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The use of additives (polyisobutylene, ethylene-propylene, lithium hydroxy stearate, hydrophobic silica, etc.) changes lubricants’
rheology due to which they show pseudoplastic and dilatant nature, which can be modelled as cubic stress fluid model
(Rabinowitsch fluid model). The present theoretical analysis investigates the effects of non-Newtonian pseudoplastic and dilatant
lubricants on the squeezing characteristics of a sphere and a flat plate. The modified Reynolds equation has been derived and
an asymptotic solution for film pressure is obtained. The results for the film pressure distribution, load carrying capacity,
and squeezing time characteristics have been calculated for various values of pseudoplastic parameter and compared with the
Newtonian results. These characteristics show a significant variation with the non-Newtonian pseudoplastic and dilatant behavior
of the fluids.

1. Introduction

Squeeze film between a sphere and plate is observed in
various machine elements such as ball bearings, cam and
followers, and gears. The mechanical action (squeezing,
shearing, etc.) leading to the generation of high pressure at
the contacts [1–4] changes the rheology of the lubricants
such as viscosity and density which account for the per-
formance characteristics of machine elements. Dowson [5],
Wada and Hayashi [6], and Yadav and Kapur [7] emphasized
the variation of viscosity and density with temperature
and pressure and reported significant changes in bearing
characteristics. Denn [8], Rajagopal [9], and Renardy [10]
indicated that in high pressure lubrication applications, the
variation of viscosity becomes more important than the
density. Variation of the viscosity also causes the instability of
the lubricants’ nature by changing its shearing stress-strain
rate relation due to which the estimated characteristics of
lubricated contacts such as sphere-plate contacts (point con-
tacts) may deviate from the desired value. This situation is
avoided by enhancing the efficiency of stabilizing properties
of lubricants by the addition of additives (polyisobutylene,
ethylene propylene, etc.). The use of additives minimizes the

sensitivity of the lubricant to the change in the shearing
strain rate and the lubricants behave like non-Newtonian
pseudoplastic, dilatant, and viscoplastic fluids depending on
the nature and quantity of the additives. To account for the
effects of lubricant additives on the performance character-
istics of lubricated point contacts, various non-Newtonian
fluid models like power law, micropolar, and couple stress
fluid models have been studied by researchers from time to
time [11–14]. Among these fluid models, Rabinowitsch fluid
model [6] is an established model to predict the effects of
additives on the performance characteristics of the lubricated
bearings. The shearing stress-strain relation in this model for
one-dimensional fluid flow is given by

τrz + κτ3
rz = μ

∂u

∂z
, (1)

where μ is the initial viscosity of lubricant and κ is the
nonlinear factor responsible for the non-Newtonian effects
of the fluid which will be referred to as the coefficient of
pseudoplasticity. This model can be applied to Newtonian,
dilatant, and pseudoplastic lubricants for κ = 0, κ < 0,
and κ > 0, respectively. The advantage of this model lies in
the fact that the theoretical analysis for the present model
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Figure 1: Schematic diagram of squeeze film between a sphere and
a plate.

was verified with the experimental justification by Wada and
Hayashi [6]. They used spindle oil as the base lubricant
and concluded a decrease of dimensionless film pressure
with the increase of additive (polyisobutylene). Afterwards,
the theoretical study of bearing performance with non-
Newtonian lubricants using this models was done by Bourgin
and Gay [15] on journal bearing, Hashimoto and Wada [16]
on circular plates bearing, and Lin [17] on parallel circular
plates. Recently Singh et al. [18–21] used this model to
study the performance characteristics of hydrostatic thrust
bearings and slider bearings.

The objective of this paper is to extend the results
[18–21] to squeeze film characteristics between a sphere
and a plate by introducing a quantitative analysis using
Rabinowitsch fluid model, which accounting for the effect of
additives in the lubricant. The modified Reynolds equation
governing the squeeze film pressure is derived. Squeeze
film characteristics such as film pressure, load-carrying
capacity, and squeezing time are presented. The importance
of the present analysis lies in that the earlier theoretical
investigations on sphere-plate squeezing [11–14] are based
on couple stress or micropolar fluid models, which suffer the
scarcity of experimental verification.

