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Combining interval-valued hesitant fuzzy soft sets (IVHFSSs) and a new comparative law, we propose a new method, which can
effectively solve multiattribute decision-making (MADM) problems. Firstly, a characteristic function of two interval values and a
new comparative law of interval-valued hesitant fuzzy elements (IVHFEs) based on the possibility degree are proposed. Then, we
define two important definitions of IVHFSSs including the interval-valued hesitant fuzzy soft quasi subset and soft quasi equal
based on the new comparative law. Finally, an algorithm is presented to solve MADM problems. We also use the method proposed
in this paper to evaluate the importance of major components of the well drilling mud pump.

1. Introduction

In 1965, Zadeh [1] introduced the notion of fuzzy set. After
that, a variety of extended fuzzy set theories have been
proposed such as intuitionistic fuzzy set [2], interval-valued
intuitionistic fuzzy set [3], hesitant fuzzy set [4, 5], and
interval-valued hesitant fuzzy set [6]. In 1999, Molodtsov
[7] firstly proposed soft set theory, which has been widely
used in many different areas such as decision analysis [8]
and military research [9]. With diversity and complexity of
practical problems, the original theories are inapplicable to
solve these problems. Maji et al. [10] firstly explored fuzzy
soft set, which is a more general notion combining fuzzy
set and soft set. Some extensions of fuzzy soft set theory
have also been presented such as interval-valued fuzzy soft
set [11], intuitionistic fuzzy soft set [12], and interval-valued
intuitionistic fuzzy soft set [13]. In 2015, Peng and Yang [14]
proposed interval-valued hesitant fuzzy soft set (IVHFSS)
combining interval-valued hesitant fuzzy set and soft set.

In the aspect of the research works of MADM problems,
Roy andMaji [15] presented amethod according to a compar-
ison table from fuzzy soft sets. Kong et al. [16] modified Roy
andMaji’s algorithm to give a novel one, which is based on the
comparison of choice values of different objects. Feng et al.

[17] proposed a new approach by using level soft sets to solve
MADM problems based on fuzzy soft sets. Yang et al. [18]
used Feng et al.’s algorithm to solve MADM problems based
on multiple fuzzy soft sets. Xu and Zhang [19] developed a
novel approach by TOPSIS with incomplete weight informa-
tion for solving hesitant fuzzy MADM problems. Wang et
al. [20] proposed a MADM method based on hesitant fuzzy
soft sets. Wang et al. [21] proposed a MADM approach based
on the aggregation operator to aggregate hesitant fuzzy soft
information. Peng andYang [14], bymeans of TOPSIS and the
maximizing deviation method, presented a MADM method
based on interval-valued hesitant fuzzy soft sets.

The method proposed by Peng and Yang is very effective
and allows a decision-maker to quantify his opinion with
an interval value within [0, 1], since it may be difficult for a
decision-maker to exactly quantify his opinion with a crisp
number to an attribute due to the insufficiency of available
information in practical MADM problems. However, there
are two problems with this method. One is that it only
considers opinion of a decision-maker and the other is that
the comparative law based on the score function is not
accurate when it is used to compare two IVHFEs in dealing
with MADM problems. Based on the above analysis, we
improve Peng and Yang’s method to propose a new one
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of MADM methods based on IVHFSSs, which not only
synthetically considers opinions of many decision-makers
but also increases the accuracy of the comparison between
two IVHFEs.

The remainder of this paper is organized as follows. In
Section 2, some basic definitions including interval value,
possibility degree, interval-valued hesitant fuzzy set, and
interval-valued hesitant fuzzy soft set are briefly reviewed.
In Section 3, a characteristic function of two interval values
and a comparative law of IVHFEs based on the possibility
degree are proposed. In Section 4, we define the interval-
valued hesitant fuzzy soft quasi subset and soft quasi equal
based on the new comparative law presented in Section 3. In
Section 5, a MADMmethod based on IVHFSSs is presented.
In Section 6, we apply thismethod to evaluate the importance
ofmajor components of the well drillingmud pump. Analysis
and discussion are presented in Section 7. The paper is
concluded in Section 8.

2. Preliminaries

In this section, we mainly review some definitions including
interval value, possibility degree of interval value, interval-
valued hesitant fuzzy set, and interval-valued hesitant fuzzy
soft set. Let𝑈 be an initial universe set of objects and let 𝐸 be
the set of attributes in relation to objects in 𝑈; 𝐴 ⊆ 𝐸.
Definition 1 (see [22]). Let 𝑟 = [𝑟𝐿, 𝑟𝑈] = {𝑥 | 0 ≤ 𝑟𝐿 ≤ 𝑥 ≤𝑟𝑈}; then 𝑟 is called a nonnegative interval value. Particularly,𝑟 is a nonnegative real number, if 𝑟𝐿 = 𝑟𝑈.

The comparison of two interval values can be roughly
divided into two categories: one is deterministic ordering
method [23] and the other is possibility degree method [24].
In this paper, we select the latter method.

Definition 2 (see [24]). Let 𝑟1 = [𝑟1𝐿, 𝑟1𝑈] and 𝑟2 = [𝑟2𝐿, 𝑟2𝑈]
be two interval values, and 𝜆 ≥ 0; then

(1) 𝑟1 + 𝑟2 = [𝑟𝐿1 + 𝑟𝐿2 , 𝑟𝑈1 + 𝑟𝑈2 ];
(2) 𝜆𝑟1 = [𝜆𝑟𝐿1 , 𝜆𝑟𝑈1 ]; particularly, 𝜆𝑟1 = 0, if 𝜆 = 0.

