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In the delivery of medical and surgical care, often times complex interactions between patient, physician, and hospital factors
influence practice patterns. This paper presents a novel application of logic regression in the context of kidney cancer treatment
delivery. Using linked data from theNational Cancer Institute’s (NCI) Surveillance, Epidemiology, and EndResults (SEER) program
and Medicare we identified patients diagnosed with kidney cancer from 1995 to 2005. The primary endpoints in the study were
use of innovative treatment modalities, namely, partial nephrectomy and laparoscopy. Logic regression allowed us to uncover the
interplay between patient, provider, and practice environment variables, which would not be possible using standard regression
approaches. We found that surgeons who graduated in or prior to 1980 despite having some academic affiliation, low volume
surgeons in a non-NCI hospital, or surgeons in rural environment were significantly less likely to use laparoscopy. Surgeons with
major academic affiliation and practising in HMO, hospital, or medical school based setting were significantly more likely to use
partial nephrectomy. Results from our study can show efforts towards dismantling the barriers to adoption of innovative treatment
modalities, ultimately improving the quality of care provided to patients with kidney cancer.

1. Introduction

Open radical nephrectomy has long been the standard treat-
ment for patients with early-stage kidney cancer [1]. In recent
years, however, easier convalescence and equivalent cancer
control established laparoscopy as an alternative standard of
care formost patients treatedwith radical nephrectomy [1–3].
Studies have also demonstrated that, for patients with small
renal masses, partial instead of radical nephrectomy achieves
identical cancer control while better preserving long-term
renal function and reducing overtreatment of benign or
clinically indolent tumors [4–7]. However, despite their
potential advantages, the adoption of laparoscopy and partial
nephrectomy have been relatively slow and asymmetric in the
population [3, 8].

Earlier studies have shown that individual surgeon char-
acteristics and their practice environments largely influence
the use of laparoscopy and partial nephrectomy [9]. These

studies are based on logistic regression models, a member
of the generalized linear model family suitable for data with
a binary outcome (e.g., use versus nonuse of laparoscopy).
Logistic regression focuses on identification of main effects.
While interactions can be assessed using logistic regression,
these interactions need to be known a priori and specified
as input variables in the model. Discovery of interactions is
therefore difficult using logistic regression. We hypothesize
that surgeon characteristics may not have uniform effect on
the adoption of laparoscopy and partial nephrectomy across
practice environments. For example, use of advanced tech-
niques may vary among recently trained surgeons depending
on the surgeon’s affiliation with an academic hospital or
NCI-designated cancer center, suggesting a potential interac-
tion between year of medical school graduation and practice
setting.

Logic regression is an adaptive classification and regres-
sion procedure [10], initially developed to uncover and
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measure the importance of interacting factors in genetic
association studies [11, 12]. There are many approaches based
on classificationmethods such as CART and Random Forests
[13–15] that allow measuring the importance of a single
predictor. But none of these methods can directly quantify
the importance of combinations of several predictors. Logic
regression uses the predictors as inputs into the model while
still enabling one to identify combinations of predictors and
quantify the importance of these interactions.

In general, logic regression can be used in any setting,
when the interaction between the predictors is of primary
interest. Logic regression searches for Boolean (logical)
combinations of the original predictors that best explain the
variability in the outcome variable and, thus, reveals variables
and interactions that are associated with the response and/or
have predictive capabilities. Given a set of binary predictors,
one creates new predictors such as “𝑋
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, 𝑋
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, and 𝑋
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are true” or “𝑋
5
or 𝑋
6
but not 𝑋

7
is true.” In more specific

terms, the goal is to try to fit regression models of the form
logit[𝑃(𝑌 = 1)] = 𝑏

0
+ 𝑏
1
𝐿
1
+ ⋅ ⋅ ⋅ + 𝑏
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, where 𝑃(𝑌 =

1) is the probability that the binary outcome is 1, and 𝐿
𝑗

is any Boolean expression of the predictors. The 𝐿
𝑗
and 𝑏
𝑗

are estimated simultaneously using a stochastic optimization
algorithm [16].

The goal of this paper is to introduce logic regression
as a novel method for discovering interactions, specifically,
Boolean combinations of factors that potentially discriminate
users of partial nephrectomy or laparoscopy from nonusers.
Characterizing providers who are actually using (or not
using) these techniques is needed to show education- and/or
policy-based interventions designed to increase utilization
of these advanced surgical techniques. Given that logic
expressions are embedded in a generalized linear regres-
sion framework and therefore naturally adaptable to other
outcome types (e.g., numeric and time-to-event data); the
method has broad scope of application in health services and
outcomes research.