2. Constitutive Equations and
Boundary Conditions

The physical configuration of a sphere-plate system is shown
in Figure 1. The sphere is approaching towards the plate with
a normal velocity (−dh/dt), separated by a lubricant thin
film. The lubricant in the system is taken as a non-Newtonian
Rabinowitsch fluid. The body forces and body couples are
assumed to be absent.

Under the assumptions of hydrodynamic lubrication
applicable to thin film as considered by Dowson [5], the
field equations governing the one-dimensional motion of an
incompressible non-Newtonian Rabinowitsch fluid model in
polar coordinates (r, θ, z) system [18] are

1
r

∂

∂r
(ru) +

∂w

∂z
= 0, (2)

∂p

∂r
= ∂τrz

∂z
, (3)

∂p

∂z
= 0 (4)

which are solved under the no-slip boundary conditions:

u = 0, w = 0, at z = 0,

u = 0, w = −∂h

∂t
, at z = h,

(5)

where u and w are the velocity components in r and z
directions, respectively, and h is the film thickness between
the sphere and plate.

3. Analysis

Integrating (3) with respect to z under boundary conditions
(5) and using (1), the expression for velocity u is obtained as

u = 1
2μ

[
∂p

∂r
z
(
z − h

)
+ κ
(
∂p

∂r

)3

×
(

1
2
z4 − z3h +

3
4
z2h

2 − 1
4
zh

3
)]

.

(6)

Integrating (2) with respect to z under the relevant boundary
conditions (5) for w and using (6), the modified Reynolds
equation is obtained as

1
r

∂

∂r

⎡
⎣r
⎧⎨
⎩h3 ∂p

∂r
+

3κh
5

20

(
∂p

∂r

)3
⎫⎬
⎭
⎤
⎦ = −12μ

∂h

∂t
. (7)

In the limiting case of κ → 0, (7) reduces to the Newtonian
form of Reynolds equation obtained by Conway and Lee
[22]:

1
r

∂

∂r

[
rh

3 ∂p

∂r

]
= −12μ

∂h

∂t
. (8)

The expression for film thickness between the sphere and
plate at a time t is taken of the form [1]

h = hm +
r2

2R
, (9)

where R denote the radius of the sphere. In case of squeezing
between two spheres, the value of the radius R can be taken
as (i) R−1 = R−1

1 + R−1
2 for external contact and (ii) R−1 =

R−1
1 − R−1

2 for internal contact, where R1 and R2 are the radii
of the spheres.

The modified Reynolds equation (7) takes the dimen-
sionless form:

1
r

d

dr

[
r

{
h3 dp

dr
+

3αh5

20

(
dp

dr

)3}]
= −12

β
, (10)

where p = h
2
mop/μR(dhm/dt) is the dimensionless pressure,

α = κ(μR(dhm/dt)/h
2
mo)

2
is the parameter of pseudoplastic-

ity, β = hmo/R is the sphere parameter, hm = hm/hmo is the
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minimum film thickness at a time t, and hmo is the minimum
film thickness at t = 0. The value of the pseudoplastic
coefficient κ depends on the type of and the quantity of
additives which can be determined experimentally [6]. Thus,
the values of R, hmo, and μ being known for a particular
bearing and lubricant and the vales of α can be calculated
with the appropriate value of κ. However, for the validity of
the present analysis, the value of α is restricted to |α| < 0.01.

As (10) is a nonlinear equation in p, it is not easy to
solve it using analytical methods. Therefore, the classical
perturbation method is used to solve it. The perturbation
series for p can be expressed in the form:

p = po + αp1 + α2p2 + · · · . (11)

For α � 1, it is sufficient, for analysis, to consider the first
order term in α as follows:

p = po + αp1. (12)

For the higher values of α, second and higher order terms
can be considered to increase the accuracy of the results.
However, for the higher values of α, it will be more
appropriate to adopt a numerical solution procedure such as
the finite element method to solve the Reynolds equation.

Substituting (12) in (10), the perturbation equations are
obtained as

1
r

d

dr

[
rh3 dpo

dr

]
= −12

β
,

1
r

d

dr

[
r

{
h3 dp1

dr
+

3h5

20

(
dpo
dr

)3}]
= 0.

