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We investigate the various conditions that control the extinction and stability of a nonlinear mathematical spread model with
stochastic perturbations. This model describes the spread of viruses into an infected computer network which is powered by
a system of antivirus software. The system is analyzed by using the stability theory of stochastic differential equations and the
computer simulations. First, we study the global stability of the virus-free equilibrium state and the virus-epidemic equilibrium
state. Furthermore, we use the Itô formula and some other theoretical theorems of stochastic differential equation to discuss the
extinction and the stationary distribution of our system.The analysis gives a sufficient condition for the infection to be extinct (i.e.,
the number of viruses tends exponentially to zero). The ergodicity of the solution and the stationary distribution can be obtained
if the basic reproduction number R𝑝 is bigger than 1, and the intensities of stochastic fluctuations are small enough. Numerical
simulations are carried out to illustrate the theoretical results.

1. Introduction

A computer virus is a small malicious program that spreads
from host to host and has a great ability to replicate itself
into or over data files during the execution of programs. On
a computer network, the interconnectivity of workstations
makes the spread of viruses easier. In fact, an infected
computer can spread viruses (malware) through the other
connected nodes, which causes severe damage like reformat-
ting the hard drive, unexplained data loss, slowing computer
performance, corrupting databases, and so forth. Conse-
quently, mathematics specialists are becoming more aware of
the importance of protecting systems. To clean and protect
the network, an antivirus is a computer program designed to
identify and erase malicious software in the system.

Similar to the biological virus systems, many mathemati-
cal models have been proposed to describe quantitatively the
spread of infections into a computer network [1–9]. Following
a deterministic approach,Mishra and Jha [1] have formulated
and analyzed the effect of quarantine on recovered nodes.
Yuan and Chen [2] discussed an 𝑒-SEIR network virus-
epidemic model using the theory of stability in differential

equations. Shukla et al. [3] modeled and studied the effect
of antivirus software on infected computer network; they
proved that, under certain conditions, the used antivirus can
successfully clean the system.

Other authors have followed the stochastic approach to
describe the spread of viruses in a computer network [4,
5]. Zhang et al. [4] proposed and investigated a stochastic
computer virus spread model. By constructing a suitable
Lyapunov function, they established the necessary conditions
for the virus-free equilibrium and viral equilibrium to be
stabilized.

To study the effect of antivirus software on its ability to
clean an infected computer network, Shukla et al. [3] have
proposed the following deterministic system:

𝑑𝑋 = (𝐴 − 𝛽𝑋𝑌 − 𝑑𝑋 − 𝑘𝑋 + 𝜋𝑌𝑉𝑎) 𝑑𝑡,
𝑑𝑌 = (𝛽𝑋𝑌 − 𝑑𝑌 − 𝛼𝑌 − 𝜋𝑌𝑉𝑎) 𝑑𝑡,
𝑑𝑍 = (𝑘𝑋 − 𝑑𝑍) 𝑑𝑡,
𝑑𝑉𝑎 = (𝜇𝑌 − 𝜇0 (𝑉𝑎 − 𝑉𝑎0)) 𝑑𝑡;

(1)
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here 𝑋(𝑡) denotes the number of susceptible nodes at time𝑡 ≥ 0, 𝑌(𝑡) the number of infected nodes, 𝑍(𝑡) the number of
protected nodes, and𝑉𝑎(𝑡) the number of antivirus programs
used to clean the network, which is considered to be propor-
tional with the number of infected nodes. The total number
of nodes in the network is 𝑁(𝑡) = 𝑋(𝑡) + 𝑌(𝑡) + 𝑍(𝑡). The
significance of each parameter in the model is as follows: 𝐴
is the inflow rate of susceptible nodes, 𝛽 is the transition rate
from 𝑋 to 𝑌 resulting from the contact between susceptible
and infected nodes, 𝑑 is the rate at which nodes are crashed
by another cause other than being attacked by viruses, 𝑘 is
the constant rate at which the nodes are being protected by
another antivirus software, 𝛼 is the rate at which infected
nodes become incapable of infecting susceptible nodes, 𝜋 is
the rate at which infected nodes are recovered and become
susceptible again, 𝜇 is the growth rate of antivirus software
used to clean the network, 𝜇0 is the rate by which it fails to
work efficiently, and 𝑉𝑎0 is the number of antivirus programs
permanently present in the system to protect the existing
software; all these parameters are assumed to be positive.

In real life, the number of contacts of a susceptible
node per unit time cannot always increase linearly with 𝑌,
especially when the number of infectious nodes is large [6], so
formore realism,we first suppose that the saturated incidence
rate is nonlinear and takes the form 𝛽𝑋𝑌/𝑓(𝑌). Model (1)
becomes

𝑑𝑋 = (𝐴 − 𝛽𝑋𝑌
𝑓 (𝑌) − 𝑑𝑋 − 𝑘𝑋 + 𝜋𝑌𝑉𝑎)𝑑𝑡,

𝑑𝑌 = ( 𝛽𝑋𝑌
𝑓 (𝑌) − 𝑑𝑌 − 𝛼𝑌 − 𝜋𝑌𝑉𝑎)𝑑𝑡,

𝑑𝑍 = (𝑘𝑋 − 𝑑𝑍) 𝑑𝑡,
𝑑𝑉𝑎 = (𝜇𝑌 − 𝜇0 (𝑉𝑎 − 𝑉𝑎0)) 𝑑𝑡,

(2)

where𝑓 is a positive function satisfying𝑓(0) = 1 and𝑓(𝑌) ≥0. Such function 𝑓 enables the introduction of several effects,
like the psychological effects (e.g., (𝑌/𝑓(𝑌) = 𝑌/(1 + 𝛾𝑌))
see [7]). Conforming to the biological epidemic models, this
effect is manifested when the number of infected nodes is
very large; the infection force may decrease as the number
of infections 𝑌 increases. In relation to our model, in the
presence of a very large number of infectious nodes, the users
of computers in the network may tend to reduce the number
of contacts of their computers.

In the real world, the parameters of a compartmental
model are always subject of random variability that affects the
dynamic of the population. There exist several types of noise
that may represent the environmental random variability;
many studies showed that the white noise is an appropriate
representation of environmental random variability in terres-
trial systems (see Steele 1985 [10]; Vasseur and Yodzis 2004
[11]). For this reason, we introduce a Gaussian white noise
disturbance into this model by considering the case where
the parameters 𝑑 and 𝛽 are subject to random fluctuations.
Hence, by using the technique of parameter perturbation,
which represents the commonly used procedure in construct-
ing SDEmodels (e.g., Zhang et al. [4], Ji et al. [12]), we replace

𝑑 by 𝑑+𝜎1𝑑𝐵1 and 𝛽 by 𝛽+𝜎2𝑑𝐵2, where 𝐵1(𝑡) and 𝐵2(𝑡) are
standard one-dimensional independent Brownian motions
and 𝜎1 and 𝜎2 their intensities. The other parameters are the
same as in system (1). We obtain the following stochastic
system:

𝑑𝑋 = (𝐴 − 𝛽𝑋𝑌
𝑓 (𝑌) − 𝑑𝑋 − 𝑘𝑋 + 𝜋𝑌𝑉𝑎)𝑑𝑡 − 𝜎1𝑋𝑑𝐵1

− 𝜎2 𝑋𝑌𝑓 (𝑌)𝑑𝐵2,
𝑑𝑌 = ( 𝛽𝑋𝑌

𝑓 (𝑌) − 𝑑𝑌 − 𝛼𝑌 − 𝜋𝑌𝑉𝑎)𝑑𝑡 − 𝜎1𝑌𝑑𝐵1
+ 𝜎2 𝑋𝑌𝑓 (𝑌)𝑑𝐵2,

𝑑𝑍 = (𝑘𝑋 − 𝑑𝑍) 𝑑𝑡 − 𝜎1𝑍𝑑𝐵1,
𝑑𝑉𝑎 = (𝜇𝑌 − 𝜇0 (𝑉𝑎 − 𝑉𝑎0)) 𝑑𝑡.

(3)

The added value of this paper is summarized in the fact
that presents a deterministic and stochastic study of a global
model that takes into consideration the effect of antivirus
programs in the spread of malware in a computer network.
Also, it contains a global nonlinear saturated incidence rate
which reflects more realism.

The remainder of this paper is as follows: in Section 2,
we present some preliminary results related to the following
study.We investigate in Section 3 the stability of the two equi-
librium states of the deterministic system (2). In Section 4, we
show that system (3) admits a global and unique positive solu-
tion, starting from the initial values (𝑋(0), 𝑌(0), 𝑍(0), 𝑉𝑎(0)).
Next in Section 5, we give a sufficient condition for the
system to be extinct. In Section 6, sufficient condition for
the existence of a unique stationary distribution is obtained.
We conclude in Section 7 by presenting some numerical
simulations to illustrate our results.