2. Materials and Methods

2.1. Data Source. We used data from the National Can-
cer Institute’s Surveillance, Epidemiology, and End Results
(SEER) Program and the Centers for Medicare and Medicaid
Services (Medicare) to identify patients diagnosed with inci-
dent kidney cancer from 1995 to 2005. SEER is a population-
based cancer registry that collects data regarding incidence,
treatment, and mortality. The demographic composition,
cancer incidence, and mortality trends in the SEER registries
are representative of the entire United States population. The
Medicare Program provides primary health insurance for
97% of the United States population aged 65 years and older,
and linkage toMedicare claims is achieved for >90% of SEER
cases over age 65 [17].

2.2. Cohort Identification and Assignment of Surgical
Procedure. We identified 15,744 patients diagnosed with
nonurothelial, nonmetastatic kidney cancer from 1995 to
2005. For this group of patients, we searched inpatient and

physician claims to identify kidney cancer-specific diagnosis
and procedure codes (list of codes available from authors
upon request). We excluded patients who lacked claims
denoting surgical treatment for kidney cancer, patients
with multiple hospitalizations for direct open or partial
nephrectomy, patients whose claims suggested the presence
of bilateral tumors at diagnosis, and patients operated by
a nonurologic specialty physician. This process yielded a
cohort of 11,918 cases. We applied a validated claim-based
algorithm to assign each patient to one of four mutually
exclusive surgical categories: (1) open radical nephrectomy
(ORN) (𝑛 = 8029), (2) open partial nephrectomy (OPN)
(𝑛 = 1380), (3) laparoscopic radical nephrectomy (LRN)
(𝑛 = 2082), and (4) laparoscopic partial nephrectomy (LPN)
(𝑛 = 427).

As validation, we assessed the level of concordance
between our claim-based algorithm and the type of cancer-
directed surgery specified for each patient in the SEER
data file (Patient Entitlement and Diagnosis Summary File).
Although SEER does not collect data regarding whether the
surgical approach was open or laparoscopic, we observed
97% agreement for the assignment of partial versus radical
nephrectomy (𝜅 = 0.83). Also, we identified relevant surgical
pathology claims within 30 days of the index admission
for more than 95% of analyzed cases, thus supporting the
occurrence of cancer-directed surgery. As a final step, we
externally validated our algorithm by comparing procedure
assignments based on Medicare claims with the surgery
specified in actual operative reports of 549 cases from the Los
Angeles Cancer Surveillance Program. Overall, the claims-
based algorithm assigned the correct surgical procedure
(ORN, OPN, LRN, or LPN) for 97% of patients in the
validation sample (𝜅 = 0.91). We observed equally high
concordance for identification of laparoscopic versus open
surgery (𝜅 = 0.87) and for classification of partial versus
radical nephrectomy (𝜅 = 0.93).

2.3. Patient-Level Covariates. For each patient in the ana-
lytic cohort, we used SEER data to determine demographic
and cancer-specific information (i.e., age at surgery, gender,
race/ethnicity, marital status, tumor size, tumor grade, his-
tology, and laterality). Based on patient-level zip codes, we
assigned patients to one of three socioeconomic strata [18].
We measured preexisting comorbidity by using a modified
Charlson Index based on claims submitted during the 12
months prior to the kidney cancer surgery [19, 20].

2.4. Primary Surgeon and Surgeon-Level Covariates. To iden-
tify the primary surgeon for each case, we used encrypted
Unique Physician IdentifierNumbers (UPIN) submittedwith
Medicare physician claims. We linked the comprehensive
list of surgeon UPINs to the American Medical Association
(AMA) Physician Masterfile, which contains demographic,
educational, and certification information for over one mil-
lion residents and physicians in the United States. Using
AMA data, we determined surgeon age, gender, year of
medical school graduation, and practice size. We assigned
each surgeon a rural-urban commuting area (RUCA) code



Computational and Mathematical Methods in Medicine 3

based on an established classification scheme using the zip
code of the primary office address [21]. We determined
academic affiliation (major,minor, or no academic affiliation)
based on the methods described by Shahinian et al. [22].
We also determined each surgeon’s average annual nephrec-
tomy (partial or radical) volume using claims from 1995 to
2005. We empirically defined high-volume surgeons as those
performing at least 3 annual cancer-related nephrectomies
among the SEER-Medicare population (83rd percentile).This
measure of case volume may not reflect the total number of
nephrectomies performed by a provider: it fails to account for
surgeries among younger (non-Medicare-eligible) patients,
Medicare HMO enrollees, and/or fee-for-service Medicare
participants who reside outside of the SEER registries. Finally,
we determined each surgeon’s association with a National
Cancer Institute- (NCI-) designated cancer center based
on whether or not they performed at least one radical
nephrectomy at a hospital carrying this designation.

