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Different types of drivers and parking spaces delineate a heterogeneous parking market for which the literature has yet to provide
a model applicable to the real world. The main obstacle is computational complexities of considering various parking restrictions
along with traffic congestion on the road network. In this study, the heterogeneity aspects are considered within a Logit parking
choice model. A mathematical programming problem was introduced to explicitly consider parking capacities and parking
rationing constraints. The parking rationing is defined as any arrangement to reserve parking space for some specific demand
such as parking permit, private parking, VIP parking, and different parking durations. Introduction of parking rationing in the
presence of other constraints is a unique factor in this study which makes the model more realistic. The algorithm was tested on a
central business district case study.The results prove that the algorithm is able to converge rapidly. Among the algorithm’s output are
shadow prices of the parking capacity and parking rationing constraints. The shadow prices contain important information which
is key to addressing a variety of parking issues, such as the location of parking shortages, identification of fair parking charges,
viability of parking permits, and the size of reserved parking.

1. Introduction

System operators are challenged by parking related problems
such as parking shortages, parking demand forecasting,
parking pricing, and numerous other issues. In addition,
parkingmanagement has been seen as an effectivemeasure to
streamline traffic circulation [1]. Answers to these questions
require a parking model for which the literature has yet to
provide a reliable model applicable to large-size real net-
works. The attempts to model parking can be classified into
nonnetwork approaches and network-based approach [2, 3].
In a nonnetwork approach, largely through random utility
theory, factors contributing to the drivers’ decision to choose
a parking space are investigated. Neither congestion nor
parking capacity is explicitly considered in the nonnetwork
approaches. In the network-based approaches, parking lots
are coded as network elements. This makes the parking
demand subjected to congestion impacts, yet the parking lot
capacity must be addressed. This deficiency is rooted in the

computational complexities of considering parking capacity
simultaneously with traffic congestion on the road network.
Parking availability is one of the most important factors in
trip making process that can affect commuters’ choices of
travel mode, route, and departure time [4].

Furthermore, the importance of tradable parking permit
to alleviate parking shortage in the CBD has been recently
highlighted [5–8] for which one has to take the heterogeneity
facets of the market into analysis. Like any other market,
there are two parties involved: supplier (parking spaces) and
consumers (drivers); as such, there exist different types of
them which are needed to be considered in the parking
modeling process.

In this study we combine network with nonnetwork
methods to achieve a better approach, while explicitly includ-
ing parking capacity subject to heterogeneous parking spaces
and drivers. In the nonnetwork approaches, Logit models—
employed for capturing drivers’ parking choice behaviors—
were widely used. It is evident that the choices are subject
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to parking availability, which is not explicitly considered in
the parking choice models. The availability of parking is the
outcome of drivers’ competition to choose the best parking
locations. Whenever the notion of competition appears, it
implies a mathematical programming (optimization) prob-
lem [9]. Therefore, in this study, we place all the drivers with
their preferences for suitable parking spaces (i.e., Logit mod-
els) into competition for available and appropriate parking
spaces. Inclusion of Logit model enables us to take hetero-
geneous aspects of the parking in both ends (i.e., drivers
and parking spaces) into account. As the literature clearly
indicates, drivers consider a variety of factors when choosing
a parking space, such as driving time, congestion level around
the destination, and searching time for a space. Drive and
parking haunting times both add extra load on traffic conges-
tion and in the meantime both are also affected by the traffic
congestion. Therefore, the parking choice Logit models must
accommodate driving and parking haunting times as factors
contributing to the choice utilities. By doing so, network
congestion is implicitly considered. (The travel time to arrive
at and park in the respective parking zones is embedded in the
utility functions. Travel time is the result of congestion level.
By doing so, the congestion impacts are implicitly covered
in our methodology. In fact, this methodology can be coded
as a module to be run once a traffic assignment is carried
out in which the congestions are comprehensively taken into
account and travel times are known. This is exactly what we
did in our first paper [10] for the network of Abu Dhabi.)

With respect to parking supply, we introduce two sets of
constraints which provide a more realistic model: (i) park-
ing occupancy cannot exceed the capacity of parking lots; let
us call it parking capacity constraint (PCC); (ii) some park-
ing spaces may have been assigned to serve specific demand
such as VIP parking space, parking permits, different parking
duration (short term, long terms), disabled parking, and pri-
vate parking lots; let us call this category of constraints park-
ing rationing constraint (PRC). Some studies have addressed
the former constraint (PCC) [8, 10–17]. Considering the latter
PRC constraint in the presence of the PCC constraint is a
unique feature of this study.

The picture described above results in a Logit-based
mathematical programming problem with two sets of con-
straints: PCC and PRC. The advantages of this formulation
are as follows: (i) it explicitly takes the parking capacity con-
straints and reserved parking rationing into consideration;
this brings the model closer to reality; (ii) there exists a
plethora of studies concerned with the ways drivers choose
parking-spaces in the form of Logit models. Even some
cities have developed Logit parking choice models as part
of their transportation models [15, 18–24]; by integrating
Logit parking choice models in our methodology, we directly
exploit the knowledge accumulated in the literature or in the
cities’ transportation models; (iii) the heterogeneous features
of the drivers and parking spaces can be considered in the
logit models.

We will test the methodology on an artificial but large-
size CBD case. (In early stages of the authors’ quest in park-
ing studies, we applied a preliminary version of the current
methodology to the real and large-size network of Abu

Dhabi, the capital city of United Arab Emirates (UAE)
(please see [10]). Now, in the current paper, instead of again
employing the case of Abu Dhabi, we consciously developed
a “large-size” and stochastically made network to offer a
benchmark case to the literature. This large-size network
has been tabulated succinctly in this paper with all the
necessary information such that it can be easily regenerated
by scholars to be used in their studies. Such benchmarks are
not unprecedented in transportation literatures. The famous
one is the artificial network of Sioux-Falls that appeared in the
literature in 1970s, and it is still being used and referred to by
the scholars.)Thenumerical results will then be analyzed.The
results show that the methodology can be applied to large-
sizes networks and it can address a variety of parking related
inquiries.

In Section 2 we review relevant literature. The problem
is described and formulated in Section 3. We lay out the
algorithm of the methodology in Section 4. Section 5 is
dedicated to numerical results. Finally Section 6 concludes
the paper.

