ma-
chine. In order to reduce intrusion, the analysis should
be executed on the dedicated and distinct machine (the
performance “optimiser” machine).

The analysis must be carried out globally by taking
the behaviour of the entire application into considera-
tion. The collected events are used to detect potential
problems. Obviously, during the analyser computation,

44 E. César et al. / Dynamic performance tuning supported by program specification

monitor modules can still trace the application. In cer-
tain situations, the analyser may need more information
about program execution to detect a problem or deter-
mine the action to be taken. Therefore, it can request
the monitor to change the instrumentation dynamically
in order to provide more detailed information about
specific program behaviour. Consequently, the moni-
tor must be able to modify program instrumentation –
add more or remove whatever is redundant – depending
on the needs of the performance analysis. To detect
problems, find their causes and provide a solution, we
take advantage of the knowledge and experience gained
from work undertaken on the KAPPA-PI tool.

The last module – tuner – receives the decision
from analyser and automatically modifies the applica-
tion during run-time using DynInst library. It is based
on knowledge of mapping problem solutions to code
changes (tuning points). Therefore, when a problem
has been detected and the solution has been given, tuner
must find appropriate modifications and apply them dy-
namically into the running process. Here our frame-
work is also very useful, because it provides informa-
tion about parameters that can be changed and actions
that can be taken to overcome the bottleneck. There-
fore, tuner knows what it must modify in order to im-
prove performance. The inclusion of some new code
into a process must be done during run time without
recompiling and re-running it. Applying modifications
requires access to the appropriate process; hence tuner
must be distributed on different machines.

For example, when an application is based on mas-
ter/worker pattern, the parameter, which is important
for a good performance, is the number of workers.
Therefore, if there are insufficient workers doing the
work, an application might need far more time to finish.
The analyser discovers this problem and recommends
increasing the number of workers. The tuner receives
this information, and by using the knowledge provided
by the application framework, finds out which parame-
ter in the application represents this number. To change
the code, it finds the variable in running process via
DynInst, and modifies the value. The rest of the work
is carried out by the framework runtime. The frame-
work detects the change of the variable and adjusts the
number of workers accordingly. In our example, the
next time that the application distributes the data, there
will be more workers to do the work.

6. Conclusions

We have presented two kinds of tools for automatic
performance analysis. KappaPi is a knowledge-based

static automatic performance analysis tool that analy-
ses trace file looking for bottlenecks and provides cer-
tain hints to users. Users can take advantage of these
hints in order to modify the application to improve per-
formance. The second approach to parallel/distributed
performance analysis and tuning includes a pattern-
based application design tool and a dynamic perfor-
mance tuning tool. The sets of patterns included in
the pattern-based application design tool have been se-
lected to cover a wide range of applications. They of-
fer well-defined behaviour, and the bottlenecks that can
occur are also very well determined. In this sense, the
both analysis of the application and performance tuning
on the fly can be carried out successfully. Using this
environment, the programmers can design its applica-
tion in a fairly simple way, and then have no need to
concern themselves about any performance analysis or
tuning, as dynamic performance tuning automatically
takes care of these tasks.

Acknowledgement

This work was supported by the Comision Intermin-
isterial de Ciencia y Tecnologı́a (CICYT) under con-
tract number TIC 98-0433.

References

[1] D.A. Reed, P.C. Roth, R.A. Aydt, K.A. Shields, L.F. Tavera,
R.J. Noe and B.W. Schwartz, Scalable Performance Analysis:
The Pablo Performance Analysis Environment,Proceeding of
Scalable Parallel Libraries Conference, IEEE Computer Soci-
ety, 1993, pp. 104–113.

[2] W. Nagel, A. Arnold, M. Weber and H. Hoppe: VAMPIR:
Visualization and Analysis of MPI Resources, Supercomputer
1 (1996), 69–80.

[3] Y.C. Yan and S.R. Sarukhai, Analyzing parallel program perfor-
mance using normalized performance indices and trace trans-
formation techniques, Parallel Computing22 (1996), 1215–
1237.

[4] A. Espinosa, T. Margalef and E. Luque, Integrating Automatic
Techniques in a Performance Analysis Session, Lecture Notes
in Computer Science, (Vol. 1900), (EuroPar 2000), Springer-
Verlag, 2000, pp. 173–177.

[5] A. Espinosa, Automatic performance analysis of parallel
programs, PhD thesis. Universitat Autònoma de Barcelona,
September 2000.

[6] J. Schaffer, D. Szafron, G. Lobe and I. Parsons, The Interprise
model for developing distributed applications, IEEE Parallel
and Distributed Technology1(3) (1993), 85–96.

[7] J.C. Browne, S. Hyder, J. Dongarra, K. Moore and P. Newton,
Visual Programming and Debugging for parallel computing,
IEEE Parallel and Distributed Technology3(1) (1995), 75–83.

[8] J.K. Hollingsworth and B. Buck, Paradyn Parallel Performance
Tools, DynInstAPI Programmer’s Guide, Release 2.0, Univer-
sity of Maryland, Computer Science Department, April 2000.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