2.5. Statistical Methods. Before fitting logic regression mod-
els, we performed several univariate analyses. We used
Chi-square tests to evaluate the level of association between
surgical procedure and various patient-level covariates and
to assess the statistical significance of temporal surgical
trends. For the subsequent modeling, we defined two binary
endpoints as follows: (1) use of partial nephrectomy (i.e.,
OPN+LPN versus ORN+LRN) and (2) use of laparoscopy
among patients who underwent radical nephrectomy (i.e.,
LRN versus ORN).

The classification algorithm used in this study is logic
regression, an adaptive regression methodology developed
by Ruczinski et al. [10]. In the logic regression framework,
given a set of binary covariates 𝑋, the goal is to create new,
better predictors for the response by constructing Boolean
combinations of the binary covariates. For example, if the
response is binary, the goal is to find decision rules such as
“if 𝑋
1
, 𝑋
2
, 𝑋
3
, and 𝑋

4
are true,” or “𝑋

5
or 𝑋
6
but not 𝑋

7

is true,” then the response is more likely to be in class 0.
Boolean combinations of the covariates, called logic trees,
are represented graphically as a set of and-or rules. Logic
regression searches for Boolean combinations of predictors in
the entire space of such combinations, while being completely
embedded in a regression framework, where the quality of the
models is determined by an appropriate score function for the
regression class.

Let𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑘
be binary (0/1) predictors and let 𝑌 be

the response. In our setting,𝑋’s correspond to patient, physi-
cian, and practice environment variables, and 𝑌 represents
binary outcomes (use of partial nephrectomy: yes/no; use
of laparoscopy: yes/no) each of which is modeled separately
using binomial deviance as the score function. For a given
set of Boolean expressions, an example of which was given in
Section 1, the logic regression model is a logistic regression
model with those Boolean expressions as covariates. Specifi-
cally, we denote a Boolean expressionwith the binary variable
𝐿, where 𝐿 = 1 is true and 𝐿 = 0 is false. The model is written
as

logit𝑃 (𝑌 = 1 | 𝐿
1
, . . . , 𝐿

𝑝
) = 𝛽
0
+ 𝛽
1
𝐿
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+ ⋅ ⋅ ⋅ + 𝛽

𝑝
𝐿
𝑝
, (1)

where 𝐿
𝑗
is a Boolean combination of the predictors 𝑋

𝑖
’s.

The goal is to find Boolean expressions in (1) that mini-
mize the binomial deviance, estimating the parameters 𝛽

𝑗

simultaneously with the search for the Boolean expressions
𝐿
𝑗
. This is what distinguishes logic regression from simple

logistic regression with binary covariates, that is, that the
fitting algorithm both defines “covariates” for model (1)
(using predictor data) and estimates the regression coef-
ficients simultaneously. The output from logic regression
is represented as a series of trees, one for each Boolean
predictor, 𝐿

𝑗
, and the associated regression coefficient.

CART is another tree-based method for modeling binary
data [15]. The classification rule is displayed as a tree whose
leaves are the two classes of interest (e.g., use versus nonuse
of partial nephrectomy or laparoscopy) and whose branches
correspond to dichotomized covariates. Each leaf is reached
by one or more paths through the tree; to reach the leaf,
all conditions along the path must be satisfied. Thus, a
classification tree can be thought of as the collection of
all paths that reach a leaf predicting use of treatment.
Therefore, any classification tree can be written as a Boolean
combination of covariates, as can a logic regression tree.
However, there are some Boolean expressions which can be
very simply represented as logic trees, but which require fairly
complicated classification trees [10]. It is this simplicity of
logic trees which we hope to exploit in order to produce easily
interpretable characterizations of individuals who have a high
likelihood of using the specific surgical treatment.