2. Literature Review

In this section we are interested in the extent to which
past studies considered four issues: (i) parking capacity, (ii)
parking rationing (iii), traffic congestion, and (iv) models’
practical application. It is difficult to find a model in the
literature that covers all four issues in one way or another
[25–27]. In the nonnetwork approaches, the capacity of
parking and traffic congestion can, at best, only be considered
implicitly as explanatory variables in the utility functions
[22, 24]. Recent network-based approaches distinguish them-
selves from their older peers in terms of significant advances
in their mathematical basis. Sattayhatewa and Smith Jr. [17]
developed a synchronized model for traffic assignment and
parking choice with parking capacity explicitly considered.
Synchronizing parking choice and traffic assignment means
that parking choice is explicitly subject to traffic congestion.
There are a number of parameters that must be calibrated by
a “maximum likelihood” method, which is time-consuming.
Hence, the application of theirmodel to real-size cases has yet
to be addressed.

Arnott and Inci [11] provide an economic approach to
parking pricing with both parking capacity and congestion
being explicitly considered. The main problem with this
method is that off-street parking capacity is not considered.

Li et al. [16] developed a joint model for mode choice,
traffic assignment, and parking choice with parking and road
capacity considered explicitly. Concerns about calibrating
too many parameters and the practicality of application
to real-size cases are not addressed. Consideration of road
capacity constraint in the user-equilibrium traffic assignment
may violate Wardrop’s first principle which says: everybody
chooses the shortest path. Consider a simple example with
two paths A and B and demand of 2 users.The shortest path is
A whose capacity is 1 user while B has no capacity constraint.
It is evident that half of the demand would take the shortest
path (A) while the others would take a longer path due to
restriction in the capacity of the shortest path.This is a major
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drawback in their study and has to be addressed by adjusting
the Wardrop principles [28–30].

Li et al. [31] developed a bilevel formulation for dynamic
parking pricing and parking supply. Computational time
required for the bi-level problem still is a concern. In
addition, the outputs for both parking cost and supply are
continuous numbers which are policies not easily imple-
mented in the real world.

Zhang et al. [32] considered parking capacity using the
concepts of queue theory. Zhang et al. [8] and Qian et al.
[33] also explicitly considered parking capacity. Application
to real-size cases has yet to be addressed.

It has been reported that a capacity constraint parking
model was developed for the city of London, UK [15]. The
model consists of Logit parking choice models for which the
parking capacity is explicitly considered.

Some studies have adopted a microview on the parking
modeling on how the individual car searches for park-
ing spaces. These are called microsimulation or agent-
based models. The main problem with the microsimulation
approach is that the computation time that makes their use
limited to small-size cases [26, 34]. There are a huge number
of parameters needing calibration involved in such models.
The calibration requires costly and time consuming surveys
to determine specific driver behavior in the area.

Recently Liu et al. [6] developed a bimodal traffic equilib-
rium subject to the impact of the parking spaces constraint.
For simplicity, all parking spaces were inexplicitly assumed
to have identical features and numerical results have yet to be
shown. In the conclusion they highlighted some knowledge
gaps to be further studied which are quoted as follows: “For
further research, it would be interesting to take into account
differentiated parking, that is, the considered parking spaces
may have different parking fees, and different distances to
the destination. In this case, the commuters’ incentive or
willingness to compete for parking spaces of different types
would be different, which is a reflection of commuters’ differ-
ent valuations on the differentiated parking spaces. Besides,
parking fees might be utilized as an instrument for managing
traffic.” The aforementioned knowledge gaps are precisely
what is addressed in this study.

Moreover the literature review reveals that no attempt has
been made to address the parking rationing issue. In some
cases, ignoring or loosening parking rationing constraints
cannot be tolerable. For example, consider a central business
district in which the towers and skyscrapers provide a large
share of the parking supply (private parking). Furthermore it
is a common practice to ration the parking spaces to different
parking duration demand (short term, long terms). With
respect to the other issues of interest, parking capacity, traffic
congestion, and practical application, there are some studies
that developed robust mathematical methods to consider
parking capacity and congestion explicitly. However, the
mathematical complexity underlying them has hindered the
practicality of applying them to real-size cases.

In this study we compromise explicit consideration of
congestion to address the other three issues. In our model,
traffic congestion is implicitly included as an explanatory
variable within the parking utility function, while parking

capacity and rationing are explicitly considered. We tested
our methodology using a large-size case study.

3. The Problem of Parking Modelling

Let 𝐺𝑝𝑞 be auto travel demand from origin 𝑝 ∈ 𝑃 to desti-
nation 𝑞 ∈ 𝑄 which has to find a parking space 𝑘 ∈ 𝐾.
Here𝐺𝑝𝑞 is an exogenously determined parking demand too.
People drive from 𝑝 to 𝑘, where they park and walk to 𝑞. Note
that 𝑃, 𝑄, and 𝐾 represent traffic analysis zones and parking
zones, respectively. A group of proximate parking spaces
can be viewed as a parking zone, which can be any type of
parking including on-street parking spaces, an underground
parking facility, a surface facility, or even amultistory parking
structure. The drivers (𝐺𝑝𝑞) traveling from 𝑝 to 𝑞 will park at
an available parking space in lot 𝑘 that provides maximum
utility. Utility is the core concept of discrete choice models,
including Logit models. Parking cost, walking distance to the
destination, security of the parking lot, being covered, as well
as flow-dependent characteristics such as drive access time
and time spent searching for a parking space are the most
important factors that determine the utility of the parking
lot. Utilities are usually defined as a linear function of the
important factors contributing to choice, and this equation
is called the utility function. The factors’ coefficients indicate
the relative importance of each factor in the utility function.

The utility of a parking space 𝑘 ∈ 𝐾 is perceived by the
driver. Drivers, depending on their socioeconomic character-
istics, perceive different levels of utility from the same parking
space. For instance, wealthy drivers have less concern about
parking cost than less wealthy drivers. Therefore, we denote
the utility function as 𝑢𝑝𝑘 which is a function of parking 𝑘
as well as driver 𝑝. (Note that the disaggregation level of this
study is not at individual levels; rather it is at zonal level. It
is due to the fact that our current methodology is a macro
model.Therefore the heterogeneity has been set at zonal level.
In traffic modeling a zonal structure must be homogenous
[35]; i.e., a zonemust represent fairly similar travelers in terms
of their traffic behaviors and socioeconomic characteristics.
While travelers inside a zone are homogenous, they may
differ from those who belong to other zones; it is called
heterogeneity. Consequently, “𝑝” captures such heterogeneity
between the zones.)

