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We investigate some identities on the Bernoulli and the Hermite polynomials arising from the
orthogonality of Jacobi polynomials in the inner product space P,,.

1. Introduction

For a, p € R with a > -1 and > -1, the Jacobi polynomials P,(la’ﬂ ) (x) are defined as

PP () = %21—"1(—11,1 ta+prna+l; 1%)
(a+1), & (A +a+p+n), /x-1\F (1.1)
WA G, ( 2 >
(see [14]), where (), =a(a+1)---(a+n-1) =T'(a+n)/T(a).
From (1.1), we note that
@p, _ Ta+l+n) G()T(a+p+n+k+1)/x-1 k
P (x)_n!l“(a+ﬁ+n+1)k§::‘) T(a+k+1) ( 2 > (1.2)
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By (1.2), we see that P,Sa’ﬂ ) (x) is polynomial of degree n with real coefficients. It is not difficult
to show that the leading coefficient of P,ia’ﬁ ) (x) is 27"( “*é:’z" ). From (1.2), we have P,(,“’ﬁ ) 1) =
(")

By (1.1), we get

k Fn+a+pf+k+1)
<i> PP () = gk LB Fa+p ) plakth) ()

dx T(n+a+p+1) "* 13)

(a+k,p+k)

=zl—k(n+a+ﬂ+k)(n+cx+ﬁ+k—1)-~-(n+a+ﬁ+1)Pn_k (x),

where k is a positive integer (see [1-4]).
The Rodrigues’ formula for P,(,a’ﬁ ) (x) is given by

n k
(1 - x)*(1+ x)P PP (x) = % <%) { (1— %)™ (1 + x)"+ﬂ}_ (1.4)

It is easy to show that u = pLP (x) is a solution of the following differential equation:

(1—x2>u”+ {(B-a-(a+p+2)x}u' +n(n+a+p+1)u=0. (1.5)

As is well known, the generating function of P,sa’ﬂ ) (x) is given by

2a+ﬂ

F(x,t) = Y PP ()t =

] R(1-t+R)*(1+t+RF (16)

where R = V1 - 2xt + t2, (see [1-4]).
From (1.3), (1.4), and (1.6), we can derive the following identity:

1

f PP ()P (0)(1 - 20)" (1 + x)Pdx

-1 (1.7)
22+ a+ DI (n+p+1)

B Cn+a+p+DI(n+a+p+1)I(n+1)

n,mrs

where 6, , is the Kronecker symbol.
Let P, = {p(x) € R[x] | degp(x) < n}. Then P, is an inner product space with respect

to the inner product (gi1(x),g2(x)) = ﬁl (1-2)%1+ x)ﬂql(x)qz(x)dx, where g1(x),g2(x) €
P,. From (1.7), we note that {Pé“’ﬂ ) (x), Pl(a’ﬂ ) (x),..., P,(la’ﬂ ) (x)} is an orthogonal basis for P,,.
The so-called Euler polynomials E, (x) may be defined by means of

2
et +1

[¢e] tn
et = et = Y Eu(x) (1.8)
n=0 '



Discrete Dynamics in Nature and Society 3

(see [5-22]), with the usual convention about replacing E"(x) by E,(x). In the special case,
x =0, E,(0) = E, are called the Euler numbers.
The Bernoulli polynomials are also defined by the generating function to be

[os] tn
— 1ext — Bt _ ZBn(x)E, (1.9)
n=0 :

(see [11-21]), with the usual convention about replacing B"(x) by B, (x).
From (1.8) and (1.9), we note that

B, (x) = En] <Z> Buix*,  Eu(x)= zn] (Z) Ejix*. (1.10)

k=0 k=0

Forn € Z,, we have

=nkE,1(x) (1.11)

dBy(x) _ dE,(x)
dx - an—l (x)l dx

(see [23-29]) By the definition of Bernoulli and Euler polynomials, we get

By=1, Bu(1)-B,= 61,n1 Eo=1, E,(1)+E,= 260,n- (1.12)

In this paper we give some interesting identities on the Bernoulli and the Hermite polynomi-
als arising from the orthogonality of Jacobi polynomials in the inner product space P,,.

2. Bernoulli, Euler and Jacobi Polynomials

From (1.4), we have

PP () =§J<ZJ:Z> <nzﬂ) (xT—1>k<xT+1>n_k, 2.1)

By (2.1), we have

» n+a _ n+p
Zpr(lu,ﬂ)(x)tn _ % § (1 + ((.'X' + 1)/2)2) zn‘(i + ((x 1)/2)2) dz, (22)
n=0

where we assume x # + 1 and circle around 0 is taken so small that —2(x +1) " lie neither on
it nor in its interior. It is not so difficult to show that P,(la’ﬁ ) (—x) = (—1)"P,(,ﬂ ) (x).
For g(x) € Py, let

ax) = SCPP ), (G eR). 23)
k=0



4 Discrete Dynamics in Nature and Society

From (1.7), we note that

(900, PP (x)) = Ce (P (), PP () )

1 2
- C L (1-2x)"(1 + x)ﬂ<P,£“’ﬂ) (x)> dx

22 (k+a+ D)I(k+f+1)
“Qk+a+p+)I(a+p+k+1)k’

Thus, by (2.4), we get

_(k+a+p+ )T (a+p+k+1)k!
© 22T (k+a+ DT(k+p+1)

1
f (1-x)"(1+ %) P (x)q(x)dx.
-1

Therefore, by (1.7), (2.3), and (2.5), we obtain the following proposition.