In logic regression, the challenge is to find good candi-
dates for the logic term 𝐿

𝑗
, as the collection of all Boolean

expressions is enormous. Using a tree-like representation
for logic expressions, we adaptively select this term using
a simulated annealing algorithm [16]. In our setting leaves
of each tree are the threshold conditions for each covariate,
and the root and knots of the tree are the Boolean (and-or)
operators. Simulated annealing is a stochastic optimization
algorithm. At each step a possible operation on the current
tree, such as adding or removing a knot, is proposed at
random. This operation is always accepted if the new logic
tree has a better score than the old logic tree; otherwise, it
is accepted with a probability that depends on the difference
between the scores of the old and the new tree and the
stage of the algorithm. Properties of the simulated annealing
algorithm depend heavily on Markov chain theory and thus
on the set of operations that can be applied to logic trees.

The complexity of a logic regression model is defined
by the number of logic trees (𝑝 in (1)) and the number of
variables, or leaves, that make up a tree. As with any adaptive
regression methodology, larger models (those with more
trees and leaves) typically fit better than smaller models. To
avoid overfitting, in this paperwe chose themodel size using a
cross-validation approach.We variedmodel complexity from
1 to 4 trees (corresponding to the 𝑝 in (1)) and the number of
leaves that make up a tree from 1 to 15. We randomly divided
our data into ten subsets, such that each subset consisted of
one-tenth of the “treatment” and the “control” (RN for the
first endpoint and ORN for the second endpoint) groups. Of
the ten subsets, we used nine subsets as training data and
the remaining single subset as validation data for testing the
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model. We used the training data to develop the logic models
using simulated annealing algorithm and then estimated the
deviance based on the test data. This process was repeated
ten times, with each of the ten subsets used exactly once as
validation data (tenfold cross validation). The results from
the ten folds were then averaged to produce a single deviance
score for each model. To reduce variability, this procedure
(splitting the data into ten parts, developing logic rules on
the training data, and estimating the deviance based on
the test data) was repeated 15 times, with different random
splits of the whole dataset for each run. The deviance scores
were averaged over the 15 rounds of cross-validation, and
the model with the smallest average deviance was selected.
Results presented correspond to the run yielding value for the
test set based model deviance that was closest to its average
across the 15 runs. This run was selected so as to provide
results for what might be considered a typical rather than an
extreme split of the data into test and training sets.

Logic regression requires binary predictor variables, so
we recoded variables into binary forms. Categorical covari-
ates were coded as a set of indicator variables for each level
of the covariate. For example, marital status was analyzed as
married versus others, and racewas coded as a set of indicator
variables based on the categories Caucasian, African Ameri-
can, Hispanic, and others. Continuous and ordinal covariates
were coded as a series of threshold indicators based on a
priori knowledge about the variables. For example, tumor
size was categorized into two clinically relevant groups based
on a 4 cm threshold; patient’s age at surgery and Charlson
comorbidity index were each coded as a series of threshold
indicators based on five-year age intervals 65–69, 70–74,
75–79, 80–84, and ≥85 years and 0, 1, and ≥2 comorbid
conditions, respectively. Each of the surgeon variables, that
is, surgeon’s year of medical school graduation, age, practice
structure, and academic affiliation, was also coded as a series
of threshold indicators based on the categories prior to 1960,
1961–1970, 1971–1980, 1981–1990, and 1991 and after; <40,
40–49, 50–59, and ≥60 years; solo or two person practice,
group practice, HMO or hospital based practice, medical
school, and others; and none, minor, and major affiliation,
respectively.

3. Results

We identified a total of 11,918 Medicare beneficiaries who
underwent surgery for an incident kidney cancer diagnosed
between 1995 and 2005. Table 1 presents demographic and
clinical characteristics of patients in the analytic sample.
During the study interval, 1807 patients (15.2%) under-
went partial nephrectomy (427 performed laparoscopically),
and 10,111 patients (84.8%) underwent radical nephrectomy
(2082 performed laparoscopically). We observed differences
in treatment patterns according to patient age, gender,
race/ethnicity, marital status, socioeconomic status, tumor
size, tumor grade, and histology (Table 1).

From 1995 to 2005, the annual proportion of patients who
underwent partial nephrectomy increased from8.5% to 21.3%
(𝑃 < 0.0001); for patients who had tumors that measured

≤4 cm, the proportion rose from 14.4% to 37.1% (𝑃 < 0.0001).
Among patients treatedwith radical nephrectomy, the annual
proportion of laparoscopy use increased from 1.3% in 1995
to 44.1% in 2005 (𝑃 < 0.0001). For patients whose tumors
measured ≤4 cm, the annual proportion of laparoscopy use
increased from 1.6% to 52.9%; for patients with larger tumors,
this proportion increased from 1.2% to 39.3% (𝑃 values <
0.0001).