Regardless of any availability of parking (no capacity
constraint, no rationing), the Logit parking choicemodelmay
be formulated as follows:

LPC: Logit parking choice:

𝑔𝑝𝑘𝑞 = 𝐺𝑝𝑞 ⋅
𝑒
𝑢𝑝𝑘

∑𝑘 𝑒
𝑢𝑝𝑘
, (1)

where 𝑔𝑝𝑘𝑞 is the number of drivers from 𝑝 to 𝑞 out of the
total number of drivers𝐺𝑝𝑞 who would likely park in parking
zone 𝑘. In fact index 𝑘 represents conditions of the respective
parking area and the surrounding area including destination
zone 𝑞. Hence index 𝑞 is dropped from utility function in (1).

Constraints for parking capacity and parking rationing
are introduced here:
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PCC: parking capacity constraints:

∑

𝑝𝑞

𝑔𝑝𝑘𝑞 ≤ 𝐶𝑘 𝑘 ∈ 𝐾; (2)

PRC: parking rationing constraints:

∑

𝑝

𝑔𝑝𝑘𝑞 ≤ 𝐹𝑘𝑞 𝑘 ∈ 𝐾. (3)

In (2) we make sure that total parking occupation (∑𝑝𝑞 𝑔𝑝𝑘𝑞)
will not exceed the capacity of parking zone (𝐶𝑘). It is evident
that 𝐶𝑘 is the available parking spaces (excluding the already
occupied parking spaces). Let us call those whose destination
is zone 𝑞 visitors to building 𝑞. In (3), parking zone 𝑘 is
rationed. Accordingly, the maximum spaces in parking zone
𝑘 dedicated to visitors to building 𝑞 are 𝐹𝑘𝑞. Special parking
restrictions such as private parking spaces, VIP parking
spaces, disabled parking, and different parking duration may
be implemented by adjusting appropriate rates for 𝐹𝑘𝑞. For
example, if parking zone 𝑘󸀠 is private parking for building 𝑞󸀠,
we can assign 𝐹𝑘󸀠𝑞󸀠 = ∞ and 𝐹𝑘󸀠𝑞 = 0 | 𝑞 ∈ 𝑄 − {𝑞

󸀠
}. Simply

put, the parking modeling is converted to solving the follow-
ing: LPC subject to PCC and PRC (or (1) s.t. (2) and (3)).

Figure 1 is a graphic illustration of the problem structure.
The primary output is 𝑔𝑝𝑘𝑞, how many cars out of 𝐺𝑝𝑞 have
parked at parking zone 𝑘. The inputs of the problem are
summarized as follows:

𝐺𝑝𝑞: number of autos driving from origin 𝑝 to desti-
nation 𝑞.

𝑢𝑝𝑘: utility of parking 𝑘 perceived by drivers 𝑝.

𝐶𝑘: capacity of or maximum available parking spaces
at parking zone 𝑘.

𝐹𝑘𝑞: parking rationing; maximum parking spaces of
parking zone 𝑘 dedicated to zone 𝑞.

4. Methodology

4.1. Logit-BasedMathematical Programming for ParkingMod-
eling. Spiess [36] was the first scholar to solve the above
problem without the parking rationing constraints. By apply-
ing the Kuhn-Tucker optimality conditions [37], Spiess [36]
proved that the problem of (1) s.t. (2) is equivalent to the
following minimization problem:

Min ∑

𝑝𝑘𝑞

𝑔𝑝𝑘𝑞 (log𝑔𝑝𝑘𝑞 − 1 + 𝑢𝑝𝑘)

s.t.: ∑

𝑘

𝑔𝑝𝑘𝑞 = 𝐺𝑝𝑞 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄.

(4)

Spiess [36] then added PCC (2) to the above problem. Thus,
the Logit parking choice (LPC) problem considering explicit
parking capacity constraint (PCC) became as follows:

Spiess problem:

Min ∑

𝑝𝑘𝑞

𝑔𝑝𝑘𝑞 (log𝑔𝑝𝑘𝑞 − 1 + 𝑢𝑝𝑘) (5)

s.t.: ∑

𝑘

𝑔𝑝𝑘𝑞 = 𝐺𝑝𝑞 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄 (6)

∑

𝑝𝑞

𝑔𝑝𝑘𝑞 ≤ 𝐶𝑘 𝑘 ∈ 𝐾. (7)

We call the above problem ((5), (6), and (7)) the Spiess
problem. Equation (6) ensures that the outcome (𝑔𝑝𝑘𝑞)meets
the demand (𝐺𝑝𝑞). Equation (7) is the parking capacity
constraint (PCC).

It is required to ensure the feasibility of the solutions to
the Spiess problem, by providing parking spaces to serve the
entire demand as follows:

∑

𝑝𝑞

𝐺𝑝𝑞 ≤ ∑

𝑘

𝐶𝑘. (8)

Clearly, in case of a parking shortage, we can assume a
dummy parking zone with infinite capacity and minimum
utility. Minimum utility of the dummy parking zone ensures
that the dummy parking zones will not receive any car unless
all the other parking spaces are occupied. Since (8) can be
treated beforehand, it was excluded from the formulation
of the Spiess problem. Fewer constraints make the problem
more tractable.

The Spiess problem can be extended to accommodate
parking rationing constraints (PRC) as follows:

parking modeling, PM, problem:

Min ∑

𝑝𝑘𝑞

𝑔𝑝𝑘𝑞 (log𝑔𝑝𝑘𝑞 − 1 + 𝑢𝑝𝑘) (9)

s.t.: ∑

𝑘

𝑔𝑝𝑘𝑞 = 𝐺𝑝𝑞 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄 (10)

∑

𝑝𝑞

𝑔𝑝𝑘𝑞 ≤ 𝐶𝑘 𝑘 ∈ 𝐾 (11)

∑

𝑝

𝑔𝑝𝑘𝑞 ≤ 𝐹𝑘𝑞 𝑞 ∈ 𝑄, 𝑘 ∈ 𝐾. (12)

We call the above problem the parking modeling (PM)
problem. The presence of PRC (12) in the above problem
leads to a feasibility discussion similar to the Spiess problem.
Ensuring the feasibility of the PM problem solutions requires
providing adequate rationing rates (𝐹𝑘𝑞) with respect to
available parking capacity (𝐶𝑘) and also meeting the entire
demand (𝐺𝑝𝑞) as follows:

𝐶𝑘 ≤ ∑

𝑞

𝐹𝑘𝑞 𝑘 ∈ 𝐾,

∑

𝑝

𝐺𝑝𝑞 ≤ ∑

𝑘

𝐹𝑘𝑞 𝑞 ∈ 𝑄.