Proposition 2.1. For q(x) € P,(n € N), one has

ax) = 3 CPP (),

k=0

where

D@k +a+p+ DT (k+a+p+1)

C
$ T T e B T (gt k£ 1) I(B+k+1)

Let us take g(x) = x™ € P,. First, we consider the following integral:

[ () (-wea e o

:Jl <di> {(1 x)k+a(1+x)k+ﬂ} dx

(n)f( ) (1—x)k+“(1+x)k+ﬁ}x"’1dx

(—1)"(71"—!,{), f (1-x)* (1 + x)*Px"*dx
),

< S(1- x)k (1 + x)k+ﬁ>q(x)dx.

(2.4)

(2.5)

(2.6)

(2.7)
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(=1)*n12krarpl J‘l ki ke n-k
= 1- 2y-1)""d
m-lr ), ¥ -y Ty -1) Ty

1 k n—
En )k)'22’<+u+ﬂ+1z<"l )21( D" B(k+1+p+1,k+a+1)

(1) 2k+a+frl n-k\, wka Lk + 1+ B+ 1T (k+a+1)
C(n- k)'2 Z( ! )2( Y Ik+a+p+1+2)

(2.8)
From (2.5) and (16), we have

D@k +a+p+1D)I(k+a+p+1)
20+p kT ( + k + 1T (B + k +1)

x J‘jl (:—x>k{(1 —x)ke 4 x)k+ﬁ}x”dx

B (—1)k(2k +a+f+DI(k+a+p+1) (=1)Fnip2kraspsl
T 2P (@t k+ DI(f+k+1)  (n—k)! (2.9)

=N\, ok LI+ p+ )T (k+a+1)
XZ< ! )2(_1) IRk+a+p+1+2)

Ci =

1=0

C@k+a+prD)T(k+a+p+1)n2knk (-1)" (2T (k+1+p+1)
- T(B+k+1)(n-k)! & T2k +a+p+1+2) ‘

By Proposition 2.1, we get

n nk (2k+a+ﬁ+1)F(k+a+ﬁ+1)
x ‘"%%( T(k+p+1)(n—k) >

(2.10)

) < (_1)n—k—l(nyk )er(k +1+ ‘[5 + 1) >P(a’ﬂ) (x)
T2k +a+p+1+2) k

From (1.9), we have

= et (e ) = S (At B ) T @11)

et n+1

By (2.11), we get

o= B (x +n13_1 By (.X'), (Tl e Z+) (212)

Therefore, by (2.10) and (2.12), we obtain the following theorem.
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Theorem 2.2. Forn € Z., one has

1
(n+1)!

k=0

{Bns1(x +1) = Bpya(x)}

(2.13)

<n—k (-1)" 2R 2k + a + B+ 1) (7))

IZ:():F(k+ﬂ+1)F(2k+a+ﬂ+l+2)(n—k)!

xT(k+a+p+1)T(k+1+p+ 1)>Pk<”"’)(x).
Let us take g(x) = B,(x) € P,,. Then we evaluate the following integral:

f: (%)k{“ =) (1 + ) P} B (x)dx

< (1 (_1)kl! 2k+a+p+1 ! k+p k+a I-k
) B 2 Y (1-y) " (w-1) "dy
1=k :

é( ) 1)k;'22k+a+ﬂ+1:g)<l 1‘”")2’"(—1)"""” (2.14)

I(k+m+p+1)I(k+a+1)
Tk +a+p+m+2)

LK (7)Byi(<1) 12kl (1 k)ZmF(k+m+ﬁ+1)F(k+a+1)
(I-k)TQ2k+a+p+m+2)

-3

=k m=0

—

Finding (2.5) and (21), we have

~ D@k +a+p+ DT (a+p+k+1)
C T e R T (@ k+ )L (f+ Kk +1)

vodk K k
XJ' <—k(1—x) (1 4 x) +ﬁ>Bn(x)dx
-\ dx (2.15)

Lk 2k (1) By (1)U 2k + a4+ f+ 1) (1)
{ T(p+k+1)(I-k)TQk+a+p+m+2)

xT(k+m+p+1)I(k+a+p+1).
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Theorem 2.3. For n € Z., one has

o (k2R By (1) R 2k et f+1) ()
Bn(x) = Z<ZZ T(B+k+1)(I-k)T(2k +a+p+m+2)

1=k m=0

(2.16)
xT(k+m+p+1)(k+a+p+ 1)>P,§“'ﬂ’ (x).