2. Preliminaries

Throughout the rest of this paper, we let (Ω, F ,P) be a
complete probability space with a filtration (F𝑡)𝑡≥0 satisfying
the usual conditions (i.e., it is increasing and right continuous
while F0 contains all P-null sets). 𝐵𝑖(𝑡), (𝑖 = 1, 2) are defined
on this complete probability space, we also denote

R
4
+ = {(𝜒1, 𝜒2, 𝜒3, 𝜒4) 𝜒𝑖 > 0, 𝑖 = 1, 2, 3, 4} . (4)

In general, consider the 𝑑 dimensional stochastic differ-
ential equation

𝑑𝜒 (𝑡) = 𝑓 (𝜒 (𝑡) , 𝑡) 𝑑𝑡 + 𝑔 (𝜒 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) ,
for 𝑡 ≥ 0, (5)

with initial value 𝜒(0) = 𝑥0 ∈ R𝑑. 𝐵(𝑡) denotes an 𝑛-dimen-
sional standard Brownian motion defined on the complete
probability space (Ω, F , {F𝑡}𝑡≥0,P). We denote by (𝐶2,1(R𝑑 ×[𝑡0,∞],R+) the family of all nonnegative functions 𝑉(𝜒, 𝑡)
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defined onR𝑑 ×[𝑡0,∞] such that they are continuously twice
differentiable in 𝜒 and once in 𝑡. The differential operator 𝐿 is
defined in [13].

Let 𝑋(𝑡) be a homogeneous Markov process in 𝐸𝑑 (𝐸𝑑
denotes the𝑑-dimensional Euclidean space) and be described
by the following stochastic differential equation:

𝑑𝑋 (𝑡) = 𝑏 (𝑋) 𝑑𝑡 + 𝑘∑
𝑟=1

𝑔𝑟 (𝑋) 𝑑𝐵𝑟 (𝑡) . (6)

The diffusion matrix is defined as follows:

𝐴 (𝜒) = (𝑎𝑖𝑗 (𝜒)) , 𝑎𝑖𝑗 =
𝑘∑
𝑟=1

𝑔𝑖𝑟 (𝜒) 𝑔𝑗𝑟 (𝜒) . (7)

The following lemma is used to prove the theorem
related to the stationary distribution for SDE (3) (see [14],
Theorem 3.13, p. 1164, Remark 3.2, p. 1160, Theorem 4.3, p.
1168, andTheorem 4.4, p. 1169).

Lemma 1. System (6) is positive recurrent if there is a bounded
open subset𝑈 ofR𝑛 with a regular boundary, and the following
holds:

(B1) There exist some 𝑙 = 1, 2, . . . , 𝑛 and a positive constant
] such that

𝑎𝑙𝑙 (𝑥) ≥ ], 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥 ∈ 𝑈. (8)

(B2) There exists a nonnegative function 𝑉 : 𝑈𝑐 → R such
that 𝑉 is twice continuously differentiable and that for
some 𝜃 > 0

𝐿𝑉 ≤ −𝜃, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥 ∈ 𝑈𝑐. (9)

Moreover, the positive recurrent process 𝑋(𝑡) has a unique
stationary distribution𝜋(⋅)with density inR𝑛 such that for any
Borel set 𝐵 ∈ R𝑛

lim
𝑡→∞

P (𝑡, 𝑥, 𝐵) = 𝜋 (𝐵) ,
P𝜒 { lim

𝑇→∞

1𝑇 ∫𝑇
0
𝑓 (𝑋 (𝑡)) 𝑑𝑡 = ∫

R𝑛
𝑓 (𝜒 (𝑡)) 𝜋 (𝑑 (𝜒))}

= 1,
(10)

for all 𝜒 ∈ R𝑛, where 𝑓 : R𝑛 → R is a function integrable with
respect to the measure 𝜋.
3. Equilibrium Analysis and
Global Stability of Equilibria

The basic reproduction number is the number of secondary
infectious cases produced by an infectious individual during
his or her effective infectious period when introduced in
a population of susceptibles [15]. For model (2) the basic
reproduction number is

R𝑝 = 𝛽𝐴
(𝑑 + 𝑘) (𝑑 + 𝛼 + 𝜋𝑉𝑎0) , (11)

where R𝑝 acts as a sharp threshold between extinction and
invasion of the disease.

Proposition 2. System (2) admits the virus-free equilibrium
state 𝐸0(𝐴/(𝑑 + 𝑘), 0, 𝑘𝐴/𝑑(𝑑 + 𝑘), 𝑉𝑎0), which exists for all
parameters values, and a unique virus-epidemic equilibrium
state 𝐸∗(𝑋∗, 𝑌∗, 𝑍∗, 𝑉∗𝑎 ) which exists ifR𝑝 > 1.
Proof. System (2) has the virus-free equilibrium state𝐸0(𝐴/(𝑑 + 𝑘), 0, 𝑘𝐴/𝑑(𝑑 + 𝑘), 𝑉𝑎0); this equilibrium is
obtained by giving 𝑌 = 0 (i.e., absence of infection). The
positive virus-epidemic equilibrium state is the solution of
the following system (equivalent to system (2), except𝑌 ̸= 0):

𝛽𝑋 − 𝑓 (𝑌) (𝑑 + 𝛼 + 𝜋𝑉𝑎) = 0,
𝑋 = 𝐴 − (𝑑 + 𝛼) 𝑌𝑑 + 𝑘 ,
𝑍 = 𝑘𝑑 (𝐴 − (𝑑 + 𝛼) 𝑌𝑑 + 𝑘 )𝑑𝑡,
𝑉𝑎 = 𝜇

𝜇0𝑌 + 𝑉𝑎0.

(12)

Substituting 𝑋 and 𝑉𝑎 by their expression in the first
equation of system (12), we get the following equation of 𝑌:

Λ (𝑌) = 𝛽𝐴
𝑑 + 𝑘 − 𝛽 (𝑑 + 𝛼)

𝑑 + 𝑘 𝑌
− 𝑓 (𝑌) [𝑑 + 𝛼 + 𝜋( 𝜇

𝜇0𝑌 + 𝑉𝑎0)] = 0,
(13)

since 𝑓 ≥ 0, then Λ is decreasing. Moreover, we have

Λ (𝑌) < 𝛽𝐴
𝑑 + 𝑘 − 𝛽 (𝑑 + 𝛼)

𝑑 + 𝑘 𝑌. (14)

Thus

lim
𝑌→+∞

Λ (𝑌) = −∞, (15)

and also, we have 𝑓(0) = 1; then
Λ (0) = 𝛽𝐴

𝑑 + 𝑘 − (𝑑 + 𝛼 + 𝜋𝑉𝑎0)
= (𝑑 + 𝛼 + 𝜋𝑉𝑎0) (R𝑝 − 1) ,

(16)

where Λ is decreasing; then (15) and (16) imply that Λ has a
unique positive zero if and only ifR𝑝 > 1.

The following theorem gives sufficient conditions for the
global stability of equilibria of model (2).

Theorem 3. If R𝑝 ≤ 1, then the virus-free equilibrium state
𝐸0 is globally asymptotically stable. While if R𝑝 > 1, then the
virus-epidemic equilibrium state 𝐸∗ is globally asymptotically
stable.
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Proof. Using the Lyapunov asymptotic theorem [16] to prove
the global asymptotic stability of 𝐸0. Let us consider the
function

𝑉1 = 𝜔12 (𝑍 − 𝑍0)2 + 𝜔22 (𝑋 + 𝑌 − 𝑋0)2

+ 𝜔32 (𝑉𝑎 − 𝑉0𝑎 )2 + 𝜔4 ∫𝑌
0
𝑓 (𝑠) 𝑑𝑠

+ 𝜔52 (𝑋 + 𝑌 + 𝑍 − 𝑋0 − 𝑍0)2 ,
(17)

where𝐸0 = (𝑋0, 𝑌0, 𝑍0, 𝑉0𝑎 ) is the virus-free equilibrium state
determined in the precedent theorem. 𝜔1, 𝜔2, 𝜔3, 𝜔4, and 𝜔5
are positive constants that will be determined later. We have

𝑉1 (𝐸0) = 0,
𝑉1 (𝑋, 𝑌, 𝑍, 𝑉𝑎) > 0 ∀ (𝑋, 𝑌, 𝑍, 𝑉𝑎) ̸= 𝐸0,

𝑉1 (𝑥) → ∞
as ‖𝑥‖ → ∞,

𝑥 ∈ R
4.