(13)

Similarly we can ensure the feasibility of the solution before-
hand by providing a dummy parking zone 𝑘󸀠 with infinite



Mathematical Problems in Engineering 5

1

2

3

1

1

2

3

2

Inputs

Driving WalkingParking

Outputs

p q

Gpq

bk = e
−𝛽𝑘

k

Ck

Upk

Fkq

gpkq

n
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Gpq : demand; number of cars from origin p who have to
find a parking lot near destination q

Ck: capacity of parking zone k

Upk: utility of parking lot k perceived by drivers from
origin p in exponential format or Upk = exp(−upk)

Fkq : parking rationing, maximum parking spaces of
parking zone k dedicated to drivers of destination q

gpkq : parking flow, how many drivers from origin p parked
at parking k and walked to destination q

𝛽k: shadow price corresponding to supplied capacity at
parking zone k

𝜃k: shadow price corresponding to rationed capacity at
parking zone k for drivers of destination q

Figure 1: Structure, inputs, and outputs of the of parking modeling.

capacity (𝐶𝑘󸀠 = ∞) and minimum utility (𝑢𝑝𝑘󸀠 < min{𝑢𝑝𝑘 |
𝑝 ∈ 𝑃, 𝑘 ∈ 𝐾 − {𝑘

󸀠
}}) with no rationing (𝐹𝑘󸀠𝑞 = ∞ | 𝑞 ∈ 𝑄).

It is evident that to avoid problems of degeneracy we assume
𝐶𝑘 > 0 | ∀𝑘 ∈ 𝐾.

4.2. Solution Algorithm. We now turn our attention to estab-
lishing a solution algorithm for the PM problem. All the
constraints in the PM problem are linear. Hence we can
eliminate the constraint (for a more tractable problem) by
deriving the dual format of the problem. To do so, let us
introduce the dual variables 𝛼𝑝𝑞 for constraint (10) and𝛽𝑘 ≥ 0
and 𝜃𝑘𝑞 ≥ 0 for constrains (11) and (12), respectively. The
Kuhn-Tucker optimality condition is established as follows:

𝐿 = ∑

𝑝𝑘𝑞

𝑔𝑝𝑘𝑞 (log𝑔𝑝𝑘𝑞 − 1 + 𝑢𝑝𝑘)

+ 𝛼𝑝𝑞(∑

𝑘

𝑔𝑝𝑘𝑞 − 𝐺𝑝𝑞) + 𝛽𝑘(∑

𝑝𝑞

𝑔𝑝𝑘𝑞 − 𝐶𝑘)

+ 𝜃𝑘𝑞(∑

𝑝

𝑔𝑝𝑘𝑞 − 𝐹𝑘𝑞) .

(14)
Hence first-order Kuhn-Tucker optimality conditions may be
written as
∇𝐿𝑔𝑝𝑘𝑞

= 0

󳨐⇒ log𝑔𝑝𝑘𝑞 − 1 + 𝑢𝑝𝑘 + 𝑔𝑝𝑘𝑞 ⋅
1

𝑔𝑝𝑘𝑞

+ 𝛼𝑝𝑞

+ 𝛽𝑘 + 𝜃𝑘𝑞 = 0.

(15)

Subjecting the parking flow (𝑔𝑝𝑘𝑞) derived from (15) to the
constraints of the PM problem ((10), (11), and (12)) results in
a new problem as follows:

𝑔𝑝𝑘𝑞 = 𝑒
−𝑢𝑝𝑘−𝛼𝑝𝑞−𝛽𝑘−𝜃𝑘𝑞 , (16)

s.t. (10), (11), and (12).
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Now we can establish the dual format of PM problem as
follows:

𝐷 = min
𝛼𝛽𝜃

∑

𝑝𝑘𝑞

𝑒
−𝑢𝑝𝑘−𝛼𝑝𝑞−𝛽𝑘−𝜃𝑘𝑞 +∑

𝑝𝑞

𝛼𝑝𝑞𝐺𝑝𝑞 +∑

𝑘

𝛽𝑘𝐶𝑘

+∑

𝑘

𝜃𝑘𝑞𝐹𝑘𝑞

s.t. 𝛽𝑘 ≥ 0, 𝑘 ∈ 𝐾, 𝜃𝑘𝑞 ≥ 0, 𝑘 ∈ 𝐾, 𝑞 ∈ 𝑄.

(17)

Again by establishing first-order Kuhn-Tucker optimality
conditions for the dual problem we have

∇𝐷𝛼𝑝𝑞
= 0

󳨐⇒ ∑

𝑘

𝑒
−𝑢𝑝𝑘−𝛼𝑝𝑞−𝛽𝑘−𝜃𝑘𝑞 = 𝐺𝑝𝑞 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄

∇𝐷𝛽𝑘
= 0

󳨐⇒ ∑

𝑝𝑞

𝑒
−𝑢𝑝𝑘−𝛼𝑝𝑞−𝛽𝑘−𝜃𝑘𝑞 ≤ 𝐶𝑘 𝑘 ∈ 𝐾

∇𝐷𝜃𝑘𝑞
= 0

󳨐⇒ ∑

𝑝

𝑒
−𝑢𝑝𝑘−𝛼𝑝𝑞−𝛽𝑘−𝜃𝑘𝑞 ≤ 𝐹𝑘𝑞 𝑝 ∈ 𝑃.

(18)

Solving the above equations yields optimal values of the dual
variables.

Spiess [36] developed a solution algorithm using a
Successive Coordinate Descent (SCD) method for his own
dual problem based on the following argument: the dual
problemwas free of any explicit constraints; therefore it could
be solved by using an SCD method. The same argument
is applied to our own dual problem (17). Therefore, we
developed a solution algorithm based on the SCDmethod as
will be discussed below.