Definition 3 (see [24]). Let 𝑟1 = [𝑟1𝐿, 𝑟1𝑈] and 𝑟2 = [𝑟2𝐿, 𝑟2𝑈]
be two interval values; then the possibility degree of 𝑟1 ⪰ 𝑟2
is defined as follows:

𝑃 (𝑟1 ⪰ 𝑟2)
= max{1 −max( 𝑟2𝑈 − 𝑟1𝐿(𝑟1𝑈 − 𝑟1𝐿) + (𝑟2𝑈 − 𝑟2𝐿) , 0) , 0} .

(1)

Definition 4 (see [25]). Let 𝑟1 = [𝑟1𝐿, 𝑟1𝑈] and 𝑟2 = [𝑟2𝐿, 𝑟2𝑈]:
(1) If 𝑃(𝑟1 ⪰ 𝑟2) = 0.5, then a is quasi-equal to b denoted

by 𝑟1 ≈ 𝑟2.
(2) If 𝑃(𝑟1 ⪰ 𝑟2) > 0.5, then a is more than b denoted by𝑟1 ≻ 𝑟2.
(3) If 𝑃(𝑟1 ⪰ 𝑟2) < 0.5, then a is less than b denoted by𝑟1 ≺ 𝑟2.

Definition 5 (see [4, 5]). Let X be a fixed set. A hesitant fuzzy
set on X is in terms of a function that when applied to X
returns a subset of [0, 1], which can be represented as the
following mathematical symbol:

𝐻 = {ℎ𝐻 (𝑥)𝑥 | 𝑥 ∈ 𝑋} , (2)

where ℎ𝐻(𝑥) is a set of values in [0, 1], denoting the possible
membership degrees of the element 𝑥 ∈ 𝑋 to the set H. For
convenience, we call ℎ𝐻(𝑥) a hesitant fuzzy element.

Definition 6 (see [6]). Let X be a reference set, and let𝐷[0, 1]
be the set of all closed subintervals of [0, 1]. An interval-
valued hesitant fuzzy set (IVHFS) on X is

𝐻 = {ℎ𝐻 (𝑥)𝑥 | 𝑥 ∈ 𝑋} , (3)

where ℎ𝐻(𝑥) : 𝑋 → 𝐷[0, 1] denotes all possible interval-
valued membership degrees of the element 𝑥 ∈ 𝑋 to the set
𝐻. For convenience, we call ℎ𝐻(𝑥) an interval-valued hesitant
fuzzy element (IVHFE), which reads ℎ𝐻(𝑥) = {𝑟 | 𝑟 ∈ ℎ𝐻(𝑥)}.
Definition 7 (see [6]). Let ℎ𝐻1(𝑥) and ℎ𝐻2(𝑥) be two IVHFEs,
where ℎ𝐻1(𝑥) = {𝑟1 = [𝑟1𝐿, 𝑟1𝑈] | 𝑟1 ∈ ℎ𝐻1(𝑥)} and ℎ𝐻2(𝑥) ={𝑟2 = [𝑟2𝐿, 𝑟2𝑈] | 𝑟2 ∈ ℎ𝐻2(𝑥)}; then the operational laws of
IVHFEs are defined as follows:

(1) 𝜆(ℎ𝐻1(𝑥)) = {[1 − (1 − 𝑟1𝐿)𝜆, 1 − (1 − 𝑟1𝑈)𝜆] | 𝑟1 ∈ℎ𝐻1(𝑥)}, 𝜆 > 0.
(2) ℎ𝐻1(𝑥) ∩ ℎ𝐻2(𝑥) = {[min(𝑟1𝐿, 𝑟2𝐿),min(𝑟1𝑈, 𝑟2𝑈)] |𝑟1 ∈ ℎ𝐻1(𝑥), 𝑟2 ∈ ℎ𝐻2(𝑥)}.
(3) ℎ𝐻1(𝑥) ∪ ℎ𝐻2(𝑥) = {[max(𝑟1𝐿, 𝑟2𝐿),max(𝑟1𝑈, 𝑟2𝑈)] |𝑟1 ∈ ℎ𝐻1(𝑥), 𝑟2 ∈ ℎ𝐻2(𝑥)}.

Definition 8 (see [7]). Let 𝑃(𝑈) be the set of all subsets of U.
A pair (𝐹, 𝐴) is called a soft set over U, where 𝐹 is a mapping
given by 𝐹 : 𝐴 → 𝑃(𝑈).
Definition 9 (see [14]). Let IVHF(𝑈) be the set of all interval-
valued hesitant fuzzy subsets of U. A pair (𝐹, 𝐴) is called
an interval-valued hesitant fuzzy soft set (IVHFSS) over U,
where 𝐹 is a mapping given by 𝐹 : 𝐴 → IVHF(𝑈).

In [14], some properties of IVHFSSs were given. We give
another three properties as follows.

Property 10. Given an IVHFSS (𝐹, 𝐴) over U,
(1) if 𝐴 = {𝑒}, then (𝐹, 𝐴) is also an interval-valued

hesitant fuzzy set,
(2) if there is only one interval value of ℎ𝐹(𝑒)(𝑢) for all 𝑒 ∈𝐴 and 𝑢 ∈ 𝑈, then (𝐹, 𝐴) is also an interval-valued

fuzzy soft set,
(3) if the upper and lower boundaries of each interval

value of ℎ𝐹(𝑒)(𝑢) are equal for all 𝑒 ∈ 𝐴 and 𝑢 ∈ 𝑈,
then (𝐹, 𝐴) is also a hesitant fuzzy soft set.
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Definition 11 (see [14]). The union operation on two IVHFSSs
(𝐹, 𝐴) and (𝐺, 𝐵) over 𝑈 is an IVHFSS (𝐻, 𝐶), where 𝐶 =𝐴 ∪ 𝐵 and, for all 𝑒 ∈ 𝐶,

𝐻(𝑒) =
{{{{{{{{{

𝐹 (𝑒) , if 𝑒 ∈ 𝐴 − 𝐵,
𝐺 (𝑒) , if 𝑒 ∈ 𝐵 − 𝐴,
𝐹 (𝑒) ∪ 𝐺 (𝑒) , if 𝑒 ∈ 𝐴 ∩ 𝐵.