(18)

The time derivative of 𝑉1 along solutions of system (2) is

�̇�1 = 𝜔1 (𝑍 − 𝑍0) (𝑘𝑋 − 𝑑𝑍) + 𝜔2 (𝑋 + 𝑌 − 𝑋0)
⋅ (𝐴 − (𝑑 + 𝑘)𝑋 − (𝑑 + 𝛼) 𝑌) + 𝜔3 (𝑉𝑎 − 𝑉𝑎0)
⋅ (𝜇𝑌 − 𝜇0 (𝑉𝑎 − 𝑉𝑎0)) + 𝜔4𝑓 (𝑌)
⋅ ( 𝛽𝑋𝑌

𝑓 (𝑌) − 𝑑𝑌 − 𝛼𝑌 − 𝜋𝑌𝑉𝑎)
+ 𝜔5 (𝑋 + 𝑌 + 𝑍 − 𝑋0 − 𝑍0)
⋅ (𝐴 − 𝑑 (𝑋 + 𝑌 + 𝑍) − 𝛼𝑌) .

(19)

At 𝐸0, we have
𝐴 − 𝑑𝑋0 − 𝑘𝑋0 = 0,

𝑘𝑋0 − 𝑑𝑍0 = 0. (20)

Then

�̇�1 = 𝜔1 (𝑍 − 𝑍0) (𝑘 (𝑋 − 𝑋0) − 𝑑 (𝑍 − 𝑍0))
+ 𝜔2 (𝑋 + 𝑌 − 𝑋0) (− (𝑑 + 𝑘) (𝑋 − 𝑋0)
− (𝑑 + 𝛼) 𝑌) + 𝜔3 (𝑉𝑎 − 𝑉𝑎0) (𝜇𝑌 − 𝜇0 (𝑉𝑎 − 𝑉𝑎0))

+ 𝜔4𝛽𝑋𝑌 − 𝜔4𝑓 (𝑌) ((𝑑 + 𝛼) 𝑌 + 𝜋𝑌𝑉𝑎)
+ 𝜔5 ((𝑋 − 𝑋0) + (𝑍 − 𝑍0) + 𝑌) (−𝑑 (𝑋 − 𝑋0)
− 𝑑 (𝑍 − 𝑍0) − (𝑑 + 𝛼) 𝑌) = −𝜔5𝑑 (𝑍 − 𝑍0)2
− 𝜔3𝜇0 (𝑉𝑎 − 𝑉𝑎0)2 − (𝜔2 (𝑑 + 𝑘) + 𝜔5𝑑) (𝑋
− 𝑋0)2 − 𝜔5 (𝑑 + 𝛼) 𝑌2 + (𝜔1𝑘 − 2𝜔5𝑑) (𝑍 − 𝑍0)
⋅ (𝑋 − 𝑋0) + (𝜔4𝛽 − 𝜔2 (2𝑑 + 𝑘 + 𝛼)
− 𝜔5 (2𝑑 + 𝛼)) 𝑌 (𝑋 − 𝑋0) − [𝜔1𝑑 (𝑍 − 𝑍0)2
+ 𝜔5 (2𝑑 + 𝛼) 𝑌 (𝑍 − 𝑍0) + 𝜔2 (𝑑 + 𝛼) 𝑌2] + (𝜔3𝜇
− 𝜔4𝜋𝑓 (𝑌)) 𝑌𝑉𝑎 − 𝑌 (𝜔3𝜇𝑉𝑎0 + 𝜔4𝑓 (𝑌) (𝑑 + 𝛼)
− 𝛽𝜔4𝑋0) .

(21)

Let

𝜔1 = 1𝑑 ,
𝜔5 = 𝜔1𝑘2𝑑 ,
𝜔2 = (𝜔5 (2𝑑 + 𝛼)

2 )2 1𝑑 + 𝛼 ,
𝜔4 = 𝜔2 (2𝑑 + 𝑘 + 𝛼) + 𝜔5 (2𝑑 + 𝛼)

𝛽 ,
𝜔3 = 𝜔4𝜋𝜇 .

(22)

Then

�̇�1 = −𝜔5𝑑 (𝑍 − 𝑍0)2 − 𝜔3𝜇0 (𝑉𝑎 − 𝑉𝑎0)2
− (𝜔2 (𝑑 + 𝑘) + 𝜔5𝑑) (𝑋 − 𝑋0)2 − 𝜔5 (𝑑 + 𝛼) 𝑌2

− [(𝑍 − 𝑍0) + 2𝜔5 (2𝑑 + 𝛼)
2 𝑌 (𝑍 − 𝑍0)

+ (𝜔5 (2𝑑 + 𝛼)
2 𝑌)2] + 𝜔4𝜋 (1 − 𝑓 (𝑌)) 𝑌𝑉𝑎

− 𝜔4𝑌 (𝜋𝑉𝑎0 + 𝑓 (𝑌) (𝑑 + 𝛼) − 𝛽𝑋0) .

(23)

We have 𝑓(𝑌(𝑡)) ≥ 1 for all 𝑡 ≥ 0; then
�̇�1 ≤ −𝜔5𝑑 (𝑍 − 𝑍0)2 − 𝜔3𝜇0 (𝑉𝑎 − 𝑉𝑎0)2

− (𝜔2 (𝑑 + 𝑘) + 𝜔5𝑑) (𝑋 − 𝑋0)2
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− 𝜔5 (𝑑 + 𝛼) 𝑌2 − (𝑍 − 𝑍0 + 𝜔5 (2𝑑 + 𝛼)
2 𝑌)2

− 𝜔4𝑌(𝜋𝑉𝑎0 + 𝑑 + 𝛼 − 𝛽 𝐴𝑑 + 𝑘) .
(24)

Thus

�̇�1 ≤ −𝜔5𝑑 (𝑍 − 𝑍0)2 − 𝜔3𝜇0 (𝑉𝑎 − 𝑉𝑎0)2
− (𝜔2 (𝑑 + 𝑘) + 𝜔5𝑑) (𝑋 − 𝑋0)2
− 𝜔5 (𝑑 + 𝛼) 𝑌2
− 𝜔4 (𝑑 + 𝛼 + 𝜋𝑉𝑎0) 𝑌 (1 −R𝑝) .

(25)

Thus, if R𝑝 ≤ 1 then �̇�1 < 0 for all (𝑋, 𝑌, 𝑍, 𝑉𝑎) ̸= 𝐸0.
Hence by Lyapunov asymptotic theorem [16], 𝐸0 is globally
asymptotically stable.

For the stability of the virus-epidemic equilibrium state𝐸∗, we refer the reader to Remark 13 in Section 6.

Remark 4. Theorem 3 showed that the basic reproductive
number R𝑝 acts as a sharp threshold determining when the
disease (i.e., spread of computer viruses) becomes endemic
for model (2). Furthermore, the disease is permanent with
simple dynamics wheneverR𝑝 > 1.
4. Existence and Uniqueness of the Global
Nonnegative Solution

The solution (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑉𝑎(𝑡)) of (3) presents the sizes
of susceptible nodes, infected nodes, protected nodes, and
antivirus programs used to clean the network at time 𝑡,
respectively. Then, they should all be nonnegative. For this
reason, and to study the dynamical behavior of system (3), the
first concern is whether the solution is of global and positive
existence.

Theorem 5. Let (𝑋(0), 𝑌(0), 𝑍(0), 𝑉𝑎(0)) ∈ R4+; then there is
a unique positive solution to SDE (3) on 𝑡 ≥ 0; this solution
remains in R4+ with probability 1.

Proof. Since the coefficients of system (3) are locally Lip-
schitz continuous, for any given initial value (𝑋(0), 𝑌(0),𝑍(0), 𝑉𝑎(0)) ∈ R4+ then, there is a unique local solution(𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑉𝑎(𝑡)) on 𝑡 ∈ [0, 𝜏𝑒), where 𝜏𝑒 is the
explosion time [13]. We show next that 𝜏𝑒 = +∞ almost
surely. For this purpose, we define the stopping time

𝜏∞ = inf {𝑡 ∈ [0, 𝜏𝑒) : 𝑋 (𝑡) ≤ 0 or 𝑌 (𝑡) ≤ 0 or 𝑍 (𝑡)
≤ 0 or 𝑉𝑎 (𝑡) ≤ 0} . (26)

Throughout this paper we set inf 0 = ∞, where 0 denotes
the empty set. One can see that 𝜏∞ ≤ 𝜏𝑒, if we prove that 𝜏∞ =∞ a.s.; then, 𝜏𝑒 = ∞ a.s.; thus (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑉𝑎(𝑡)) ∈ R4+
a.s. If this statement is false, then there is a pair of constants

𝑇 > 0 and 𝜖 ∈ (0, 1) such that 𝑃 (𝜏∞ ≤ 𝑇) ≥ 𝜖. We
define a 𝐶2-function 𝑉 for (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑉𝑎(𝑡)) ∈ R4+ by𝑉(𝑋, 𝑌, 𝑍, 𝑉𝑎) = ln𝑋𝑌𝑍𝑉𝑎. Setting Ω = (𝜏∞ ≤ 𝑇) and using
Itô’s formula we get, for all 𝜔 ∈ Ω and 𝑡 ∈ [0, 𝜏∞),