To reduce computational complexity, we eliminate the
exponential terms in the optimality conditions (18) through
some simple substitutions: 𝑎𝑝𝑞 = 𝑒

−𝛼𝑝𝑞 , 𝑏𝑘 = 𝑒
−𝛽𝑘 , 𝑛𝑘𝑞 = 𝑒

−𝜃𝑘𝑞 ,
and 𝑈𝑝𝑘 = 𝑒

−𝑢𝑝𝑘 . Hence the nonnegativity conditions of the
dual variables become (𝑎𝑝𝑞 ≥ 0) and (0 ≤ 𝑏𝑘, 𝑛𝑘𝑞 ≤ 1). Now
the optimality condition of the dual problem can be rewritten
as

∑

𝑘

𝑈𝑝𝑘 ⋅ 𝑎𝑝𝑞 ⋅ 𝑏𝑘 ⋅ 𝑛𝑘𝑞 = 𝐺𝑝𝑞 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄

∑

𝑝𝑞

𝑈𝑝𝑘 ⋅ 𝑎𝑝𝑞 ⋅ 𝑏𝑘 ⋅ 𝑛𝑘𝑞 ≤ 𝐶𝑘 𝑘 ∈ 𝐾

∑

𝑝

𝑈𝑝𝑘 ⋅ 𝑎𝑝𝑞 ⋅ 𝑏𝑘 ⋅ 𝑛𝑘𝑞 ≤ 𝐹𝑘𝑞 𝑝 ∈ 𝑃.

(19)

The SCD is an iterative process and at the end of each iteration
(𝑎
𝑖

𝑝𝑞
, 𝑏
𝑖

𝑘
, 𝑛
𝑖

𝑘𝑞
)the values of the dual variables (𝑎𝑝𝑞, 𝑏𝑘, 𝑛𝑘𝑞) are

updated for the next iteration denoted by 𝑖. The maximum

number of iterations is denoted by 𝑖max. Now the SCD
algorithm of the dual problem (17) can be written as follows.

Step 0 (initialization and preparation). Set 𝑖 = 1 and 𝑎0
𝑝𝑞
=

𝑏
0

𝑘
= 𝑛
0

𝑘𝑞
= 1.

Step 1 (computation)

𝑎
𝑖

𝑝𝑞
=

𝐺𝑝𝑞

∑𝑘𝑈𝑝𝑘 ⋅ 𝑎𝑝𝑞 ⋅ 𝑏𝑘 ⋅ 𝑛𝑘𝑞

,

𝑔
𝑖

𝑝𝑘𝑞
= 𝑈𝑝𝑘 ⋅ 𝑎

𝑖

𝑝𝑞
⋅ 𝑏
𝑖−1

𝑘
⋅ 𝑛
𝑖−1

𝑘𝑞
.

(20)

Step 2 (stopping criteria). If | ∑𝑝𝑞 𝑔
𝑖

𝑝𝑘𝑞
− 𝐶𝑘| ≤ 𝜀𝑘 and

| ∑𝑝 𝑔𝑝𝑘𝑞 − 𝐹𝑘𝑞| ≤ 𝜀𝑘𝑞 or 𝑖 = 𝑖max then Stop.

Step 3 (updating)

𝑏
𝑖

𝑘
= min{1,

𝑏
𝑖−1

𝑘
⋅ 𝐶𝑘

∑𝑝𝑞 𝑔
𝑖

𝑝𝑘𝑞

} ,

𝑛
𝑖

𝑘𝑞
= min{1,

𝑛
𝑖−1

𝑘𝑞
⋅ 𝐹𝑘𝑞

∑𝑝 𝑔
𝑖

𝑝𝑘𝑞

} .

(21)

Step 4 (continue). Set 𝑖 = 𝑖 + 1 and continue to Step 1.

The above algorithm is simple and can be encoded by
any language. We used the Visual Basic (VB) language. To
simplify the code’s use, the program interface is an MS-Excel
file where the input data can be easily entered.The outputs are
also reported in anMS-Excel format.The computer hardware
used is a PC with 2.33GHz Intel(R) Xeon(R) CPU and
3.25GB of RAM. The next section discusses the numerical
results of testing the algorithm.

4.3. Shadow Prices. There is a delicate interpretation of the
dual variables on the supply side (𝛽𝑘, 𝜃𝑘𝑞). According to
Operational Research (OR) terminology, 𝛽𝑘, 𝜃𝑘𝑞 (beta and
theta) are the shadow prices associated with parking capacity
and parking rationing rates. With respect to the objective
function, shadow price 𝛽𝑘 represents the value of one extra
parking space added to parking zone 𝑘.

Consider two identical parking zones (𝑘󸀠, 𝑘󸀠󸀠) with only
one difference: parking spaces in 𝑘󸀠 are covered. Therefore
it is expected to have 𝛽𝑘󸀠 > 𝛽𝑘󸀠󸀠 . Attractive parking zones
will be occupied sooner than other parking zones. Drivers
compete for use of the attractive parking zones. Hence, as the
result of this competition, the shadow price is the price that
the market is willing to pay for one additional parking space
in the attractive or fully occupied parking zones. Obviously,
for underutilized parking zones, there is no competition and
the corresponding shadow prices 𝛽𝑘 are zero. Intuitively, the
shadow price is the answer to a variety of planning issues such
as (i) where is the most serious parking shortage? Wherever
the shadow prices 𝛽𝑘 are maximum. (ii) How many parking
spaces are needed? One should add parking spaces until the
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𝛽𝑘 becomes zero. A similar interpretation is applied to the
shadow price of parking rationing (𝜃𝑘𝑞). We will elaborate on
the interpretation of shadow prices in Section 5.3.

5. Numerical Results

5.1. Preparing the Case Study. A case study consisting of
100 origin zones, 10 parking zones, and 100 destination
zones was developed (|𝑃| = 100, |𝐾| = 10, |𝑄| = 100).
The scale of the case study is comparable to a CBD area
with 100 entrance roads and 10 different types of parking
zones as well as 100 zones which constitute the CBD area.
Below, we define and specify the case study so that it can be
utilized by other researchers as a benchmark. As discussed
before (see Figure 1), there are four sets of inputs: 𝐺𝑝𝑞,
𝑈𝑝𝑘, 𝐶𝑘, and 𝐹𝑘𝑞. These inputs are specified stochastically
(randomly), in order to avoid any biased results of applying
the methodology to the case study. Tables 1 and 2 present the
uniform random numbers used to compute the input data.
With respect to subsituation made for (19), the exponential
format of the parking utility function (𝑈𝑝𝑘) is defined as
follows (It is important to note that this paper basically
offers a methodology tailored to sizable networks and the
undertaken case study is a benchmark example. The only
part that needs calibration is the Logit parking choice model,
which is readily available in cities with comprehensive traffic
models (including the traffic model of Abu Dhabi [10]).
Therefore we considered the Logit models as a given input
in our manuscript, i.e., to spare the space for greater detail in
discussing the methodology itself.):