(13)

Solving (13) under the boundary conditions

dp

dr
= 0 at r = 0, p = 0 at r = 1, (14)

the dimensionless pressure developed in the film region is:

p = 12β2

[
1(

1 + 2hmβ
)2 −

1(
r2 + 2hmβ

)2

]

− 3456
25

αβ4

[
3 + hmβ(

1 + 2hmβ
)6 −

3r2 + hmβ(
r2 + 2hmβ

)6

]
.

(15)

3.1. Load Carrying Capacity. The load carrying capacity
can be obtained by integrating the film pressure over the
squeezing film area as follows:

w = 2π
∫ R

0
prdr (16)

which takes the dimensionless form:

w =
∫ 1

0
prdr, (17)

where

w = w

⎡
⎣ h

2
mo(

2πμR3
(
dhm/dt

))
⎤
⎦. (18)

3.2. Squeezing Time. The squeezing time can be calculated
by integrating (18) with respect to t under the condition that
hm = 1 at t = 0 as follows:

t =
∫ 1

h f

wdh =
∫ 1

h f

∫ 1

0
r pdrdhm, (19)

where

t = whmo

2πμR3
t. (20)

4. Results and Discussions

Based on the Rabinowitsch fluids model, the effects of
non-Newtonian rheology on the squeeze-film characteristics
between a sphere and a plate are investigated using a
dimensionless parameter α which accounts for the non-
Newtonian nature of the lubricant, that is, for the induced
nature due to the use of additives. The parameters α = 0,
α < 0, and α > 0 describe the Newtonian, dilatant, and
pseudoplastic lubricants, respectively. For the validity of the
analysis, the numerical results for non-Newtonian lubricants
are compared with the Newtonian results [12].

In order to analyze the non-Newtonian effects of fluids
on the squeeze-film performance of sphere-plate system,
various squeeze-film characteristics are presented with the
following values:

(i) pseudoplastic parameter α = −0.01 to 0.01, [2, 18];

(ii) sphere parameter β = 0.03, 0.05, [12, 14].

Figure 2 shows the variation of dimensionless film pressure
(p) with respect to the dimensionless coordinate (r). It is
clear from the figure that the pressure is the maximum
at r = 0, that is, at the minimum film thickness and
decreases towards the outer of the sphere and hence, the
analysis obeys the basic theory of film pressure in sphere-
plate system. Again, the pressure for dilatant lubricants (α <
0) is higher than the pressure for Newtonian lubricants
whereas the pressure for pseudoplastic lubricants (α > 0) is
lower than the pressure for Newtonian lubricants. Further,
the pressure increases as α decrease from 0.01 to −0.01. It
is observed that the effect of non-Newtonian pseudoplastic
and dilatant lubricants produces a remarkable change in the
film pressure near r = 0, and it decreases towards periphery
r = 1. For design parameters β = 0.05 and hm = 0.7, a
small value of pseudoplastic parameter α = −0.01 (dilatant
fluids) increases the film pressure by nearly 25% at r = 0.1
and 3% at r = 0.5. For the same design parameters, the
value of pseudoplastic parameter α = 0.01 (pseudoplastic
fluids) decreases the film pressure by nearly 30% at r = 0.1
and 2% at r = 0.5. It shows that the pseudoplastic and
dilatant lubricants produce larger effects with the higher film
pressure.

Figure 3 shows the variation of dimensionless maximum
film pressure (pmax) with respect to the dimensionless min-
imum film thickness (hm). The effect of dilatant lubricants
is observed to increase the maximum film pressure from
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Figure 2: Variation of dimensionless pressure with respect to the dimensionless radius r for different values of pseudoplastic parameter α.

its value in Newtonian case whereas the effect of pseu-
doplastic lubricant decreases the maximum film pressure
from its value in the Newtonian case. Furthermore, the
maximum pressure increases with the decrease of pseudo-
plastic parameter α from 0.01 to −0.01. There is also a
relative change in the maximum pressure for pseudoplastic
and dilatant lubricants, which increases with the decrease
of film thickness. For the sphere parameter β = 0.05, a
small value of pseudoplastic parameter α = −0.01 increases
the maximum film pressure by nearly 12% to 25% as the
minimum film thickness hm decreases from 1 to 0.7. For the
same value of β and hm, the value of pseudoplastic parameter
α = 0.01 (pseudoplastic fluids) decreases the film pressure
nearly 15% to 30%. Therefore, it can be safely said that the
higher the film pressure, the greater the change produced by
pseudoplastic and dilatant lubricants is.