(4)

We write (𝐹, 𝐴) ∪ (𝐺, 𝐵) = (𝐻, 𝐶).
Definition 12 (see [14]). The intersection operation on two
IVHFSSs (𝐹, 𝐴) and (𝐺, 𝐵) with 𝐴 ∩ 𝐵 ̸= Φ over 𝑈 is an
IVHFSS (𝐻, 𝐶), where 𝐶 = 𝐴 ∩ 𝐵 and, for all 𝑒 ∈ 𝐶,𝐻(𝑒) = 𝐹(𝑒) ∩ 𝐺(𝑒). We write (𝐹, 𝐴) ∩ (𝐺, 𝐵) = (𝐻, 𝐶).
3. A New Comparative Law of
Interval-Valued Hesitant Fuzzy Elements
Based on the Possibility Degree

In this section, a new comparative law of IVHFEs will be pro-
posed which can overcome some defects of the comparative
law based on the score function.

For convenience, let 𝑙(ℎ𝐻(𝑥)) denote the length of ℎ𝐻(𝑥)
and let ℎ𝐻𝜎(𝑗)(𝑥) denote the 𝑗th maximum interval value inℎ𝐻(𝑥). 𝑙max is the maximum value of 𝑙(ℎ𝐻1(𝑥)) and 𝑙(ℎ𝐻2(𝑥)).
Definition 13 (see [6]). The score function of ℎ𝐻(𝑥) is defined
as follows:

𝑆 (ℎ𝐻 (𝑥)) = 1
𝑙 (ℎ𝐻⃗ (𝑥)) ∑

𝑟∈ℎ𝐻(𝑥)

𝑟. (5)

Obviously, 𝑆(ℎ𝐻(𝑥)) is still an interval value. Given two
IVHFEs ℎ𝐻1(𝑥) and ℎ𝐻2(𝑥),

(1) if 𝑆(ℎ𝐻1(𝑥)) ≈ 𝑆(ℎ𝐻2(𝑥)), then ℎ𝐻1(𝑥) ≈ ℎ𝐻2(𝑥);
(2) if 𝑆(ℎ𝐻1(𝑥)) ≻ 𝑆(ℎ𝐻2(𝑥)), then ℎ𝐻1(𝑥) ≻ ℎ𝐻2(𝑥);
(3) if 𝑆(ℎ𝐻1(𝑥)) ≺ 𝑆(ℎ𝐻2(𝑥)), then ℎ𝐻1(𝑥) ≺ ℎ𝐻2(𝑥).

Example 14. There are ℎ𝐻1(𝑥) = {[0.3, 0.4], [0.4, 0.5], [0.5,
0.6]} and ℎ𝐻2(𝑥) = {[0.3, 0.4], [0.5, 0.6]}. Obviously, ℎ𝐻1(𝑥) ≻ℎ𝐻2(𝑥). However, by Definition 13, we have 𝑆(ℎ𝐻1(𝑥)) ≈
𝑆(ℎ𝐻2(𝑥)); thus ℎ𝐻1(𝑥) ≈ ℎ𝐻2(𝑥).

GiventwoIVHFEs ℎ𝐻1(𝑥) and ℎ𝐻2(𝑥), usually, 𝑙(ℎ𝐻1(𝑥)) ̸=
𝑙(ℎ𝐻2(𝑥)). However, the comparative law used in Example 14
ignores this important point. In fact, according to the attitude
of decision-makers, there are three different ways to make
them equal in length by adding some suitable interval values.
When the decision-makers are optimistic, we make them
equal in length by adding the maximum interval value.
Analogously, we add the minimum interval value when
the decision-makers are pessimistic. The decision-makers
remain neutral; we add the average of the maximum interval
value and the minimum interval value. In this paper, if𝑙(ℎ𝐻1(𝑥)) ̸= 𝑙(ℎ𝐻2(𝑥)), without loss of generality, we take

the pessimistic principle to make ℎ𝐻1(𝑥) and ℎ𝐻2(𝑥) equal in
length such that 𝑙(ℎ𝐻1(𝑥)) = 𝑙(ℎ𝐻2(𝑥)) = 𝑙max.

Example 15. Two IVHFEs are given in Example 14.Obviously,𝑙(ℎ𝐻1(𝑥)) ̸= 𝑙(ℎ𝐻2(𝑥)). Since ([0.3, 0.4] ⪰ [0.5, 0.6]) = 0,
[0.3, 0.4] ≺ [0.5, 0.6]. Based on the pessimistic principle, we
can extend ℎ𝐻2(𝑥) = {[0.3, 0.4], [0.3, 0.4], [0.5, 0.6]} such that
𝑙(ℎ𝐻1(𝑥)) = 𝑙(ℎ𝐻2(𝑥)) = 3.

In 2014, Zhou [9] proposed a characteristic function of
two real numbers. Based on this, we give a characteristic
function of two interval values.

Definition 16. Assume that 𝑟1 = [𝑟1𝐿, 𝑟1𝑈] and 𝑟2 = [𝑟2𝐿, 𝑟2𝑈];
then the characteristic function𝑓(𝑟1, 𝑟2) is defined as follows:

𝑓 (𝑟1, 𝑟2) =
{{{{{{{{{

1, if 𝑟1 ≻ 𝑟2,
0.5, if 𝑟1 ≈ 𝑟2,
0, if 𝑟1 ≺ 𝑟2.