𝑑𝑉 (𝑋, 𝑌, 𝑍, 𝑉𝑎) = 𝐿𝑉 (𝑋, 𝑌, 𝑍, 𝑉𝑎) 𝑑𝑡 − 3𝜎1𝑑𝐵1
+ 𝜎2 (𝑋 − 𝑌𝑓 (𝑌) ) 𝑑𝐵2,

(27)

where

𝐿𝑉 (𝑋, 𝑌, 𝑍, 𝑉𝑎) = ( 1𝑋)(𝐴 − 𝛽𝑋𝑌
𝑓 (𝑌) − 𝑑𝑋 − 𝑘𝑋

+ 𝜋𝑌𝑉𝑎) − 𝜎212 − 𝜎22𝑌22𝑓2 (𝑌) + ( 1𝑌)(
𝛽𝑋𝑌
𝑓 (𝑌) − 𝑑𝑌

− 𝛼𝑌 − 𝜋𝑌𝑉𝑎) − 𝜎212 − 𝜎22𝑋22𝑓2 (𝑌) + ( 1𝑍) (𝑘𝑋

− 𝑑𝑍) − 𝜎212 + ( 1𝑉𝑎) (𝜇𝑌 − 𝜇0 (𝑉𝑎 − 𝑉𝑎0))

≥ (−3𝑑 − 𝑘 − 𝛼 − 𝜇0 − 3𝜎212 − 𝛽𝑌
𝑓 (𝑌)

− 𝜎222 (𝑌2 + 𝑋2𝑓2 (𝑌) ) − 𝜋𝑉𝑎) .

(28)

We know that 𝑓 is a positive function that verifies 𝑓(0) =1 and 𝑓(𝑌) ≥ 0 for all 𝑌 > 0; then

𝐿𝑉 (𝑋, 𝑌, 𝑍, 𝑉𝑎) ≥ (−3𝑑 − 𝑘 − 𝛼 − 𝜇0 − 3𝜎212 − 𝛽𝑌

− 𝜎222 (𝑌2 + 𝑋2) − 𝜋𝑉𝑎) .
(29)

Therefore, we get

𝑑𝑉 (𝑋, 𝑌, 𝑍, 𝑉𝑎) ≥ ℎ (𝑋, 𝑌, 𝑉𝑎) 𝑑𝑡 − 3𝜎1𝑑𝐵1
+ 𝜎2 (𝑋 − 𝑌𝑓 (𝑌) ) 𝑑𝐵2,

(30)

where

ℎ (𝑋, 𝑌, 𝑉𝑎) = (−3𝑑 − 𝑘 − 𝛼 − 𝜇0 − 3𝜎212 − 𝛽𝑌

− 𝜎222 (𝑌2 + 𝑋2) − 𝜋𝑉𝑎) .
(31)
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Thereafter, we get

𝑉 (𝑋, 𝑌, 𝑍, 𝑉𝑎) ≥ 𝑉 (𝑋 (0) , 𝑌 (0) , 𝑍 (0) , 𝑉𝑎 (0))
+ ∫𝑡

0
ℎ (𝑋 (𝑠) , 𝑌 (𝑠) , 𝑉𝑎 (𝑠)) 𝑑𝑠

− 3𝜎1𝐵1 (𝑡)
+ ∫𝑡

0
𝜎2 (𝑋 (𝑠) − 𝑌 (𝑠)𝑓 (𝑌 (𝑠)) ) 𝑑𝐵2 (𝑠) .

(32)

Note that, for 𝜔 ∈ Ω, there is at least one of 𝑋(𝜏∞, 𝜔),𝑌(𝜏∞, 𝜔), 𝑍(𝜏∞, 𝜔) and 𝑉𝑎(𝜏∞, 𝜔) that equal 0. Thereby

lim
𝑡→𝜏∞

𝑉 (𝑋 (𝑡) , 𝑌 (𝑡) , 𝑍 (𝑡) , 𝑉𝑎 (𝑡)) = −∞. (33)

Letting 𝑡 → ∞, in (32), leads to the contradiction that

−∞ ≥ 𝑉 (𝑋 (0) , 𝑌 (0) , 𝑍 (0) , 𝑉𝑎 (0))
+ ∫𝜏∞

0
ℎ (𝑋 (𝑠) , 𝑌 (𝑠) , 𝑉𝑎 (𝑠)) 𝑑𝑠 − 3𝜎1𝐵1 (𝜏∞)

+ ∫𝜏∞
0

𝜎2 (𝑋 − 𝑌𝑓 (𝑌) ) 𝑑𝐵2 (𝑠) > −∞.
(34)

So 𝜏∞ = ∞ a.s. This completes the proof of Theorem 5.

5. Extinction

One of the main interests of epidemiology is how to control
the disease dynamics so that it will be eliminated in a long
term. In this section, we shall establish sufficient conditions
for the extinction of viruses in the stochastic model of com-
puter network alimented by a systemof antivirus software (3).

Lemma 6. Let (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑉𝑎(𝑡)) be the solution of sys-
tem (3).Thenwith any initial value (𝑋(0), 𝑌(0), 𝑍(0), 𝑉𝑎(0)) ∈
R4+, we have

lim
𝑡→∞

𝑋 (𝑡) + 𝑌 (𝑡)𝑡 = 0 𝑎.𝑠. (35)

Moreover

lim
𝑡→∞

𝑋 (𝑡)𝑡 = 0 𝑎.𝑠.,
lim
𝑡→∞

𝑌 (𝑡)𝑡 = 0 𝑎.𝑠.
(36)

Proof. Let V(𝑡) = 𝑋(𝑡)+𝑌(𝑡) andΦ(V) = (1+V)𝑝, where 𝑝 > 0
will be chosen later. Using Itô’s formula, we get

𝑑Φ (V (𝑡)) = 𝐿Φ (V) 𝑑𝑡
+ 𝑝 (1 + V)𝑝−1 (−𝜎1𝑋𝑑𝐵1 − 𝜎1𝑌𝑑𝐵1) , (37)

where

𝐿Φ (V) = 𝑝 (1 + V)𝑝−1 [𝐴 − 𝑑V − 𝑘𝑋 − 𝛼𝑌]
+ 𝑝 (𝑝 − 1)

2 (1 + V)𝑝−2 𝜎21V2 = 𝑝 (1 + V)𝑝−2

⋅ {(1 + V) (𝐴 − 𝑑V − 𝑘𝑋 − 𝛼𝑌) + (𝑝 − 1)
2 𝜎21V2}

≤ 𝑝 (1 + V)𝑝−2 {(1 + V) (𝐴 − 𝑑V) + (𝑝 − 1)
2 𝜎21V2}

= 𝑝 (1 + V)𝑝−2
⋅ {− [𝑑 − (𝑝 − 1)

2 𝜎21] V2 + (𝐴 − 𝑑) V + 𝐴} .

(38)

Let 𝑝 > 0 such that 𝑑 − ((𝑝 − 1)/2)𝜎21 fl 𝜆 > 0; then
𝐿Φ (V) ≤ 𝑝 (1 + V)𝑝−2 {−𝜆V2 + (𝐴 − 𝑑) V + 𝐴} , (39)

so

𝑑Φ (V) ≤ 𝑝 (1 + V)𝑝−2 {−𝜆V2 + (𝐴 − 𝑑) V + 𝐴} 𝑑𝑡
− 𝑝𝜎1V (1 + V)𝑝−1 𝑑𝐵1,

(40)

and let 0 < 𝑘 < 𝑝𝜆; we have
𝑑 (𝑒𝑘𝑡Φ (V (𝑡))) = 𝐿 (𝑒𝑘𝑡Φ (V)) 𝑑𝑡

− 𝑝𝜎1𝑒𝑘𝑡V (1 + V)𝑝−1 𝑑𝐵1,
(41)

and thus

𝐸 (𝑒𝑘𝑡Φ (V (𝑡))) = Φ (V (0)) + 𝐸∫𝑡
0
𝐿 (𝑒𝑘𝑠Φ (V (𝑠))) 𝑑𝑠, (42)

where

𝐿 (𝑒𝑘𝑡Φ (V (𝑡))) = 𝑘𝑒𝑘𝑡Φ (V (𝑡)) + 𝑒𝑘𝑡𝐿Φ (V (𝑡))
≤ 𝑝𝑒𝑘𝑡 (1 + V)𝑝−2
⋅ { 𝑘𝑝 (1 + V)2 − 𝜆V2 + (𝐴 − 𝑑) V + 𝐴}
= 𝑝𝑒𝑘𝑡 (1 + V)𝑝−2
⋅ {−(𝜆 − 𝑘𝑝) V2 + (𝐴 − 𝑑 + 2𝑘𝑝 ) V + 𝐴 + 𝑘𝑝}
≤ 𝑝𝑒𝑘𝑡𝐶;

(43)

here

𝐶 = sup
V∈R+

{(1 + V)𝑝−2

⋅ (−(𝜆 − 𝑘𝑝) V2 + (𝐴 − 𝑑 + 2𝑘𝑝 ) V + 𝐴 + 𝑘𝑝)} ;
(44)
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thus from (42)

𝐸 (𝑒𝑘𝑡 (1 + V)𝑝) ≤ (1 + V (0))𝑝 + 𝑝𝐶
𝑘 𝑒𝑘𝑡; (45)

therefore

lim sup
𝑡→∞

𝐸 ((1 + V)𝑝) ≤ 𝑝𝐶
𝑘 š 𝐶0, a.s.; (46)

in addition to this result, V is continuous, which implies that
there exists a constant𝑀 > 0, such that

𝐸 ((1 + V (𝑡))𝑝) ≤ 𝑀, 𝑡 ≥ 0, (47)

with (47), we can proceed as in [8] to complete the proof.