𝑈𝑝𝑘 = exp (−1 ∗ 𝑅𝑝𝑈𝑝𝑘 ⋅ 𝑅𝑘𝑈𝑝𝑘) , (22)

where𝑈𝑝𝑘 is the utility of parking zone 𝑘 perceived by drivers
from origin 𝑝 ⋅ 𝑈𝑝𝑘 depends on both the driver’s preferences
and the parking lot characteristics, both of which are repre-
sented by random numbers (𝑅𝑝𝑈𝑝𝑘 ⋅ 𝑅𝑘𝑈𝑝𝑘). Characteristics
impacting driver preferences, such as socioeconomic and
demographic characteristics, sex, trip purpose, and driving
time to reach the parking lot, are all represented by 𝑅𝑝𝑈𝑝𝑘 .
Also, 𝑅𝑘𝑈𝑝𝑘 includes parking characteristics as well as flow-
dependent factors such as cost, search time to find a parking
space at the parking zone, security, and being covered. We
could define the case study utility based on a single random
term such as 𝑈𝑝𝑘 = exp(−1 ∗ 𝑅𝑝𝑘𝑈𝑝𝑘), which must return
10,000 records of 𝑅𝑝𝑘𝑈𝑝𝑘 to populate the case study. Instead,
to define the case study in a concise format which parallels an
actual application, we use the product of two random terms
for which we reported 100 and 10 records in Tables 1 and 2.
The same rationale is applied in defining the other inputs.
To simulate a real situation for the demand (𝐺𝑝𝑞) and supply
sides (𝐶𝑘, 𝐹𝑘𝑞), exponential types of random numbers are
utilized which yield a highly unpredictable dataset [38, 39].
An exponential random number (𝑥)with expected value of 𝜆
can be simply computed as follows:

𝑥 = −𝜆 ⋅ ℓ𝑛 (𝑅) , (23)

where 0 ≤ 𝑅 ≤ 1 is a uniform random number. Now the
demand and supply sides are defined as

𝐺𝑝𝑞 = 10 ⋅ ℓ𝑛 (𝑅𝑝𝐺𝑝𝑞
⋅ 𝑅𝑞𝐺𝑝𝑞

) , (24)

𝐶𝑘 = −10000 ⋅ ℓ𝑛 (𝑅𝑘𝐶𝑘
) , (25)

𝐹𝑘𝑞 = −100 ⋅ ℓ𝑛 (𝑅𝑘𝐹𝑘𝑞 ⋅ 𝑅𝑞𝐹𝑘𝑞) . (26)

In (24) we assumed 10 cars as the expected demand between
origin-destination pairs, but this number will vary depending
on two random numbers (𝑅𝑝𝐺𝑝𝑞 , 𝑅𝑞𝐺𝑝𝑞) representing the
conditions at the origin and the destination. In total, the
demand becomes ∑𝑝𝑞 𝐺𝑝𝑞 = 185, 790.55. In (25), given the
size of demand matrix (100 × 100) with 10 as the expected
value of an entry and 10 parking zones, the expected capacity
of parking zones should be 𝐸(𝐶𝑘) = 10,000 = 100 ∗ 100 ∗
10/10 to meet the demand. Also the parking capacity varies
across the parking zones due to the random number 𝑅𝑘𝐶𝑘 .
In (26), given 10 parking zones with an expected capacity of
10,000 each and 100 destination zones, the expected rates for
parking rationing to proceed the demand can be calculated
as: 𝐸(𝐹𝑘𝑞) = 100 = 10, 000 ∗ 10/(10 ∗ 100). Similarly, park-
ing rationing rates may vary due to random numbers rep-
resenting different conditions at both parking zones and
destination zones.

To ensure the feasibility of the solution, the constraints
set forth by (8) and (13) must be met. Therefore a simple
adjustment is made on the computed input rates in (24), (25),
and (26) as follows (“:=” means “set to”):

𝐶𝑘 fl
𝐶𝑘 ⋅ ∑𝑝𝑞 𝐺𝑝𝑞

∑𝑘 𝐶𝑘

, (27)

𝐹𝑘𝑞 fl
𝐹𝑘𝑞 ⋅ ∑𝑝 𝐺𝑝𝑞

∑𝑘 𝐹𝑘𝑞

, (28)

𝐹𝑘𝑞 fl
𝐹𝑘𝑞 ⋅ 𝐶𝑘

∑𝑞 𝐹𝑘𝑞

if
𝐶𝑘

∑𝑞 𝐹𝑘𝑞

> 1. (29)

In (27) and (28) the parking capacity (∑𝑘 𝐶𝑘) and rates of
parking rationing (∑𝑘 𝐹𝑘𝑞) are balanced to total demand
(∑𝑝𝑞 𝐺𝑝𝑞). In (29) the parking rationing is adjusted up to the
capacity of the corresponding parking zone to eliminate the
chance of having a bottleneck in the outbound flow. Table 2
indicates the final values for parking capacity and aggregate
rates for parking rationing.

5.2. Executing the Algorithm. The algorithm described in
Section 4 is applied to the data developed for the case study,
above. The stopping criteria is 100 iterations (𝑖max = 100). As
shown in Figure 1, given four sets of input variables𝐺𝑝𝑞,𝑈𝑝𝑘,
𝐶𝑘, and𝐹𝑘𝑞, the algorithm yields three sets of output variables
which are

(i) 𝑔𝑝𝑘𝑞, trips which originate at 𝑝 who park at lot 𝑘 and
walk to destination 𝑞;

(ii) 𝑏𝑘 = 𝑒
−𝛽𝑘 , shadow price of parking zone 𝑘;
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Table 1: Random numbers corresponding to origin-destination (𝑝, 𝑞) used to populate the case study.