Let g(x) = PP )(x) € P,. From Proposition 2.1 , we firstly evaluate the following
integral:

fl (%)k{(l — 2" (14 0P | PP () dx
1

IR I'(n+a+p+k+1)
= 2k F(n+a+p+1)

1
j (1= xR (1 + )P PP () .
(2.17)

By (2.1) and (2.17), we get

T ——

( 1)kr(n+a+ﬁ+k+1)z< n+a ><n+[5>

28 T(n+a+p+1) n-k-1 l

y J‘: (1 x)F(1+ x)k+ﬁ<xT—1>l<x;- 1>n—k_zdx
_ 21k)k 1"(;1(; cj: ; f ; i -1i-)1) ;{;( n+a ) (n -li- ﬁ) (=1)lp2ksasp1

J‘ (1 k+u+l n+ﬁ ldy

g T(n+a+p+k+1) n+a n+p
— (_1\kna+p+k
=172 1 I(n+a+p+1) Z( >< >( )

1=0

xBk+a+l+1,n+p-1+1)

T(n+a+P+k+1)"E/ n+a \ /n+p
— (_1\kna+p+k+1
(12 T(n+a+p+1) ,_0<”—k—l)< >( o
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Tla+k+1+1)I(n+p-1+1)
F(a+p+k+n+2)

:(_1)k2a+ﬂ+k+lr(n+a+ﬁ+1)Z< n+a ><”+ﬂ)( 1)!

Fa+k+1+1)I(n+p-1+1)
* (a+p+k+n+1) '

(2.18)

It is easy to show that

IF(n+p-1+1) _ (n+p-1)---pr(p)
T(f+k+1) (B+Kk)---pr(p)

RS

=(m+p-1)---(P+k+1)
(2.19)

From (2.5), (2.18), and (2.19), we can derive the following equation:

D)@k +a+p+1)I(k+a+p+1)
20PHAT ( + K+ 1)I(f+k + 1)

. r <ddx)k (1= 01+ | ()

_ (2k+a+ﬂ+l)1"(a+[5+k+l)z< n+a ><n+ﬂ><a+k+l>

FB+k+1)I(n+a+p+1) n-—k-1 l l

Ck =

(2.20)
, T(n+p-1+1)
(x+p+k+n+1)

= (2k+zx+[5+1)F(cx+ﬁ+k+1)rg<n1i;0il><n-;ﬂ)<2i£j>

(n—k-Dn
a+pf+k+n+1

x 11(~1)

(-1)".

Therefore, by Proposition 2.1, we obtain the following theorem.
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Theorem 2.4. For (n € Z,), one has

F(n+a+ﬂ+1)P(a’ﬂ)(x) L

F(a+ﬂ+1; Z{n (2k+a+ﬁ+1)<a+£+k><nﬁ;lﬁl>

k=0
(P B\(atk+D\(n+p-I\CD (n—k =Dk ap)
< l >< l ><n_k_l/ a+ﬂ+n+k+1 }Pk (x)

(2.21)

Let H,(x) be the Hermite polynomial with
Ha (%) = q(x) = 3G PP (x), (2.22)

k=0

where
o _ D@k +a+p+1)I(k+a+p+1)
C T T e (g k+ DI(f+k+1)

(2.23)

« rl <%>k{(1 ~ ) (14 )P | H () dx.

Integrating by parts, one has

J: <;_x>k{(1_x)k+a(1+x)k+ﬂ}Hn(x)dx

k 1
)

= 21(:& 13()7'Z<n k> ke 121.[ (1-x)*(1 + x)*Pxldx

_ _2kK(=1)*n!

o Z(n k> - 22k+u+ﬁ+l+lz< >(_1)l—m2m (2.24)
d : (1-y)" gty

2k(_1)kn!n—k l n-k l [-mn2k-+a+f+m+l+
R ZZ( ! ><m>H””‘”(_1) zhm

© 1=0m=0

Fk+a+DI'(B+k+m+1)
X .
Ik +a+p+m+2)
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By (2.23) and (29), we get

nk 1 (") (L) Hocka (F1) 7 @k a4 1) (<05 )kl

Cr = 2k+a+p+m+1
om0 (a+p+ 1)( e >(m +2K)!(n - k)! (225)
x 22k+m+ln| ﬂ tk+m m!
Therefore, by (2.22) and (2.25), we obtain the following theorem.
Theorem 2.5. Forn € Z,, one has
(a+p+1)Hy(x) i ”2" i (MY (L )Hn,k,l(—l)l’m(Zk +a+p+1)
n! S (b ) on 2k (n - k)
(2.26)
X <[X + ﬁ + k> k!22k+m+l (ﬁ + k + m>m| }Plgurﬂ) (x)/
k m
where H,, is the nth Hermite number.
Remark 2.6. By the same method as Theorem 2.3 , we get
1 no ko 2k v+ a+ f+ 1) (7F) (-1)" K
_|{En(x+1)+En(x)}=Z<Z ( a 16 )( 1 )( )
2n! SNGT(k+p+1)T 2k +a+p+1+2)(n—k)! 02

xT(k+a+p+DT(k+1+p+ 1)>P,f“’ﬂ)(x).
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