(6)

Definition 17. Let ℎ𝐻1(𝑥) and ℎ𝐻2(𝑥) be two IVHFEs. The
possibility degree of ℎ𝐻1(𝑥) ⪰ ℎ𝐻2(𝑥) is defined as follows:

𝑃 (ℎ𝐻1 (𝑥) ⪰ ℎ𝐻2 (𝑥))

= 1
𝑙max

𝑙max∑
𝑗=1

𝑓 (ℎ𝐻1𝜎(𝑗) (𝑥) , ℎ𝐻2𝜎(𝑗) (𝑥)) .
(7)

Definition 18. Let ℎ𝐻1(𝑥) and ℎ𝐻2(𝑥) be two IVHFEs:

(1) If 𝑃(ℎ𝐻1(𝑥) ⪰ ℎ𝐻2(𝑥)) = 0.5, then IVHFE ℎ𝐻1(𝑥) is
quasi-equal to ℎ𝐻2(𝑥), denoted by ℎ𝐻1(𝑥) ≈ ℎ𝐻2(𝑥).

(2) If 𝑃(ℎ𝐻1(𝑥) ⪰ ℎ𝐻2(𝑥)) > 0.5, then IVHFE ℎ𝐻1(𝑥) is
more than ℎ𝐻2(𝑥), denoted by ℎ𝐻1(𝑥) ≻ ℎ𝐻2(𝑥).

(3) If 𝑃(ℎ𝐻1(𝑥) ⪰ ℎ𝐻2(𝑥)) < 0.5, then IVHFE ℎ𝐻1(𝑥) is
less than ℎ𝐻2(𝑥), denoted by ℎ𝐻1(𝑥) ≺ ℎ𝐻2(𝑥).

(4) If 𝑃(ℎ𝐻1(𝑥) ⪰ ℎ𝐻2(𝑥)) ≥ 0.5, then IVHFE ℎ𝐻1(𝑥) is
more than or equal to ℎ𝐻2(𝑥), denoted by ℎ𝐻1(𝑥) ⪰ℎ𝐻2(𝑥).

(5) If 𝑃(ℎ𝐻1(𝑥) ⪰ ℎ𝐻2(𝑥)) ≤ 0.5, then IVHFE ℎ𝐻1(𝑥)
is less than or equal to ℎ𝐻2(𝑥), denoted by ℎ𝐻1(𝑥) ⪯ℎ𝐻2(𝑥).

Example 19. We consider two IVHFEs given in Exam-
ple 14. Since 𝑙(ℎ𝐻1(𝑥)) > 𝑙(ℎ𝐻2(𝑥)), we extend ℎ𝐻2(𝑥) =
{[0.3, 0.4], [0.3, 0.4], [0.5, 0.6]} based on the pessimistic prin-
ciple. By Definition 17, we have 𝑃(ℎ𝐻1(𝑥) ⪰ ℎ𝐻2(𝑥)) = 2/3;
then ℎ𝐻1(𝑥) ≻ ℎ𝐻2(𝑥).
Theorem 20. Let ℎ𝐻1(𝑥) and ℎ𝐻2(𝑥) be two IVHFEs. The
following conclusions hold:

(1) 0 ≤ 𝑃(ℎ𝐻1(𝑥) ⪰ ℎ𝐻2(𝑥)) ≤ 1.
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(2) 𝑃(ℎ𝐻1(𝑥) ⪰ ℎ𝐻2(𝑥)) = 1 if and only if ℎ𝐻1𝜎(𝑗)(𝑥) ≻ℎ𝐻2𝜎(𝑗)(𝑥) for all 𝑗 = 1, 2, . . . , 𝑙𝑚𝑎𝑥.
(3) 𝑃(ℎ𝐻1(𝑥) ⪰ ℎ𝐻2(𝑥)) = 0 if and only if ℎ𝐻1𝜎(𝑗)(𝑥) ≺ℎ𝐻2𝜎(𝑗)(𝑥) for all 𝑗 = 1, 2, . . . , 𝑙𝑚𝑎𝑥.

Proof. (i) It is easy to prove 0 ≤ 𝑃(ℎ𝐻1(𝑥) ⪰ ℎ𝐻2(𝑥)) ≤ 1 by
Definition 17.

(ii) For necessity, if 𝑃(ℎ𝐻1(𝑥) ⪰ ℎ𝐻2(𝑥)) = 1, then
𝑓(ℎ𝐻1𝜎(𝑗)(𝑥), ℎ𝐻2𝜎(𝑗)(𝑥)) = 1 for all 𝑗 = 1, 2, . . . , 𝑙max by Defi-
nitions 16 and 17.This implies that ℎ𝐻1𝜎(𝑗)(𝑥) ≻ ℎ𝐻2𝜎(𝑗)(𝑥) for
all 𝑗 = 1, 2, . . . , 𝑙max.

For sufficiency, ifℎ𝐻1𝜎(𝑗)(𝑥) ≻ ℎ𝐻2𝜎(𝑗)(𝑥), then𝑓(ℎ𝐻1𝜎(𝑗)(𝑥),ℎ𝐻2𝜎(𝑗)(𝑥)) = 1 for all 𝑗 = 1, 2, . . . , 𝑙max by Definition 16; thus,
𝑃(ℎ𝐻1(𝑥) ⪰ ℎ𝐻2(𝑥)) = 1 by Definition 17.

(iii) Similar to (2), we can prove (3).
Remark 21. Formula (7) in Definition 17 can also be defined
as follows:

𝑃 (ℎ𝐻1 (𝑥) ⪰ ℎ𝐻2 (𝑥))

= 1
𝑙max

𝑙max∑
𝑗=1

𝑃 (ℎ𝐻1𝜎(𝑗) (𝑥) ⪰ ℎ𝐻2𝜎(𝑗) (𝑥)) .
(8)

However, it does not satisfy Theorem 20. Example 22 can
illustrate the point as follows.