𝑝 or 𝑞 𝑅𝑝𝐺𝑝𝑞 𝑅𝑞𝐺𝑝𝑞 𝑅𝑞𝐹𝑘𝑞 𝑅𝑝𝑈𝑝𝑘 𝑝 or 𝑞 𝑅𝑝𝐺𝑝𝑞 𝑅𝑞𝐺𝑝𝑞 𝑅𝑞𝐹𝑘𝑞 𝑅𝑝𝑈𝑝𝑘

1 0.856 0.312 0.412 0.577 51 0.872 0.813 0.23 0.903
2 0.744 0.794 0.129 0.373 52 0.402 0.473 0.596 0.819
3 0.859 0.177 0.862 0.764 53 0.502 0.287 0.349 0.364
4 0.519 0.173 0.104 0.733 54 0.222 0.702 0.563 0.604
5 0.641 0.546 0.992 0.22 55 0.158 0.374 0.834 0.742
6 0.928 0.749 0.146 0.947 56 0.94 0.829 0.488 0.818
7 0.06 0.487 0.437 0.905 57 0.153 0.574 0.559 0.051
8 0.06 0.316 0.77 0.489 58 0.488 0.862 0.694 0.407
9 0.454 0.5 0.262 0.651 59 0.403 0.477 0.883 0.202
10 0.492 0.495 0.935 0.155 60 0.861 0.417 0.134 0.229
11 0.024 0.62 0.803 0.662 61 0.914 0.869 0.063 0.514
12 0.136 0.58 0.809 0.884 62 0.642 0.37 0.014 0.097
13 0.035 0.243 0.529 0.461 63 0.087 0.913 0.538 0.34
14 0.539 0.385 0.258 0.56 64 0.989 0.638 0.846 0.762
15 0.764 0.468 0.951 0.377 65 0.032 0.74 0.436 0.849
16 0.886 0.436 0.7 0.045 66 0.937 0.938 0.875 0.96
17 0.209 0.37 0.714 0.084 67 0.002 0.118 0.2 0.506
18 0.616 0.94 0.408 0.625 68 0.543 0.347 0.31 0.571
19 0.624 0.206 0.929 0.823 69 0.988 0.147 0.386 0.182
20 0.531 0.067 0.117 0.098 70 0.51 0.236 0.299 0.212
21 0.766 0.456 0.619 0.689 71 0.743 0.025 0.881 0.989
22 0.196 0.129 0.486 0.578 72 0.153 0.125 0.055 0.849
23 0.608 0.081 0.909 0.91 73 0.608 0.639 0.552 0.102
24 0.264 0.015 0.621 0.995 74 0.079 0.232 0.12 0.587
25 0.982 0.49 0.184 0.618 75 0.146 0.744 0.725 0.73
26 0.962 0.464 0.567 0.51 76 0.775 0.874 0.317 0.822
27 0.967 0.872 0.313 0.355 77 0.715 0.869 0.855 0.655
28 0.914 0.08 0.002 0.663 78 0.075 0.755 0.128 0.995
29 0.947 0.852 0.364 0.839 79 0.64 0.758 0.767 0.92
30 0.76 0.402 0.381 0.93 80 0.407 0.663 0.382 0.483
31 0.396 0.783 0.541 0.457 81 0.152 0.132 0.272 0.835
32 0.595 0.717 0.482 0.896 82 0.808 0.616 0.931 0.248
33 0.892 0.851 0.844 0.356 83 0.621 0.446 0.049 0.589
34 0.319 0.214 0.387 0.307 84 0.587 0.887 0.233 0.337
35 0.651 0.916 0.729 0.937 85 0.112 0.571 0.949 0.386
36 0.214 0.268 0.154 0.754 86 0.861 0.602 0.267 0.32
37 0.297 0.432 0.569 0.187 87 0.53 0.803 0.361 0.372
38 0.579 0.85 0.452 0.591 88 0.65 0.981 0.781 0.582
39 0.481 0.854 0.34 0.354 89 0.125 0.473 0.019 0.339
40 0.657 0.323 0.325 0.556 90 0.994 0.122 0.344 0.462
41 0.72 0.943 0.196 0.949 91 0.038 0.538 0.488 0.333
42 0.405 0.026 0.24 0.631 92 0.709 0.989 0.606 0.517
43 0.8 0.468 0.169 0.451 93 0.275 0.344 0.339 0.66
44 0.387 0.862 0.99 0.587 94 0.217 0.289 0.277 0.136
45 0.079 0.41 0.331 0.761 95 0.139 0.324 0.898 0.915
46 0.856 0.451 0.183 0.936 96 0.322 0.985 0.352 0.822
47 0.547 0.608 0.851 0.57 97 0.086 0.966 0.543 0.89
48 0.475 0.636 0.316 0.871 98 0.803 0.474 0.246 0.884
49 0.901 0.932 0.925 0.231 99 0.397 0.609 0.394 0.358
50 0.532 0.121 0.793 0.453 100 0.137 0.962 0.883 0.91
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Table 2: Random numbers and inputs corresponding to parking zones (𝑘) used to populate the case study, as well as some outputs.

Inputs Outputs of the last iteration 𝑖max = 100

𝑘 𝑅𝑘𝐶𝑘 𝑅𝑘𝐹𝑘𝑞 𝑅𝑘𝑈𝑝𝑘
𝐶𝑘; parking

spaces Sum of 𝐹𝑘𝑞 on 𝑞 𝑏𝑘; shadow price Error; 󵄨󵄨󵄨󵄨𝐶𝑘 − 𝐺𝑘
󵄨󵄨󵄨󵄨 𝐺𝑘; parking load

1 0.811 0.182 0.888 2,883.2 24,260.5 0.0084 34.11 2,917.35
2 0.269 0.86 0.047 18,092.8 18,092.9 0.6257 3.15 18,095.94
3 0.315 0.728 0.561 15,889.2 15,889.3 0.6429 6.68 15,895.90
4 0.074 0.032 0.64 35,943.0 41,578.1 0.4165 163.91 36,106.87
5 0.135 0.736 0.577 27,585.2 27,585.4 1.0000 365.23 27,219.99
6 0.208 0.569 0.403 21,621.3 21,621.4 0.6762 6.90 21,628.15
7 0.568 0.037 0.126 7,779.8 40,030.1 0.0146 92.06 7,871.87
8 0.367 0.786 0.541 13,812.2 13,812.3 0.5878 4.36 13,816.60
9 0.53 0.56 0.539 8,747.0 13,147.8 0.1061 40.36 8,787.37
10 0.088 0.508 0.207 33,436.8 33,437.0 0.8763 13.70 33,450.52
Total 185,790.56∗ 249,454.7 730.44 185,790.55
∗Total demand (sum of 𝐺𝑝𝑞 on 𝑝 and 𝑞) is 185,790.55.

(iii) 𝑛𝑘𝑞 = 𝑒
−𝜃𝑘𝑞 , shadow prices of the parking rationing

rates.