Lemma 7. For any initial value (𝑋(0), 𝑌(0), 𝑍(0), 𝑉𝑎(0)) ∈
R4+, the solution (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑉𝑎(𝑡)) of system (3) verifies

lim
𝑡→∞

∫𝑡
0
𝑋(𝑠) 𝑑𝐵1 (𝑠)𝑡 = 0, 𝑎.𝑠.

lim
𝑡→∞

∫𝑡
0
𝑌 (𝑠) 𝑑𝐵1 (𝑠)𝑡 = 0, 𝑎.𝑠.

lim
𝑡→∞

∫𝑡
0
(𝑋 (𝑠) /𝑓 (𝑌 (𝑠))) 𝑑𝐵2 (𝑠)𝑡 = 0 𝑎.𝑠.

(48)

Proof. Let𝑀1 = ∫𝑡
0
𝑋(𝑠)/𝑓(𝑌(𝑠))𝑑𝐵2(𝑠) and 𝑝 > 2. By using

the Burkholder-Davis-Gundy inequality [13] and (47), we
have

𝐸[ sup
0≤𝑠≤𝑡

𝑀1 (𝑠)𝑝] ≤ 𝐶𝑝𝐸[∫𝑡
0

𝑋2 (𝑠)𝑓2 (𝑌 (𝑠))𝑑𝑠]
𝑝/2

≤ 𝐶𝑝𝑡𝑝/2𝐸[sup
0≤𝑠≤𝑡

𝑋𝑝 (𝑠)𝑓𝑝 (𝑌 (𝑠))]
≤ 𝑀𝑝𝐶𝑝𝑡𝑝/2.

(49)

Let 𝜖 be an arbitrary positive constant; then according to
Chebyshev’s inequality we have

𝑃{𝜔 : sup
𝑘𝛿≤𝑡≤(𝑘+1)𝛿

𝑀1 (𝑡)𝑝 > (𝑘𝛿)1+𝜖+𝑝/2}

≤ 𝑀𝑝𝐶𝑝 ((𝑘 + 1) 𝛿)𝑝/2
(𝑘𝛿)1+𝜖+𝑝/2 ≤ 2𝑝/2𝑀𝑝𝐶𝑝

(𝑘𝛿)1+𝜖 ,
(50)

an application of Doob’s martingale inequality, and the Borel-
Cantelli lemma [13] gives, for almost all 𝜔 ∈ Ω and for all
except finitely many 𝑘,

sup
𝑘𝛿≤𝑡≤(𝑘+1)𝛿

𝑀1 (𝑡)𝑝 ≤ (𝑘𝛿)1+𝜖+𝑝/2 , (51)

and then, for almost 𝜔 ∈ Ω, there exists an integer 𝑘0(𝜔) such
that, for all 𝑘 ≥ 𝑘0, (51) holds. Thus, if 𝑘 ≥ 𝑘0 and 𝑘𝛿 ≤ 𝑡 ≤(𝑘 + 1)𝛿, we get
ln 𝑀1 (𝑡)𝑝

ln 𝑡 ≤ (1 + 𝜖 + 𝑝/2) ln (𝑘𝛿)
(ln 𝑘𝛿) ≤ 1 + 𝜖 + 𝑝

2 ,
a.s.

(52)

Consequently

lim sup
𝑡→+∞

ln 𝑀1 (𝑡)
ln 𝑡 ≤ 1 + 𝜖 + 𝑝/2

𝑝 , a.s. (53)

and by letting 𝜖 → 0, we obtain
lim sup
𝑡→+∞

ln 𝑀1 (𝑡)
ln 𝑡 ≤ 1𝑝 + 12 , a.s.; (54)

therefore, for arbitrary small constant 𝛿, such that 0 < 𝛿 <1/2−1/𝑝, there exists a constant𝐾(𝜔) and a setΩ𝛿, such that𝑃(Ω𝛿) ≥ 1 − 𝛿 and for all 𝑡 ≥ 𝐾(𝜔), 𝜔 ∈ Ω𝛿
ln 𝑀1 (𝑡) ≤ (12 + 1𝑝 + 𝛿) ln 𝑡; (55)

thus

lim sup
𝑡→+∞

𝑀1 (𝑡)𝑡 ≤ lim sup
𝑡→+∞

𝑡1/2+1/𝑝+𝛿𝑡 = 0, a.s, (56)

together with lim inf 𝑡→+∞ |𝑀1(𝑡)|/𝑡 ≥ 0, a.s., yields
lim
𝑡→+∞

𝑀1 (𝑡)𝑡 = 0, a.s. (57)

So

lim
𝑡→+∞

𝑀1 (𝑡)𝑡 = lim
𝑡→+∞

∫𝑡
0
𝑋 (𝑠) /𝑓 (𝑌 (𝑠)) 𝑑𝐵2 (𝑠)𝑡 = 0,

a.s.

(58)

Taking𝑓 = 1 and using the same arguments, we can show
that

lim
𝑡→∞

∫𝑡
0
𝑋 (𝑠) 𝑑𝐵1 (𝑠)𝑡 = 0, a.s.

lim
𝑡→∞

∫𝑡
0
𝑌 (𝑠) 𝑑𝐵1 (𝑠)𝑡 = 0, a.s.

(59)

This completes the proof of Lemma 7.

Theorem 8. Let (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑉𝑎(𝑡)) be the solution of sys-
tem (3)with any positive initial value (𝑋(0), 𝑌(0), 𝑍(0), 𝑉𝑎(0));
then

lim
𝑡→∞

ln𝑌𝑡 ≤ −(𝑑 + 𝛼 + 𝜎212 − 𝛽2
2𝜎22 ) , 𝑎.𝑠. (60)

Assume that 𝛽2 < 2𝜎22(𝑑 + 𝛼 + 𝜎21/2); then 𝑌(𝑡) tends to
zero exponentially almost surely (i.e., the disease dies out with
probability one).

Proof. By application of Itô’s formula to system (3) we get

𝑑 ln𝑌 (𝑡)
= ( 𝛽𝑋

𝑓 (𝑌) − 𝑑 − 𝛼 − 𝜋𝑉𝑎 − 𝜎212 − 𝜎22𝑋22𝑓2 (𝑌)) 𝑑𝑡
− 𝜎1𝑑𝐵1 + 𝜎2 𝑋𝑓 (𝑌)𝑑𝐵2,

(61)
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and then
ln𝑌 ≤ ln𝑌 (0)

+ ∫𝑡
0
( 𝛽𝑋 (𝑠)
𝑓 (𝑌 (𝑠)) −

𝜎22𝑋2 (𝑠)2𝑓2 (𝑌 (𝑠)) − 𝜋𝑉𝑎 (𝑠)) 𝑑𝑠

− (𝑑 + 𝛼 + 𝜎212 ) 𝑡 − 𝜎1𝐵1 (𝑡) + 𝜎2𝑀1 (𝑡) ,
(62)

where

𝑀1 (𝑡) = ∫𝑡
0

𝑋(𝑠)𝑓 (𝑌 (𝑠))𝑑𝐵2 (𝑠) ; (63)

then

ln𝑌 (𝑡) ≤ ln𝑌 (0) − 𝜎222 ∫𝑡
0
( 𝑋 (𝑠)𝑓 (𝑌 (𝑠)) −

𝛽
𝜎22 )

2 𝑑𝑠

+ 𝛽2
2𝜎22 𝑡 − (𝑑 + 𝛼 + 𝜎212 ) 𝑡 − 𝜎1𝐵1 (𝑡)

+ 𝜎2𝑀1 (𝑡)
≤ ln𝑌 (0) − (𝑑 + 𝛼 + 𝜎212 − 𝛽2

2𝜎22 ) 𝑡
− 𝜎1𝐵1 (𝑡) + 𝜎2𝑀1 (𝑡) ;

(64)

therefore, by dividing both sides of (64) by 𝑡, we obtain
ln𝑌𝑡 ≤ ln𝑌 (0)𝑡 − (𝑑 + 𝛼 + 𝜎212 − 𝛽2

2𝜎22 ) − 𝜎1𝐵1 (𝑡)𝑡
+ 𝜎2𝑀1 (𝑡)𝑡 .