Example 22. There are ℎ𝐻1(𝑥) = {[0.3, 0.5], [0.3, 0.6], [0.5,
0.7]} and ℎ𝐻2(𝑥) = {[0.3, 0.4], [0.5, 0.6]}. Based on the pessi-
mistic principle, we extend ℎ𝐻2(𝑥) = {[0.3, 0.4], [0.3, 0.4],
[0.5, 0.6]}, and then 𝑃(ℎ𝐻1(𝑥) ⪰ ℎ𝐻2(𝑥)) = 25/36 ̸= 1 by
Formula (8) in Remark 21. There is a contradiction to
Theorem 20, since ℎ𝐻1𝜎(𝑗)(𝑥) ≻ ℎ𝐻2𝜎(𝑗)(𝑥) for all 𝑗 = 1, 2, 3.
Definition 23. Let𝐻1 and𝐻2 be two interval-valued hesitant
fuzzy sets on X:

(1) If ℎ𝐻1(𝑥) ⪯ ℎ𝐻2(𝑥), for all 𝑥 ∈ 𝑋, then 𝐻1 is an in-
terval-valued hesitant fuzzy quasi subset of 𝐻2, de-
noted by𝐻1 ⊆ 𝐻2.

(2) If ℎ𝐻1(𝑥) ≈ ℎ𝐻2(𝑥), for all 𝑥 ∈ 𝑋, then 𝐻1 is quasi-
equal to𝐻2, denoted by𝐻1 ≈ 𝐻2.

4. Two Important Definitions of
Interval-Valued Hesitant Fuzzy Soft Sets
Based on the New Comparative Law

In this section, we give definitions of the interval-valued
hesitant fuzzy soft quasi subset and soft quasi equal according
to Definition 23. Let𝐴, 𝐵 ⊆ 𝐸 and let (𝐹, 𝐴) and (𝐺, 𝐵) be two
IVHFSSs over U.

Table 1: Tabular representation of (𝐹𝑘, 𝐴𝑘).
𝑢1 𝑢2 ⋅ ⋅ ⋅ 𝑢𝑛𝑒1𝑘 ℎ𝐹𝑘(𝑒1𝑘) (𝑢1) ℎ𝐹𝑘(𝑒1𝑘) (𝑢2) ⋅ ⋅ ⋅ ℎ𝐹𝑘(𝑒1𝑘) (𝑢𝑛)𝑒2𝑘 ℎ𝐹𝑘(𝑒2𝑘) (𝑢1) ℎ𝐹𝑘(𝑒2𝑘) (𝑢2) ⋅ ⋅ ⋅ ℎ𝐹𝑘(𝑒2𝑘) (𝑢𝑛)... ... ... d

...
𝑒𝑙(𝐴𝑘)𝑘 ℎ𝐹𝑘(𝑒𝑙(𝐴𝑘)𝑘) (𝑢1) ℎ𝐹𝑘(𝑒𝑙(𝐴𝑘)𝑘) (𝑢2) ⋅ ⋅ ⋅ ℎ𝐹𝑘(𝑒𝑙(𝐴𝑘)𝑘) (𝑢𝑛)

Definition 24. (𝐹, 𝐴) is an interval-valued hesitant fuzzy soft
quasi subset of (𝐺, 𝐵), if the following two conditions are
satisfied:

(1) 𝐴 ⊆ 𝐵.
(2) 𝐹(𝑒) ⊆ 𝐺(𝑒) for all 𝑒 ∈ 𝐴. That is, ℎ𝐹(𝑒)(𝑢) ⪯ ℎ𝐺(𝑒)(𝑢),

for all 𝑒 ∈ 𝐴 and 𝑢 ∈ 𝑈, denoted by (𝐹, 𝐴) ⊆ (𝐺, 𝐵).
Definition 25. (𝐹, 𝐴) is soft quasi-equal to (𝐺, 𝐵), if the
following two conditions are satisfied:

(1) 𝐴 = 𝐵.
(2) 𝐹(𝑒) ≈ 𝐺(𝑒) for all 𝑒 ∈ 𝐴. That is, ℎ𝐹(𝑒)(𝑢) ≈ ℎ𝐺(𝑒)(𝑢),

for all 𝑒 ∈ 𝐴 and 𝑢 ∈ 𝑈, denoted by (𝐹, 𝐴) ≅ (𝐺, 𝐵).
Theorem 26. (𝐹, 𝐴) ≅ (𝐺, 𝐵) if and only if (𝐹, 𝐴) ⊆ (𝐺, 𝐵) and
(𝐺, 𝐵) ⊆ (𝐹, 𝐴).
Proof. For necessity, since (𝐹, 𝐴) ≅ (𝐺, 𝐵), we have𝐴 = 𝐵 andℎ𝐹(𝑒)(𝑢) ≈ ℎ𝐺(𝑒)(𝑢) by Definition 25. This implies that 𝐴 ⊆ 𝐵
and 𝐹(𝑒) ⊆ 𝐺(𝑒) for all 𝑒 ∈ 𝐴. Analogously, 𝐴 ⊇ 𝐵 and 𝐹(𝑒) ⊇
𝐺(𝑒) for all 𝑒 ∈ 𝐴. By Definition 24, we have (𝐹, 𝐴) ⊆ (𝐺, 𝐵)
and (𝐺, 𝐵) ⊆ (𝐹, 𝐴).