We identified 2088 primary surgeons who performed
11,918 kidney cancer surgeries during the study interval
(median 4 cases). Of these, 2019 surgeons performed 10,111
radical nephrectomies (median 3 cases; range 1–84). During
the same interval, 842 surgeons performed 1,807 partial
nephrectomies (median 1 case; range 1–29). Of the 2019
surgeons who performed the radical nephrectomies, 720
operated laparoscopically on 2,082 patients (median 2 cases;
range 1–55). We observed differences in treatment pat-
terns according to provider age, gender, year of medical
school graduation, annual nephrectomy volume, practice
size, rural/urban status, academic affiliation, and NCI cancer
center designation (Table 2).

Figure 1 displays results of the logic regression to deter-
mine optimal combination rules for use of partial nephrec-
tomy based on a two-tree model. The first tree, 𝐿

1
, is entirely

described by tumor size. The estimated odds ratio associated
with this tree is 5.9 (95% CI 4.7–7.4), suggesting that tumor
size ≤4 cm is associated with almost six times higher odds of
partial nephrectomy.This finding is concurrent with previous
reports in the literature documenting tumor size as a strong
predictor of partial nephrectomy [8, 9]. Interestingly, the
second tree, 𝐿

2
, involves practice environment characteris-

tics. This tree (𝐿
2
) indicates that not having major academic

affiliation, or not practising inHMO, hospital, medical school
based setting is associated with lower odds ratio of partial
nephrectomy. The estimated odds ratio associated with 𝐿

2
is

0.30 (95% CI 0.23–0.39), suggesting that, as a group, those
satisfying 𝐿

2
are estimated to have a 70% lower odds of using

partial nephrectomy compared to those who do not satisfy
the tree. In other words, patients treated by surgeons who
have major academic affiliation and are in HMO, hospital, or
medical school based practice setting are 3.3 timesmore likely
to undergo partial nephrectomy than their counterparts.

Figure 2 displays results of the logic regression to deter-
mine optimal combination rules for use of laparoscopic
radical nephrectomy based on a three-tree model. The first
tree, 𝐿

1
, is entirely described by academic affiliation. The

estimated odds ratio associated with this tree is 2.12 (95% CI
1.71–2.63), suggesting that surgeon’s affiliation with a major
academic center is associated with two times higher odds
of a laparoscopic radical nephrectomy. The second tree, 𝐿

2
,

involves a combination of patient and surgeon characteristics.
This tree (𝐿

2
) indicates that having larger tumors (>4 cm)

or having a surgeon who graduated in or prior to 1980
or practising in nongroup settings (solo or two person) is
associated with a lower odds of laparoscopic procedure. The
estimated odds ratio associated with 𝐿

2
is 0.38 (95% CI 0.29–

0.48), suggesting that, as a group, those satisfying 𝐿
2
are

estimated to have a 62% lower odds of laparoscopic radical
nephrectomy compared to those who do not satisfy the tree.
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Table 1: Distribution of patient and tumor characteristics by surgical procedures (1995–2005).

Total LPN LRN OPN ORN
𝑃 value𝑛 𝑛 (%) 𝑛 (%) 𝑛 (%) 𝑛 (%)

11,918 427 (3.6) 2082 (17.5) 1380 (11.6) 8029 (67.3)
Age at surgery (years) 0.0001

65–69 3127 131 (4.2) 530 (16.9) 431 (13.8) 2035 (65.1)
70–74 3423 122 (3.6) 536 (15.7) 426 (12.5) 2339 (68.3)
75–79 3024 98 (3.2) 579 (19.2) 354 (11.7) 1993 (65.9)
80–84 1721 59 (3.4) 300 (17.4) 139 (8.1) 1223 (71.1)
≥85 623 17 (2.7) 137 (22.0) 30 (4.8) 439 (70.5)

Race/ethnicity 0.0001
Caucasian 9884 344 (3.5) 1757 (17.8) 1158 (11.7) 6625 (67.0)
African-American 878 33 (3.8) 154 (17.5) 103 (11.7) 588 (67.0)
Hispanic 719 27 (3.8) 81 (11.3) 70 (9.7) 541 (75.2)
Other or Unknown 437 23 (5.3) 90 (20.6) 49 (11.2) 275 (62.9)