(65)

Using the strong law of large numbers [13], we obtain
lim𝑡→∞(𝜎1𝐵1(𝑡)/𝑡) = 0, a.s., and by (Lemma 7), we have

lim
𝑡→∞

𝜎2𝑀1 (𝑡)𝑡 = 0, a.s., (66)

taking the limit superior of both sides of (65) and the
condition 𝛽2 < 2𝜎22(𝑑 + 𝛼 + 𝜎21/2) leads to

lim sup
𝑡→∞

ln𝑌𝑡 ≤ −(𝑑 + 𝛼 + 𝜎212 − 𝛽2
2𝜎22 ) < 0, a.s.; (67)

thus lim𝑡→∞𝑌(𝑡) = 0, a.s. This completes the proof of
Theorem 8.

Remark 9. Theorem 8 shows that the number of infected
nodes 𝑌(𝑡) goes to extinction almost surely, where 𝛽2 <2𝜎22(𝑑 + 𝛼 + 𝜎21/2). Namely, large white noise stochastic
disturbances conduct to control the infection of nodes.

6. Stationary Distribution and
Positive Recurrence

The following theorem investigates the stability in a stochastic
sense; it gives a sufficient condition for the existence of

an asymptotically invariant distribution for the solution
of model (3). The proof is based on Lemma 1 and uses
the Lyapunov function method. However, there exist some
other methods to investigate the stationary distribution, like
the method based on the Markov semigroups theory (see
Rudnicki and Pichór [17], Lin et al. [18]). Furthermore, some
other authors have given the explicit expression of the density
of the stationary distribution through solving the Fokker
Planck equation of their proposed model (see Buonocore et
al. [19], Xu [20]).

Theorem 10. Consider the stochastic system (3) with positive
initial value; suppose thatR𝑝 > 1 and

0 < 𝛾 < min (𝛾1𝑋∗2 , 𝛾2𝑌∗2 , 𝛾3𝑍∗2 , 𝛾4𝑉∗2𝑎 ) , (68)

where

𝛾1 = 𝑎2 (𝑑 + 𝑘 − 2𝜎21) + 𝑎5 (𝑑 − 4𝜎21) − 𝑎4𝜎22𝑌∗,
𝛾2 = 𝑎5 (𝑑 + 𝛼 − 4𝜎21) − 2𝑎2𝜎21 ,
𝛾3 = 𝑎5 (𝑑 − 4𝜎21) − 𝑎1𝜎21 ,
𝛾4 = 𝑎3𝜇0,
𝛾 = 2𝑎2𝜎21 (𝑋∗2 + 𝑌∗2) + 𝑎1𝜎21𝑍∗2 + 𝑎4𝜎22𝑌∗𝑋∗2

+ 𝑎4 𝜎
2
1𝑌∗2 + 4𝑎5𝜎21 (𝑋∗2 + 𝑌∗2 + 𝑍∗2) ,

(69)

𝑎1 = 1𝑑 ,
𝑎5 = 𝑘2𝑑2 ,
𝑎2 = (2𝑑 + 𝛼)24 (𝑑 + 𝛼) 𝑎25 ,
𝑎4 = (𝑎5 (2𝑑 + 𝛼) + 𝑎2 (𝛼 + 2𝑑 + 𝑘)) 𝑓 (𝑌∗)

𝛽 ,
𝑎3 = 𝜋𝜇𝑎4.

(70)

Then the solution (𝑋, 𝑌, 𝑍, 𝑉𝑎) is positive recurrent and
admits a unique ergodic stationary distribution.

Remark 11. One can see that condition (68) can be verified for
sufficiently small environmental noises 𝜎1 and 𝜎2. In fact, we
have

lim
𝜎1 ,𝜎2→0

𝛾1 = 𝑎2 (𝑑 + 𝑘) + 𝑎5𝑑 > 0,
lim

𝜎1 ,𝜎2→0
𝛾2 = 𝑎5 (𝑑 + 𝛼) > 0,

lim
𝜎1 ,𝜎2→0

𝛾3 = 𝑎5𝑑 > 0,
(71)

while
lim
𝜎1 ,𝜎2→0

𝛾 = 0. (72)
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Proof. We consider the Lyapunov function 𝑉 defined for(𝑋, 𝑌, 𝑍, 𝑉𝑎) ∈ R4+ by

𝑉 (𝑋, 𝑌, 𝑍, 𝑉𝑎) = 𝑎1𝑉1 (𝑍) + 𝑎2𝑉2 (𝑋, 𝑌) + 𝑎3𝑉3 (𝑉𝑎)
+ 𝑎4𝑉4 (𝑌) + 𝑎5𝑉5 (𝑋, 𝑌, 𝑍) , (73)

where 𝑉1, 𝑉2, 𝑉3, 𝑉4, and 𝑉5 are positive functions defined for(𝑋, 𝑌, 𝑍, 𝑉𝑎) ∈ R4+ by

𝑉1 (𝑍) = 12 (𝑍 − 𝑍∗)2 ,
𝑉2 (𝑋, 𝑌) = 12 (𝑋 + 𝑌 − 𝑋∗ − 𝑌∗)2 ,
𝑉3 (𝑉𝑎) = 12 (𝑉𝑎 − 𝑉∗𝑎 )2 ,
𝑉4 (𝑌) = 𝑌 − 𝑌∗ − 𝑌∗ ln 𝑌𝑌∗ ,

𝑉5 (𝑋, 𝑌, 𝑍) = 12 (𝑋 + 𝑌 + 𝑍 − 𝑋∗ − 𝑌∗ − 𝑍∗)2 ,

(74)

and 𝑎1, 𝑎2, 𝑎3, 𝑎4, and 𝑎5 are well defined in (70). By applying
the differential operator 𝐿 to 𝑉1, we obtain

𝐿𝑉1 (𝑍) = (𝑍 − 𝑍∗) (𝑘𝑋 − 𝑑𝑍) + 𝜎212 𝑍2. (75)

At the equilibrium state 𝐸∗(𝑋∗, 𝑌∗, 𝑍∗, 𝑉∗𝑎 ), we get 𝑘𝑋∗ −𝑑𝑍∗ = 0; then
𝐿𝑉1 (𝑍) = (𝑍 − 𝑍∗) (𝑘 (𝑋 − 𝑋∗) − 𝑑 (𝑍 − 𝑍∗))

+ 𝜎212 ((𝑍 − 𝑍∗) + 𝑍∗)2 . (76)

An application of the inequality (𝑥 + 𝑦)2 ≤ 2(𝑥2 + 𝑦2) for
all (𝑥, 𝑦) ∈ R2 yields

𝐿𝑉1 (𝑍) ≤ − (𝑑 − 𝜎21) (𝑍 − 𝑍∗)2
+ 𝑘 (𝑋 − 𝑋∗) (𝑍 − 𝑍∗) + 𝜎21𝑍∗2 .

(77)

For the function 𝑉2, we have
𝐿𝑉2 (𝑋, 𝑌)

= (𝑋 + 𝑌 − 𝑋∗ − 𝑌∗) (𝐴 − 𝑑𝑋 − 𝑘𝑋 − 𝑑𝑌 − 𝛼𝑌)
+ 𝜎212 (𝑋 + 𝑌)2 ;

(78)

at the equilibrium state 𝐸∗ we have 𝐴 − 𝑑𝑋∗ − 𝑘𝑋∗ − 𝑑𝑌∗ −𝛼𝑌∗ = 0; hence
𝐿𝑉2 (𝑋, 𝑌) ≤ (𝑋 + 𝑌 − 𝑋∗ − 𝑌∗)

⋅ (− (𝑑 + 𝑘) (𝑋 − 𝑋∗) − (𝑑 + 𝛼) (𝑌 − 𝑌∗))
+ 𝜎21 (𝑋2 + 𝑌2) ≤ − (𝑑 + 𝑘) (𝑋 − 𝑋∗)2 − (𝑑 + 𝛼)
⋅ (𝑌 − 𝑌∗)2 − (2𝑑 + 𝑘 + 𝛼) (𝑋 − 𝑋∗) (𝑌 − 𝑌∗)
+ 𝜎21 ((𝑋 − 𝑋∗) + 𝑋∗)2 + 𝜎21 ((𝑌 − 𝑌∗) + 𝑌∗)2 .

(79)

Therefore

𝐿𝑉2 (𝑋, 𝑌) ≤ − (𝑑 + 𝑘 − 2𝜎21) (𝑋 − 𝑋∗)2
− (𝑑 + 𝛼 − 2𝜎21) (𝑌 − 𝑌∗)2
− (2𝑑 + 𝑘 + 𝛼) (𝑋 − 𝑋∗) (𝑌 − 𝑌∗)
+ 2𝜎21𝑋∗2 + 2𝜎21𝑌∗2 .