For sufficiency, since (𝐹, 𝐴) ⊆ (𝐺, 𝐵) and (𝐺, 𝐵) ⊆ (𝐹, 𝐴),
we have𝐴 ⊆ 𝐵 and 𝐹(𝑒) ⊆ 𝐺(𝑒) for all 𝑒 ∈ 𝐴 by Definition 24.
Analogously,𝐴 ⊇ 𝐵 and𝐹(𝑒) ⊇ 𝐺(𝑒) for all 𝑒 ∈ 𝐴.That is,𝐴 =
𝐵 and 𝐹(𝑒) ≈ 𝐺(𝑒) for all 𝑒 ∈ 𝐴. Therefore, (𝐹, 𝐴) ≅ (𝐺, 𝐵) by
Definition 25.

5. A New Method of Multiattribute
Decision-Making Based on Interval-Valued
Hesitant Fuzzy Soft Sets

In the case of multiple attributes, the MADM is the decision
problem to select the optimal alternative or rank the alter-
natives. Let 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛} be the set of n alternatives,
let 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑡} be the set of t attributes, and let 𝐷 ={𝑑1, 𝑑2, . . . , 𝑑𝑠} be the set of s decision-makers. The decision-
makers 𝑑𝑘 ∈ 𝐷 (𝑘 = 1, 2, . . . , 𝑠) evaluate n alternatives from
𝐴𝑘 = {𝑒1𝑘, 𝑒2𝑘, . . . , 𝑒𝑙(𝐴𝑘)𝑘}, where 𝐴𝑘 ⊆ 𝐸 and 𝑙(𝐴𝑘) repre-
sents the number of attributes in𝐴𝑘.The attributeweight vec-
tor of 𝐴𝑘 is 𝜔𝑘 = (𝜔1𝑘, 𝜔2𝑘, . . . , 𝜔𝑙(𝐴𝑘)𝑘)𝑇, where ∑𝑙(𝐴𝑘)𝑗=1 𝜔𝑗𝑘 =1.

IVHFSSs (𝐹𝑘, 𝐴𝑘) (𝑘 = 1, 2, . . . , 𝑠) can be expressed by
a tabular representation shown in Table 1. Firstly, decision-
maker 𝑑𝑘 selects relevant attribute set 𝐴𝑘 according to
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his preference. Next, we collect the historical data of each
attribute in the attribute set E and use it as the basis for
the evaluation of decision-maker. For example, economy
factor is determined by market price, and workforce factor is
determined by population, and so forth. Finally, ℎ𝐹𝑘(𝑒𝑗𝑘)(𝑢𝑖)
represents the IVHFE of the alternative 𝑢𝑖 satisfying the
attribute 𝑒𝑗𝑘 which is given by the decision-maker 𝑑𝑘, where𝑗 = 1, 2, . . . , 𝑙(𝐴𝑘) and 𝑖 = 1, 2, . . . , 𝑛.
Definition 27. Suppose that 𝐴 = {𝑒1, 𝑒2, . . . , 𝑒𝑡} and (𝐹, 𝐴) is
an IVHFSS over U. A generalized comparison table (GCT)
of (𝐹, 𝐴) is a square table in which the number of rows and
number of columns are equal. Both rows and columns are
named by 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑛}, and elements in GCT are
denoted by 𝐶𝑖𝑗. Its formula is shown as follows:

𝐶𝑖𝑗 =
𝑡∑
𝑚=1

𝑃(ℎ𝐹𝑒𝑚 (𝑢𝑖) ⪰ ℎ𝐹𝑒𝑚 (𝑢𝑗)) ,
𝑖, 𝑗 = 1, 2, . . . , 𝑛; 𝑚 = 1, 2, . . . , 𝑡,

(9)

where t is the number of attributes.

Definition 28. Let ℎ𝐻(𝑥) = {𝑟 = [𝑟𝐿, 𝑟𝑈] | 𝑟 ∈ ℎ𝐻(𝑥)} be
an IVHFE and let 𝜆 be a nonnegative real number; then a
new multiplication operational law of IVHFEs is defined as
follows:

𝜆 (ℎ𝐻 (𝑥)) = {[𝜆𝑟𝐿, 𝜆𝑟𝑈] | 𝑟 ∈ ℎ𝐻 (𝑥)} , 𝜆 > 0. (10)

Obviously, it is different from Definition 7.

By the IVHFSSs based on the new comparative law of
IVHFEs, we propose a newmethod of theMADM as follows.

Algorithm 29.

Step 1. Obtain the tabular representation of (𝐹𝑘, 𝐴𝑘) by
𝐹𝑘(𝑒𝑗𝑘) = {ℎ𝐹𝑘(𝑒𝑗𝑘)(𝑢𝑖)/𝑢𝑖 | 𝑢𝑖 ∈ 𝑈} (𝑗 = 1, 2, . . . , 𝑙(𝐴𝑘)) for
all decision-makers 𝑑𝑘 (𝑘 = 1, 2, . . . , 𝑠).
Step 2. Compute the weighted IVHFSS (𝐹󸀠𝑘, 𝐴𝑘) for all 𝑒𝑗𝑘 ∈𝐴𝑘 by 𝐹󸀠𝑘(𝑒𝑗𝑘) = {ℎ

𝐹
󸀠

𝑘(𝑒𝑗
𝑘)
(𝑢𝑖)/𝑢𝑖 | ℎ𝐹󸀠𝑘(𝑒𝑗𝑘)(𝑢𝑖) = 𝜔𝑗𝑘ℎ𝐹𝑘(𝑒𝑗𝑘)(𝑢𝑖), 𝑢𝑖 ∈ 𝑈}.

Step 3. Compute (𝐹, 𝐴) = ⋃𝑠𝑘=1(𝐹󸀠𝑘, 𝐴𝑘), where 𝐴 = ⋃𝑠𝑘=1𝐴𝑘.
Step 4. Calculate 𝐶𝑖𝑗 according to Formula (9) and construct
the GCT.