Gender 0.0001
Male 6882 274 (3.9) 1134 (16.5) 850 (12.4) 4624 (67.2)
Female 5036 153 (3.0) 948 (18.8) 530 (10.5) 3405 (67.6)

Marital status 0.005
Yes 7499 294 (3.9) 1274 (17.0) 901 (12.0) 5030 (67.1)
No 4419 133 (3.0) 808 (18.3) 479 (10.8) 2999 (67.9)

Socioeconomic status 0.0001
Low 3808 134 (3.5) 603 (15.8) 424 (11.1) 2647 (69.5)
Intermediate 3899 135 (3.5) 633 (16.2) 386 (9.9) 2745 (70.4)
High 4196 158 (3.8) 846 (20.2) 568 (13.5) 2624 (62.5)

Charlson comorbidity score 0.38
0 6842 241 (3.5) 1186 (17.3) 794 (11.6) 4621 (67.5)
1 2847 104 (3.7) 512 (18.0) 313 (11.0) 1918 (67.4)
≥2 1904 74 (3.9) 345 (18.1) 246 (12.9) 1239 (65.1)

Tumor size (cm) 0.0001
≤4 5188 352 (6.8) 949 (18.3) 1035 (20.0) 2852 (54.9)
>4 6401 51 (0.8) 1101 (17.2) 286 (4.5) 4963 (77.5)

Tumor histology 0.0001
Clear cell 10000 301 (3.0) 1682 (16.8) 1042 (10.4) 6975 (69.8)
Papillary 888 77 (8.7) 200 (22.5) 170 (19.1) 441 (49.7)
Chromophobe 391 24 (6.1) 107 (27.4) 82 (21.0) 178 (45.5)
Other 639 25 (3.9) 93 (14.6) 86 (13.5) 435 (68.1)

The third tree, 𝐿
3
, is characterized by a combination of

surgeon and practice environment variables. This tree (𝐿
3
)

indicates that low volume surgeons in a non-NCI hospital,
surgeons in rural environment, or surgeons who graduated in
or prior to 1980 despite having some academic affiliation have
a lower odds for laparoscopic procedure (odds ratio = 0.29,
95% CI 0.23–0.38).

We also performed CART analyses of our data (results
not shown) for both the partial and laparoscopic radical
nephrectomy endpoints. For partial nephrectomy, the CART
tree yielded subgroups characterized by tumor size and
surgeon’s academic affiliation. As observed before, patients
with tumor size > 4 cm were less likely to undergo par-
tial nephrectomy compared to those with smaller tumors.
For the latter group (tumor size ≤4 cm), surgeons with

major academic affiliation had higher propensity for partial
nephrectomy compared to those with minor or no academic
affiliation. The area under the ROC curve for the CART tree
was 0.72, compared to 0.77 for the logic regression model.
For laparoscopic radical nephrectomy, the CART tree yielded
subgroups characterized by surgeon’s academic affiliation,
year of medical school graduation, and annual surgeon
volume. High volume surgeons who graduated after 1980 and
were affiliated with a major academic center had the highest
propensity towards laparoscopic procedure. Surgeons with
minor or no academic affiliation had the lowest propensity
towards laparoscopic procedure. Interestingly, despite having
major academic affiliation surgeons who graduated in or
prior to 1980 had only a slightly higher propensity towards
laparoscopic procedure compared to surgeons with minor or
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Table 2: Distribution of surgeon and practice environment characteristics by surgical procedures (1995–2005).

Total LPN LRN OPN ORN
𝑃 value𝑛 𝑛 (%) 𝑛 (%) 𝑛 (%) 𝑛 (%)

11,918 427 (3.6) 2082 (17.5) 1380 (11.6) 8029 (67.3)
Surgeon age (years) 0.0001
<40 2553 147 (5.8) 774 (30.3) 271 (10.6) 1361 (53.3)
40–49 4034 170 (4.2) 728 (18.1) 440 (10.9) 2696 (66.8)
50–59 3710 85 (2.3) 427 (11.5) 458 (12.4) 2740 (73.9)
≥60 1621 25 (1.5) 153 (9.4) 211 (13.0) 1232 (76.0)

Surgeon gender 0.0001
Male 11684 419 (3.6) 2036 (17.4) 1364 (11.7) 7865 (67.3)
Female 234 8 (3.4) 46 (19.7) 16 (6.8) 164 (70.1)