(80)

Now, we calculate 𝐿𝑉3
𝐿𝑉3 (𝑉𝑎) = (𝑉𝑎 − 𝑉∗𝑎 ) (𝜇𝑌 − 𝜇0 (𝑉𝑎 − 𝑉𝑎0)) . (81)

At the equilibrium state 𝐸∗, we have 𝜇𝑌∗−𝜇0(𝑉∗𝑎 −𝑉𝑎0) =0; then
𝐿𝑉3 (𝑉𝑎) = (𝑉𝑎 − 𝑉∗𝑎 ) (𝜇 (𝑌 − 𝑌∗) − 𝜇0 (𝑉𝑎 − 𝑉∗𝑎 )) ; (82)

thus

𝐿𝑉3 (𝑉𝑎) = −𝜇0 (𝑉𝑎 − 𝑉∗𝑎 )2 + 𝜇 (𝑉𝑎 − 𝑉∗𝑎 ) (𝑌 − 𝑌∗) . (83)

For 𝐿𝑉4, we have
𝐿𝑉4 (𝑌) = (1 − 𝑌∗𝑌 )( 𝛽𝑋𝑌

𝑓 (𝑌) − 𝑑𝑌 − 𝛼𝑌 − 𝜋𝑌𝑉𝑎)
+ 𝑌∗2 (𝜎21 + 𝜎22 𝑋2𝑓2 (𝑌))

≤ (𝑌 − 𝑌∗) ( 𝛽𝑋
𝑓 (𝑌) − 𝑑 − 𝛼 − 𝜋𝑉𝑎)

+ 𝑌∗2 (𝜎21 + 𝜎22 𝑋2𝑓2 (𝑌)) ;

(84)

we have at the equilibrium state𝐸∗,𝛽𝑋∗/𝑓(𝑌∗)−𝑑−𝛼−𝜋𝑉∗𝑎 =0; hence
𝐿𝑉4 (𝑌)

≤ (𝑌 − 𝑌∗) ( 𝛽𝑋
𝑓 (𝑌) −

𝛽𝑋∗
𝑓 (𝑌∗) − 𝜋 (𝑉𝑎 − 𝑉∗𝑎 ))

+ 𝑌∗2 (𝜎21 + 𝜎22 𝑋2𝑓2 (𝑌)) ;
(85)

the function𝑓 is chosen to verify that𝑓 is nondecreasing and𝑓(𝑌) ≥ 1; thus
𝐿𝑉4 (𝑌) ≤ (𝑌 − 𝑌∗) (𝛽𝑋( 1𝑓 (𝑌) −

1𝑓 (𝑌∗))
+ 𝛽
𝑓 (𝑌∗) (𝑋 − 𝑋∗) − 𝜋 (𝑉𝑎 − 𝑉∗𝑎 )) + 𝑌∗2 (𝜎21

+ 𝜎22 𝑋2𝑓2 (𝑌)) ≤ (𝑌 − 𝑌∗) ( 𝛽
𝑓 (𝑌∗) (𝑋 − 𝑋∗)

− 𝜋 (𝑉𝑎 − 𝑉∗𝑎 )) + 𝑌∗𝜎22 (𝑋 − 𝑋∗)2 + 𝜎22𝑌∗𝑋∗2

+ 𝜎21𝑌∗2 .

(86)
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Thus

𝐿𝑉4 (𝑌) ≤ 𝑌∗𝜎22 (𝑋 − 𝑋∗)2
+ 𝛽
𝑓 (𝑌∗) (𝑋 − 𝑋∗) (𝑌 − 𝑌∗)

− 𝜋 (𝑉𝑎 − 𝑉∗𝑎 ) (𝑌 − 𝑌∗) + 𝜎22𝑌∗𝑋∗2

+ 𝜎21𝑌∗2 .

(87)

Next, we calculate 𝐿𝑉5
𝐿𝑉5 (𝑋, 𝑌, 𝑍) = (𝑋 − 𝑋∗ + 𝑌 − 𝑌∗ + 𝑍 − 𝑍∗)

⋅ (𝐴 − 𝑑𝑋 − 𝑑𝑌 − 𝛼𝑌 − 𝑑𝑍)
+ 𝜎212 (𝑋 + 𝑌 + 𝑍)2 .

(88)

At the equilibrium state𝐸∗ we have𝐴−𝑑𝑋∗−𝑑𝑌∗−𝛼𝑌∗−𝑑𝑍∗ = 0. Using the inequality (𝑥 + 𝑦 + 𝑧)2 ≤ 4(𝑥2 + 𝑦2 + 𝑧2)
for all (𝑥, 𝑦, 𝑧) ∈ R3 we get

𝐿𝑉5 (𝑋, 𝑌, 𝑍) ≤ (𝑋 − 𝑋∗ + 𝑌 − 𝑌∗ + 𝑍 − 𝑍∗)
⋅ (−𝑑 (𝑋 − 𝑋∗) − (𝑑 + 𝛼) (𝑌 − 𝑌∗) − 𝑑 (𝑍 − 𝑍∗))
+ 2𝜎21 (𝑋2 + 𝑌2 + 𝑍2) ≤ −𝑑 (𝑋 − 𝑋∗)2 − (𝑑 + 𝛼)
⋅ (𝑌 − 𝑌∗)2 − 𝑑 (𝑍 − 𝑍∗)2 − (2𝑑 + 𝛼) (𝑋 − 𝑋∗)
⋅ (𝑌 − 𝑌∗) − 2𝑑 (𝑋 − 𝑋∗) (𝑍 − 𝑍∗) − (2𝑑 + 𝛼)
⋅ (𝑌 − 𝑌∗) (𝑍 − 𝑍∗)
+ 4𝜎21 ((𝑋 − 𝑋∗)2 + (𝑌 − 𝑌∗)2 + (𝑍 − 𝑍∗)2)
+ 4𝜎21 (𝑋∗2 + 𝑌∗2 + 𝑍∗2) .

(89)

So

𝐿𝑉5 (𝑋, 𝑌, 𝑍) ≤ − (𝑑 − 4𝜎21) (𝑋 − 𝑋∗)2
− (𝑑 + 𝛼 − 4𝜎21) (𝑌 − 𝑌∗)2
− (𝑑 − 4𝜎21) (𝑍 − 𝑍∗)2
− (2𝑑 + 𝛼) (𝑋 − 𝑋∗) (𝑌 − 𝑌∗)
− 2𝑑 (𝑋 − 𝑋∗) (𝑍 − 𝑍∗)
− (2𝑑 + 𝛼) (𝑌 − 𝑌∗) (𝑍 − 𝑍∗)
+ 4𝜎21 (𝑋∗2 + 𝑌∗2 + 𝑍∗2) .

(90)

Combining (77), (80), (83), (87), and (90) andmultiplying
by coefficients 𝑎1, 𝑎2, 𝑎3, 𝑎4, and 𝑎5 of (73) determined in (70),
we get

𝐿𝑉 (𝑋, 𝑌, 𝑍, 𝑉𝑎) ≤ −𝛾1 (𝑋 − 𝑋∗)2 − 𝛾2 (𝑌 − 𝑌∗)2
− 𝛾3 (𝑍 − 𝑍∗)2 − 𝛾4 (𝑉 − 𝑉∗𝑎 )2 − 𝛾5 (𝑋 − 𝑋∗) (𝑌
− 𝑌∗) − 𝛾6 (𝑋 − 𝑋∗) (𝑍 − 𝑍∗) − 𝛾7 (𝑉 − 𝑉∗𝑎 ) (𝑌
− 𝑌∗) − [𝑎1𝑑 (𝑍 − 𝑍∗)2 + 𝑎2 (𝑑 + 𝛼) (𝑌 − 𝑌∗)2
+ 𝑎5 (2𝑑 + 𝛼) (𝑌 − 𝑌∗) (𝑍 − 𝑍∗)] + 𝛾,

(91)

where

𝛾5 = 𝑎5 (2𝑑 + 𝛼) + 𝑎2 (𝛼 + 2𝑑 + 𝑘) − 𝑎4 𝛽
𝑓 (𝑌∗) ,

𝛾6 = 2𝑎5𝑑 − 𝑘𝑎1,
𝛾7 = −𝜇𝑎3 + 𝑎4𝜋,

(92)

by substituting 𝑎1, 𝑎2, 𝑎3, 𝑎4, and 𝑎5 into 𝛾5, 𝛾6, and 𝛾7, We can
see that 𝛾5 = 𝛾6 = 𝛾7 = 0; thus

𝐿𝑉 (𝑋, 𝑌, 𝑍, 𝑉𝑎)
≤ −𝛾1 (𝑋 − 𝑋∗)2 − 𝛾2 (𝑌 − 𝑌∗)2 − 𝛾3 (𝑍 − 𝑍∗)2

− 𝛾4 (𝑉 − 𝑉∗𝑎 )2
− ((𝑍 − 𝑍∗) + 𝑎5 2𝑑 + 𝛼2 (𝑌 − 𝑌∗))2 + 𝛾.