Step 5. Compute row sum𝑝𝑖 = ∑𝑛𝑗=1 𝐶𝑖𝑗 and column sum 𝑞𝑗 =∑𝑛𝑖=1 𝐶𝑖𝑗 of the GCT, and calculate the score 𝑆𝑖 = 𝑝𝑖 − 𝑞𝑗 of
alternative 𝑢𝑖.
Step 6. If the score 𝑆𝑖 is the maximum value, then 𝑢𝑖 can be
used as the optimal alternative.

6. Evaluate the Importance of
the Major Components of the Well
Drilling Mud Pumps

A mud pump, an important part of the well drilling equip-
ment, is a large reciprocating pump, which is used to circulate
themud on a drilling rig. Amud pump ismainly composed of
four parts which are pump case, piston, bearing, and impeller.
However, the four parts are also most likely to be damaged.
Once one of these parts is damaged, the mud pump will not
work properly and probably cause huge losses. Aiming at this
problem, wewill use Algorithm 29 to evaluate the importance
of the four parts of the well drilling mud pump.

Now, we consider four parameters, namely, economic
factor, reliability factor, service life factor, and maintenance
factor, to evaluate the importance of the four parts. In
order to make evaluation by three experts reasonably and
comprehensively, we investigated the market price of the
four parts in recent years for economic factor, collected the
information feedback of the four parts for reliability factor,
surveyed the durable years of the four parts for service life
factor, and counted the maintenance time of the four parts
for maintenance factor. Let 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4} be a set of the
four parts, let 𝐷 = {𝑑1, 𝑑2, 𝑑3} be the set of the three experts,
and let 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4} be the set of the four attributes.

Based on the evaluation of the three experts, we construct
three tabular representations of (𝐹𝑘, 𝐴𝑘) (𝑘 = 1, 2, 3). The
evaluations of experts are given as IVHFEs. The information
is shown in Tables 2–4.

The weight vector 𝜔𝑘 is given by three technical experts
𝑑𝑘 (𝑘 = 1, 2, 3), where 𝜔1 = (0.6, 0.4)𝑇, 𝜔2 = (0.7, 0.3)𝑇, and𝜔3 = (0.4, 0.6)𝑇, respectively. Calculate the weighted IVHF-
SSs (𝐹󸀠1, 𝐴1), (𝐹󸀠2, 𝐴2), and (𝐹󸀠3, 𝐴3).Their representations are
shown in Tables 5–7.

Let (𝐹, 𝐴) = ⋃3𝑘=1(𝐹󸀠𝑘, 𝐴𝑘); then 𝐴 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ={𝑒1, 𝑒2, 𝑒3, 𝑒4} and
𝐹 (𝑒1) = 𝐹󸀠1 (𝑒1) = {{[0.3, 0.36] , [0.24, 0.48]}𝑢1 ,

{[0.24, 0.3] , [0.24, 0.42] , [0.36, 0.48]}
𝑢2 ,

{[0.3, 0.48] , [0.36, 0.48]}
𝑢3 ,

{[0.12, 0.24] , [0.3, 0.36]}
𝑢4 } ,

𝐹 (𝑒2) = 𝐹󸀠2 (𝑒2) ∪ 𝐹󸀠3 (𝑒2)
= {{[0.28, 0.35] , [0.49, 0.63]}𝑢1 ,
{[0.07, 0.21] , [0.08, 0.21] , [0.14, 0.35]}

𝑢2 ,
{[0.24, 0.36] , [0.28, 0.36] , [0.35, 0.42]}

𝑢3 ,
{[0.24, 0.28] , [0.28, 0.32] , [0.35, 0.42]}

𝑢4 } ,
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Table 2: Tabular representation of (𝐹1, 𝐴1).
𝑢1 𝑢2 𝑢3 𝑢4𝑒1 {[0.5, 0.6] , [0.4, 0.8]} {[0.4, 0.5] , [0.4, 0.7] , [0.6, 0.8]} {[0.5, 0.8] , [0.6, 0.8]} {[0.2, 0.4] , [0.5, 0.6]}

𝑒3 {[0.1, 0.2] , [0.4, 0.5] , [0.7, 0.8]} {[0.4, 0.6] , [0.5, 0.6]} {[0.1, 0.2] , [0.2, 0.3]} {[0.2, 0.3] , [0.2, 0.4]}

Table 3: Tabular representation of (𝐹2, 𝐴2).
𝑢1 𝑢2 𝑢3 𝑢4𝑒2 {[0.4, 0.5] , [0.7, 0.9]} {[0.1, 0.3] , [0.2, 0.5]} {[0.2, 0.5] , [0.3, 0.5] , [0.5, 0.6]} {[0.3, 0.4] , [0.5, 0.6]}

𝑒3 {[0.6, 0.8] , [0.7, 0.8]} {[0.3, 0.7] , [0.6, 0.8]} {[0.3, 0.5] , [0.4, 0.7]} {[0.3, 0.6] , [0.5, 0.6]}

Table 4: Tabular representation of (𝐹3, 𝐴3).
𝑢1 𝑢2 𝑢3 𝑢4𝑒2 {[0.3, 0.5] , [0.4, 0.7]} {[0.2, 0.3] , [0.1, 0.5]} {[0.6, 0.9] , [0.7, 0.9]} {[0.6, 0.7] , [0.7, 0.8]}

𝑒4 {[0.1, 0.3] , [0.2, 0.5] , [0.4, 0.6]} {[0.4, 0.7] , [0.5, 0.8]} {[0.6, 0.8] , [0.7, 0.8]} {[0.4, 0.5] , [0.5, 0.7]}