Annual nephrectomy volume 0.0001
Bottom 25% 2279 34 (1.5) 209 (9.2) 230 (10.1) 1806 (79.3)
2nd 25% 3474 77 (2.2) 458 (13.2) 370 (10.7) 2569 (73.9)
3rd 25% 3141 107 (3.4) 519 (16.5) 320 (10.2) 2195 (69.9)
Top 25% 3024 209 (6.9) 896 (29.6) 460 (15.2) 1459 (48.3)

Year of medical school graduation 0.0001
<1960 346 2 (0.6) 9 (2.6) 48 (13.9) 287 (82.9)
1961–1970 2488 25 (1.0) 176 (7.1) 301 (12.1) 1986 (79.8)
1971–1980 3568 89 (2.5) 437 (12.3) 403 (11.3) 2639 (73.9)
1981–1990 3705 166 (4.5) 738 (19.9) 431 (11.6) 2370 (63.9)
>1991 1811 145 (8.0) 722 (39.9) 197 (10.9) 747 (41.3)

Practice size 0.0001
Solo or two-person 3200 36 (1.1) 284 (8.9) 279 (8.7) 2601 (81.3)
Group practice 6619 274 (4.1) 1368 (20.7) 709 (10.7) 4268 (64.5)
HMO or hospital-based 631 29 (4.6) 100 (15.9) 141 (22.4) 361 (57.2)
Medical school 484 34 (7.0) 98 (20.3) 125 (25.8) 227 (46.9)
Other/unclassified 984 54 (5.5) 232 (23.6) 126 (12.8) 572 (58.1)

Academic affiliation 0.0001
None 4195 88 (2.1) 660 (15.7) 385 (9.2) 3062 (72.9)
Minor 4408 127 (2.9) 740 (16.8) 420 (9.5) 3121 (70.8)
Major 3201 207 (6.5) 668 (20.9) 561 (17.5) 1765 (55.1)

Rural/urban status 0.0001
Urban 11093 412 (3.7) 1992 (17.9) 1318 (11.9) 7371 (66.5)
Rural 823 15 (1.8) 89 (10.8) 61 (7.4) 658 (79.9)

Cancer Center Affiliation 0.0001
No 10793 322 (2.9) 1861 (17.2) 1125 (10.4) 7485 (69.4)
Yes 1096 102 (9.3) 219 (19.9) 252 (22.9) 523 (47.7)

no academic affiliation.The area under the ROC curve for the
CART tree was 0.61, compared to 0.71 for the logic regression
model.

4. Conclusions

The principal finding from this study was our ability to
uncover the interplay between patient, provider, and practice
environment variables towards adoption of partial nephrec-
tomy and laparoscopy. Through the use of logic regression
we were able to uncover interactions that would not have
been detected by standard logistic regression approach.

Our findings demonstrate that the adoption of laparoscopic
radical nephrectomy is particularly influenced by complex
combinations of surgeon and practice environment charac-
teristics, rather than simple “main effects.” More specifically,
our results suggest that patients treated by surgeons who
graduated in or prior to 1980 despite having some academic
affiliation, low volume surgeons in a non-NCI hospital,
or surgeons in rural environment were significantly less
likely to use laparoscopic radical nephrectomy. Although less
dramatic, the adoption of partial nephrectomy is also influ-
enced by combination of tumor and practice environment
characteristics. Collectively, these findings highlight the rich
contextual interactions that influence urologist’s adoption of
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Minor or no academic 
affiliation

Or

Not practising in HMO, hospital, 
medical school setting 

Tree no. 1: L1

Tree no. 2: L2

Tumor size ≤ 4 cm

Figure 1: Two-tree model for use of partial nephrectomy. The odds
ratio associated with 𝐿

1
is 5.9 (95% CI 4.7–7.4) and that with 𝐿

2
is

0.30 (95% CI 0.23–0.39).

new technologies and potentially reflect role of resources and
access to informational externalities that help promote the
adoption of these technologies.