Figure 4 shows the variation of dimensionless load
carrying capacity (W) of the system with respect to the
dimensionless minimum film thickness (hm). It is observed
that the load capacity obtained with dilatant lubricants is
higher than that with Newtonian lubricants, and the load
capacity obtained with pseudoplastic lubricants is lower than
its value obtained with Newtonian lubricants. Furthermore,
the load capacity increases with the decrease of pseudoplastic
parameter α from 0.01 to −0.01. It is also observed that
there is a relative change in load capacity obtained with the
different values of pseudoplastic parameter, which increases
with the decrease of film thickness. For the sphere parameter
β = 0.05, the effect of dilatant lubricant α = −0.01 increases
the load capacity by 10% to 15% as the minimum film

thickness hm decreases from 1 to 0.7 and for the same value
of β and hm, the effect of pseudoplastic lubricants α = 0.01
decreases the film pressure from 15% to 20%.

Figure 5 shows the time (t) elapsed in squeezing the
film from its initial thickness hm = 1 to a final thickness
hm = h f . It is observed that for each value of h f and
β, the squeeze time for dilatant lubricants is longer than
that with the Newtonian lubricants, whereas, the squeeze
time for pseudoplastic lubricants is less than its value in
the Newtonian case. Further, the squeeze time increases
with the decrease of pseudoplastic parameter from 0.01 to
−0.01. This phenomenon can be interpreted as a result of the
increase in the film pressure from pseudoplastic to dilatant
lubricants. For the sphere parameter β = 0.03, the time to
squeeze the film to h f = 0.7 is increased by nearly 23%
with dilatant lubricant α = −0.01 in comparison with the
Newtonian case, whereas the same is decreased by nearly
18% for pseudoplastic lubricants. For the sphere parameter
β = 0.05, the time to squeeze the film from h = 1 to
h = 0.7 is increased by nearly 14% with dilatant lubricant
α = −0.01 in comparison with the Newtonian case. For the
same value of β and h f , the squeeze time is reduced by nearly
16% with pseudoplastic lubricants α = 0.01. Thus, dilatant
lubricants increase and pseudoplastic lubricants reduce the
squeeze time of the bearing.

5. Conclusions

Based on the Rabinowitsch fluid model (cubic stress model)
for non-Newtonian pseudoplastic and dilatant fluids, the
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Figure 3: Variation of the dimensionless maximum film pressure with respect to the minimum film thickness hm for different values of
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Figure 5: Variation of dimensionless squeeze time with respect to the squeezed film thickness h f for different values of parameter α.

effects of lubricant additives on the performance character-
istics of squeezing film between a sphere and a plate are
presented avoiding the inertia and cavitation effects. The
analytical solution for pressure distribution is obtained using
a classical perturbation technique. Based on the present
theoretical analysis, the following results have been drawn.

(1) Dilatant lubricants increase the pressure and load
carrying capacity significantly, whereas the case is
reversed with the pseudoplastic lubricants.

(2) On comparing with the Newtonian case, dilatant
lubricants increase the squeeze time, whereas the
pseudoplastic lubricants decrease it.

(3) As the squeezing time of the sphere-plate system is
significantly increased with the dilatant lubricants, it
is expected that the use of additives can reduce the
vibration in the sphere-plate systems.

Thus, the present analysis can also provide a guideline to
control the vibration in the system. Hence, the results are
expected to be more helpful for better bearing performance
and stability. However, an experimental validation of these
results is required at laboratory level.

Nomenclature

−: Bar denotes the dimensional quantities
h,h: Film thickness defined in (9), h = h/hmo

hm,hm: Minimum film thickness, hm = hm/hmo

hmo: Initial minimum film thickness

p, p: Film pressure, p = h
2
mop/μR(dhm/dt)

po, p1: Dimensionless perturbed film pressures
r, r: Radial coordinate, r = r/R
R: Radius of sphere
t, t: Time, t = (Whmo/2μBR2)t
u,w: Components of velocity
W ,W : Load capacity, W =

(h2
mo/(2μBR2(dhm/dt)))W

α: κ[μR(dhm/dt)/h
2
mo]

2

β: Design parameter (hmo/R)
κ: Coefficient pseudoplasticity
μ: Viscosity of lubricant
τrz: Stress component.
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