𝐹 (𝑒3) = 𝐹󸀠1 (𝑒3) ∪ 𝐹󸀠2 (𝑒3)
= {{[0.18, 0.24] , [0.21, 0.24] , [0.28, 0.32]}𝑢1 ,
{[0.16, 0.24] , [0.18, 0.24] , [0.2, 0.24]}

𝑢2 ,
{[0.09, 0.15] , [0.12, 0.21]}

𝑢3 ,
{[0.09, 0.18] , [0.15, 0.18]}

𝑢4 } ,
𝐹 (𝑒4) = 𝐹󸀠3 (𝑒4)

= {{[0.06, 0.18] , [0.12, 0.3] , [0.24, 0.36]}𝑢1 ,
{[0.24, 0.42] , [0.3, 0.48]}

𝑢2 ,
{[0.36, 0.48] , [0.42, 0.48]}

𝑢3 ,
{[0.24, 0.3] , [0.3, 0.42]}

𝑢4 } .
(11)

According to Formula (9), we can calculate 𝐶𝑖𝑗 (𝑖, 𝑗 =
1, 2, 3, 4) and get the GCT of the IVHFSS (𝐹, 𝐴) shown in
Table 8.

From Table 8, we can get the row sum 𝑝𝑖, the column sum𝑞𝑗, and the score 𝑆𝑖 of 𝑢𝑖 shown in Table 9.

From Table 9, we have 𝑆3 > 𝑆1 > 𝑆2 > 𝑆4; thus the part𝑢3, that is, bearing, is the most important component.

7. Analysis and Discussion

In the above MADM problem, it is very difficult for 𝑑𝑘 (𝑘 =1, 2, 3) to determine his evaluation on every 𝑒𝑚 (𝑚 =1, 2, 3, 4) by a crisp number; thus some interval values
in [0, 1] are used. Therefore, the existing methods [15–
21] are inapplicable to solve this problem. Furthermore,
it is necessary to evaluate the mud pump from different
aspects, since it is a complex system; thus comprehensive
opinions by more than one decision-maker are needed,
which implies that the existing method [14] considering a
decision-maker is not appropriate to deal with this problem,
too.

In addition, in the process of evaluating the importance
of the four parts of the well drilling mud pump with
Algorithm 29, we need to calculate 𝐶𝑖𝑗 (𝑖, 𝑗 = 1, 2, 3, 4) by
IVHFEs ℎ𝐹𝑒𝑚 (𝑢𝑖) and ℎ𝐹𝑒𝑚 (𝑢𝑗) (𝑚 = 1, 2, 3, 4) according to
Formula (9). Therefore, the new comparative law given in
Definition 17 is the base for computing 𝐶𝑖𝑗.
8. Conclusions

Although Peng and Yang [14] have proposed IVHFSSs, the
method they gave can only deal with MADM problems
with a decision-maker. In most cases, it is necessary to
synthesize opinions of more than one decision-maker for
complex MADM problems. Based on IVHFSSs and the new
comparative law, this paper presents a newmethodwhich can
effectively solveMADMproblems.We also apply thismethod
to evaluate the importance of main parts of the well drilling
mud pump, which can help engineers avoid the equipment
failure as soon as possible.
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Table 5: Tabular representation of (𝐹󸀠1, 𝐴1).
𝑢1 𝑢2 𝑢3 𝑢4𝑒1 {[0.3, 0.36] , [0.24, 0.48]} {[0.24, 0.3] , [0.24, 0.42] , [0.36, 0.48]} {[0.3, 0.48] , [0.36, 0.48]} {[0.12, 0.24] , [0.3, 0.36]}

𝑒3 {[0.04, 0.08] , [0.16, 0.2] , [0.28, 0.32]} {[0.16, 0.24] , [0.2, 0.24]} {[0.04, 0.08] , [0.08, 0.12]} {[0.08, 0.12] , [0.08, 0.16]}
Table 6: Tabular representation of (𝐹󸀠2, 𝐴2).

𝑢1 𝑢2 𝑢3 𝑢4𝑒2 {[0.28, 0.35] , [0.49, 0.63]} {[0.07, 0.21] , [0.14, 0.35]} {[0.14, 0.35] , [0.21, 0.35] , [0.35, 0.42]} {[0.21, 0.28] , [0.35, 0.42]}
𝑒3 {[0.18, 0.24] , [0.21, 0.24]} {[0.09, 0.21] , [0.18, 0.24]} {[0.09, 0.15] , [0.12, 0.21]} {[0.09, 0.18] , [0.15, 0.18]}

Table 7: Tabular representation of (𝐹󸀠3, 𝐴3).
𝑢1 𝑢2 𝑢3 𝑢4𝑒2 {[0.12, 0.2] , [0.16, 0.28]} {[0.08, 0.12] , [0.04, 0.2]} {[0.24, 0.36] , [0.28, 0.36]} {[0.24, 0.28] , [0.28, 0.32]}

𝑒4 {[0.06, 0.18] , [0.12, 0.3] , [0.24, 0.36]} {[0.24, 0.42] , [0.3, 0.48]} {[0.36, 0.48] , [0.42, 0.48]} {[0.24, 0.3] , [0.3, 0.42]}

Table 8: The GCT of IVHFSS (𝐹, 𝐴).
𝑢1 𝑢2 𝑢3 𝑢4𝑢1 2 5/2 5/3 5/2

𝑢2 3/2 2 7/6 3
𝑢3 7/3 17/6 2 37/12
𝑢4 3/2 1 11/12 2

Table 9: The score 𝑆𝑖 of 𝑢𝑖.
𝑝𝑖 𝑞𝑗 𝑆𝑖

𝑢1 26/3 22/3 4/3
𝑢2 23/3 25/3 −2/3
𝑢3 123/12 23/4 9/2
𝑢4 65/12 127/12 −31/6
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