According to Donabedian’s structure-process-outcome
model for quality-of-care assessment, characteristics of indi-
vidual providers and their practice environments are struc-
tural measures that influence patient outcomes both directly
and through their influence on specific processes of care
[23]. In fact, these links have been validated empirically
in multiple, diverse clinical settings. One well-characterized
example is the inverse association between surgeon case vol-
ume (a provider characteristic and structural measure) and
operative mortality (a patient outcome) following high-risk
cancer surgery [24]. Likewise, among patients with prostate
cancer, evidence-based utilization of androgen deprivation
therapy (a process of care) varies based on characteristics of
the treating urologist, including years since medical school
graduation and academic affiliation [22]. In addition to a
surgeon’s individual characteristics, the practice environment
also influences treatment decisions and patient outcomes.
For instance, patients receiving care at the National Can-
cer Institute- (NCI-) designated cancer centers have lower
adjusted mortality rates following surgical resection of gas-
tric, lung, colorectal, and esophageal cancers than in non-
NCI-designated hospitals [25]. Specific to urology, patients
treated by physicians in solo practice receive less-frequent
surveillance (a process of care) following a bladder cancer
diagnosis than do those whose surgeon is in a group practice
[26].

Our results are in keeping with existing literature that
describes the influence of provider characteristics and prac-
tice environments on the adoption of innovative surgical
therapies. For example, prior work identified younger sur-
geon age, active board certification, urban practice location,
group practice affiliation, and a competitive practice setting
as important facilitators of general surgeons’ adoption of
laparoscopic cholecystectomy [27, 28]. Similar findings have
been described for surgical treatment in early stage breast
cancer [29, 30], as well as urological cancers, such as the use
of partial nephrectomy for kidney cancer [31], utilization of
continent reconstruction among patients undergoing radical
cystectomy for bladder cancer [32], and use of androgen

Major academic 
affiliation

Or

Solo or two-person 
practice setting

Year of medical school 
graduation 1980 or prior 

Year of medical school 
graduation 1980 or prior

Or

Some academic 
affiliation

And
Rural center

Or

And

Low volume 
surgeon

non-NCI 
cancer center

Tree no. 1: L1

Tree no. 2: L2

Tree no. 3: L3

Tumor size > 4 cm

Figure 2:Three-tree model for use of laparoscopic radical nephrec-
tomy. The odds ratio associated with 𝐿

1
is 2.1 (95% CI 1.7–2.6), that

with 𝐿
2
is 0.38 (95% CI 0.29–0.48), and that with 𝐿

3
is 0.29 (95% CI

0.23–0.38).

deprivation therapy among patients with localized prostate
cancer [22].

This study has several limitations. Because SEER-Med-
icare data are limited to patients >65 years of age, our
findings may not apply to younger patients with kidney
cancer. Second, similar to surgery for early-stage breast
cancer, clarification of the optimal use of partial nephrec-
tomy and laparoscopy will require a better understanding
of patient attitudes and preferences that cannot be assessed
using claims data. Third, as we used Medicare claims, we
may be underestimating the operative volume of individual
surgeons treating patients younger than 65 years. Fourth, we
could measure only a limited set of surgeon and practice
environment characteristics (most of which are structural
in nature); as such, there is a need for future studies that
assess the degree to which difficult-to-measure barriers such
as technical complexity and/or an absence of adopters in their
local communities influence urologists’ uptake of these newer
surgical therapies.

These limitations notwithstanding, our findings have
implications for efforts aimed at facilitating the adoption of
partial nephrectomy and laparoscopic radical nephrectomy.
As described previously, renewed efforts are needed to better
understand barriers to initial and sustained adoption among
urologists working in rural environments, small practice
settings, and those not affiliated with academic medical cen-
ters and/or NCI-designated cancer centers. Although more
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recently trained urologists were more likely to use laparo-
scopic radical nephrectomy, our findings counter the notion
that uniform adoption will occur naturally as training in this
minimally invasive technique becomes more commonplace.
Recognizing that social connections and local informational
resources facilitate the diffusion of new surgical therapies [27,
33, 34], we see innovative collaborations between urologists,
informed by established practice-based surgical research
models [35, 36], as representing a potential mechanism for
accelerating uniform and equitable adoption of these newer
technologies. That being said, the most significant implica-
tions from the current study relate to our illustration, more
generally, of the power of logic regression as a novel method
for discovering interactions in health services and outcomes
research. In addition to characteristics of the surgeon and
practice environment, others have described multiple con-
textual factors that influence technology adoption, including,
among others, patient demand, professional impact (i.e.,
financial and social costs), commercial promotion, and mag-
nitude of perceived clinical benefit [37]. As such, methods
that allow better characterization and understanding of the
complex interplay between these factors will undoubtedly
facilitate targeted and efficient interventions to optimize the
adoption of both beneficial and potentially harmful new
technologies.
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