(93)

As a result

𝐿𝑉 (𝑋, 𝑌, 𝑍, 𝑉𝑎) ≤ −𝛾1 (𝑋 − 𝑋∗)2 − 𝛾2 (𝑌 − 𝑌∗)2
− 𝛾3 (𝑍 − 𝑍∗)2 − 𝛾4 (𝑉 − 𝑉∗𝑎 )2
+ 𝛾,

(94)

as well, by letting condition (68) hold, and considering a
positive constant 𝛾 such that

0 < 𝛾 < 𝛾 < min (𝛾1𝑋∗2 , 𝛾2𝑌∗2 , 𝛾3𝑍∗2 , 𝛾4𝑉∗2𝑎 ) , (95)

we have

𝐿𝑉 (𝑋, 𝑌, 𝑍, 𝑉𝑎) ≤ −𝛾1 (𝑋 − 𝑋∗)2 − 𝛾2 (𝑌 − 𝑌∗)2
− 𝛾3 (𝑍 − 𝑍∗)2 − 𝛾4 (𝑉 − 𝑉∗𝑎 )2
+ 𝛾 − (𝛾 − 𝛾) ;

(96)

the ellipsoid

− 𝛾1 (𝑋 − 𝑋∗)2 − 𝛾2 (𝑌 − 𝑌∗)2 − 𝛾3 (𝑍 − 𝑍∗)2
− 𝛾4 (𝑉 − 𝑉∗𝑎 )2 + 𝛾, (97)
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Figure 1: Computer simulation of the path 𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑉𝑎(𝑡) for models (a) (3) and (b) (2), for parameters of Example 14, and(𝑋(0), 𝑌(0), 𝑍(0), 𝑉𝑎(0)) = (2, 4, 3, 5).

lies entirely in R4+. We can take as 𝑈 any neighborhood of
the ellipsoid such that 𝑈 ⊂ R4+, where 𝑈 is closer to 𝑈. Thus,𝐿𝑉(𝑋, 𝑌, 𝑍, 𝑉𝑎) ≤ −(𝛾−𝛾) for any (𝑋, 𝑌, 𝑍, 𝑉𝑎) ∈ R4+ \𝑈; this
implies that condition (B2) of Lemma 1 is satisfied. Condition
(B1) of the same lemma remains to be verified. The diffusion
matrix associated with system (3) is given by

𝑀(𝑋,𝑌, 𝑍)

=
[[[[[[[[[
[

𝜎21𝑋2 + 𝜎22 𝑋
2𝑌2𝑓2 (𝑌) 𝜎21𝑋𝑌 − 𝜎22 𝑋

2𝑌2𝑓2 (𝑌) 𝜎21𝑋𝑍 0
𝜎21𝑋𝑌 − 𝜎22 𝑋

2𝑌2𝑓2 (𝑌) 𝜎21𝑌2 + 𝜎22 𝑋
2𝑌2𝑓2 (𝑌) 𝜎21𝑌𝑍 0

𝜎21𝑋𝑍 𝜎21𝑌𝑍 𝜎21𝑍2 0
0 0 0 0

]]]]]]]]]
]

. (98)

Since 𝑈 is a bounded open subset that lies entirely inR4+,
then for all (𝑋, 𝑌, 𝑍, 𝑉𝑎) ∈ 𝑈

𝑎33 (𝑋, 𝑌, 𝑍, 𝑉𝑎) = 𝜎21𝑍2 ≥ min
(𝑋,𝑌,𝑍,𝑉𝑎)∈𝑈

𝜎21𝑍2 > ], (99)

where ] is a positive constant; condition (B1) is met. Con-
sequently we have shown conditions (B1) and (B2) of
Lemma 1.

Remark 12. Theorem 10 treats the long time behavior of (3).
In the case R𝑝 > 1, and for sufficiently small environment
noises, after some initial transients the solutions 𝑋(𝑡), 𝑌(𝑡),𝑉(𝑡), and 𝑉𝑎(𝑡) fluctuate around the deterministic steady-
state values𝑋∗, 𝑌∗, 𝑍∗, and 𝑉∗𝑎 , respectively.
Remark 13. By taking 𝜎1 = 𝜎2 = 0 and the same function
(73) with the same parameters defined in (70), if R𝑝 > 1,

one can easily follow the same proof below (B2) to show
that

�̇� (𝑋, 𝑌, 𝑍, 𝑉𝑎) ≤ −𝛾1 (𝑋 − 𝑋∗)2 − 𝛾2 (𝑌 − 𝑌∗)2
− 𝛾3 (𝑍 − 𝑍∗)2 − 𝛾4 (𝑉 − 𝑉∗𝑎 )2 .

(100)

Then �̇� < 0 for all (𝑋, 𝑌, 𝑍, 𝑉𝑎) ̸= 𝐸∗. Moreover, 𝑉(𝐸∗) =0 and𝑉(𝑋, 𝑌, 𝑍, 𝑉𝑎) > 0 for all (𝑋, 𝑌, 𝑍, 𝑉𝑎) ̸= 𝐸∗ and𝑉(𝑥) →∞ as ‖𝑥‖ → ∞. Then, by Lyapunov asymptotic stability
theorem [16], the virus-epidemic equilibrium state 𝐸∗ is
globally asymptotically stable.

7. Discussions and Numerical Simulations

In this section, we present some numerical simulations to
support our theoretical results. Throughout the following
numerical simulations, we choose 𝑓(𝑌) = 1 + 2𝑌2.

We use Milstein’s higher-order method [21, 22] to derive
the corresponding discretization equations of model (3).

Example 14. We choose the parameters in systems (2) and (3)
as follows:𝐴 = 10,𝛽 = 0.45,𝑑 = 0.5, 𝑘 = 0.3,𝜋 = 0.4,𝛼 = 0.4,𝜇 = 0.35, 𝜇0 = 0.4, 𝑉𝑎0 = 10, 𝜎1 = 0.7, and 𝜎2 = 0.8.

Using the above parameters we have
R𝑝 = 1.15 > 1, which implies from Theorem 3 that

model (2) stabilizes at the virus-epidemic equilibrium state𝐸∗. Figure 1(b) illustrates this case.
𝛽2 = 0.2 < 2𝜎22(𝑑+𝛼+𝜎21/2) = 1.47, (lim𝑡→∞ ((ln𝑌)/𝑡) ≤−0.99 a.s.). Theorem 8 shows that the disease dies out under

large white noise disturbances 𝜎1 and 𝜎2. The numerical sim-
ulation in Figure 1(a) supports this result;𝑌(𝑡) represented by
the green color tends to zero almost surely.
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Figure 2:The solution of stochastic model (3) and its histograms with parameters in Example 15 and initial values (𝑋(0), 𝑌(0), 𝑍(0), 𝑉𝑎(0)) =(5, 1, 0.8, 0.45).

Example 15. We choose the parameters in systems (2) and (3)
as follows: 𝐴 = 1, 𝛽 = 3, 𝑑 = 0.5, 𝑘 = 0.3, 𝜋 = 0.4, 𝛼 = 0.4,𝜇 = 0.35, 𝜇0 = 0.4, 𝑉𝑎0 = 0.5, 𝜎1 = 0.08, and 𝜎2 = 0.08.

The parameters in Example 15 are chosen to verify the
conditions of Theorem 10. Using these parameters, we have
R𝑝 = 3.41 > 1 and the intensities𝜎1 and𝜎2 are small enough.
Thus, there exists a unique ergodic stationary distribution for
system (3). The following simulations illustrate this result.

The red lines represent the densities of each stochas-
tic variable 𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), and 𝑉𝑎(𝑡), respectively, while
the blue ones represent the densities of each deterministic

variable. Based on these lines and their corresponding his-
tograms,we can observe the existence of a stationary distribu-
tion.The result implies that small intensities of the Brownian
motions will strengthen the stability of the system.

8. Conclusion

In the real world, problems are not deterministic, including
stochastic effects into a model that may give more accuracy
to investigate and study phenomena. In this paper, we have
studied the stability of a deterministic model powered by
a system of antivirus programs and with general nonlinear
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incidence rate. We have next considered a stochastic version
of this system with noises introduced in the rate at which
nodes are crashed due to reasons other than the attacks
of viruses 𝑑 and the transition rate 𝛽. We first proved the
existence and positivity of a unique global solution of this
model. Then, with this system of antivirus programs, we
investigate the extinction of viruses, we have proved that,
under large noise intensities𝜎1 and𝜎2, the number of infected
nodes 𝑌(𝑡) tends to zero exponentially almost surely, and
thus the disease dies out with probability one; Figure 1(a)
illustrates this case. We have also proved that system (3) has
the ergodic property asR𝑝 > 1 and the fluctuations are very
small. Numerical simulations in Figure 2 are carried out to
illustrate this theoretical result.

Also, it is interesting to investigate the stochastic persis-
tence in mean. Furthermore, we may study a stochastic ver-
sion of (3) includingMarkovian switching into all parameters
[23]. These studies are in progress.
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