It is clear that, given the parking flow 𝑔𝑝𝑘𝑞, it is easy to
calculate 𝐺𝑘 occupation rates of the parking lots, and the 𝐺𝑘𝑞
consumption of reserved (rationed) parking: 𝐺𝑘 = ∑𝑝𝑞 𝑔𝑝𝑘𝑞,
𝐺𝑘𝑞 = ∑𝑝 𝑔𝑝𝑘𝑞. Table 2 shows occupation rates for each
parking zone computed for the last iteration along with the
shadow prices. Table 3 presents the aggregate gaps between
parking occupation rates and capacity (∑𝑘 |𝐶𝑘 − 𝐺𝑘|) as well
as between consumption rates and the parking rationing
(∑𝑘𝑞 |𝐹𝑘𝑞 − 𝐺𝑘𝑞|) for 100 successive iterations. Consecutive
decreases in the gaps in Table 3 indicate the algorithm’s
convergence behavior. Furthermore, an error index based
on the gap between parking capacity and occupation is
defined in Table 3 as %Err 𝑘 = ∑𝑘 |𝐶𝑘 − 𝐺𝑘|/ ∑𝑘 𝐶𝑘. Figure 2
graphically illustrates rapid decrease of the error index over
100 successive iterations. As shown in Table 3 and Figure 2,
after only four iterations and 1.63 minutes, the percent error
falls below 5%. While the running time for the entire 100
iterations is 36.15 minutes, one can terminate the process
earlier when a satisfactory solution is obtained. For instance,
at iteration 35 only after 11.15 minutes, the error index falls
below 1% which is empirically an acceptable accuracy in
transportation practices [40].

It is worth noting that the way the case study was
populated results in more computation time than would
likely be required in an actual application. In reality, not all
the parking spaces would be considered by the drivers. For
instance, the drivers might consider only the parking zones
within 500meters of their final destinations [2, 22]. One can
filter the available parking using such criteria and reduce the
case size and computation time dramatically.

5.3. Interpretation of the Algorithm’s Outputs. Themethodol-
ogy described in this study is meant to provide insight for
planners or managing authorities to address critical parking
related challenges. The shadow prices can be used for this
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Figure 2: Convergence of the algorithm over 100 successive itera-
tions.

purpose because they provide key information. Two sets
of shadow prices related to the parking supply side can be
interpreted: 𝑏𝑘 = 𝑒

−𝛽𝑘 and 𝑛𝑘𝑞 = 𝑒
−𝜃𝑘𝑞 . Table 2 presents

shadow prices in exponential form for the parking zones (𝑏𝑘).
It is clear that, after 100 iterations, despite having total parking
capacity equal to parking demand, parking zone 5 has not
been fully occupied. Zone 5 has a shadow price of 1 (𝑏5 = 1),
parking capacity of 27,585, and parking utilization of only
27,220. For the remaining parking zones we have 0 < 𝑏𝑘 < 1
or∞ > 𝛽𝑘 > 0. A smaller 𝑏𝑘 indicates a higher shadow price
or beta (𝛽𝑘) which implies that the corresponding parking
zone is more attractive for the drivers and the competition
to occupy spaces is more intense than other parking zones.
This interpretation of the beta is a key insight into answers
for a variety of other questions, such as the following. (i)
Where is the most important parking shortage? This can be
identified as the area in which the beta is the highest. (ii)
How many additional parking spaces can be provided? Extra
parking spaces can be added to a parking facility whose beta
is greater than zero until the beta reaches zero. It is important
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Table 3: Convergence result of 100 successive iterations.

Itr∗ ∑
𝑘

󵄨󵄨󵄨󵄨𝐶𝑘 − 𝐺𝑘
󵄨󵄨󵄨󵄨 ∑

𝑘𝑞

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘𝑞 − 𝐺𝑘𝑞

󵄨󵄨󵄨󵄨󵄨
%Err 𝑘 Time (min) Itr ∑

𝑘

󵄨󵄨󵄨󵄨𝐶𝑘 − 𝐺𝑘
󵄨󵄨󵄨󵄨 ∑

𝑘𝑞

󵄨󵄨󵄨󵄨󵄨
𝐹𝑘𝑞 − 𝐺𝑘𝑞

󵄨󵄨󵄨󵄨󵄨
%Err 𝑘 Time (min)

1 89,840.1 98,914.2 48.36% 0.35 51 1,364.5 67,151.8 0.73% 16.23
2 33,680.5 98,822.6 18.13% 0.68 52 1,337.2 67,105.8 0.72% 16.55
3 20,022.0 86,017.7 10.78% 1.00 53 1,323.4 67,058.6 0.71% 16.87
4 11,357.4 82,032.7 6.11% 1.30 54 1,296.2 67,014.0 0.70% 17.17
5 8,261.8 77,170.0 4.45% 1.63 55 1,283.8 66,968.2 0.69% 17.48
6 7,877.1 76,534.6 4.24% 1.97 56 1,258.8 66,925.1 0.68% 17.80
7 7,027.6 75,475.1 3.78% 2.27 57 1,245.7 66,882.5 0.67% 18.10
8 6,455.0 74,640.9 3.47% 2.60 58 1,222.8 66,844.1 0.66% 18.45
9 5,896.8 74,155.3 3.17% 2.90 59 1,210.3 66,805.2 0.65% 18.75
10 5,397.9 73,463.9 2.91% 3.22 60 1,190.5 66,768.4 0.64% 19.07
11 5,029.7 73,073.7 2.71% 3.55 61 1,176.7 66,731.1 0.63% 19.40
12 4,604.6 72,524.4 2.48% 3.87 62 1,158.7 66,695.5 0.62% 19.80
13 4,391.9 72,198.4 2.36% 4.17 63 1,144.0 66,660.0 0.62% 20.23
14 4,016.2 71,753.5 2.16% 4.50 64 1,127.4 66,627.3 0.61% 20.60
15 3,891.1 71,484.1 2.09% 4.82 65 1,111.5 66,593.4 0.60% 21.05
16 3,560.8 71,115.7 1.92% 5.12 66 1,096.0 66,560.8 0.59% 21.50
17 3,491.7 70,915.1 1.88% 5.45 67 1,080.4 66,527.6 0.58% 21.93
18 3,197.4 70,610.5 1.72% 5.75 68 1,065.3 66,495.9 0.57% 22.37
19 3,153.5 70,422.0 1.70% 6.07 69 1,050.2 66,465.8 0.57% 22.80
20 2,901.4 70,158.3 1.56% 6.38 70 1,037.1 66,437.3 0.56% 23.23
21 2,870.6 69,999.2 1.55% 6.70 71 1,024.3 66,408.0 0.55% 23.67
22 2,682.0 69,777.4 1.44% 7.00 72 1,011.8 66,379.9 0.54% 24.10
23 2,641.8 69,636.3 1.42% 7.32 73 999.3 66,351.7 0.54% 24.53
24 2,500.8 69,445.6 1.35% 7.67 74 987.2 66,325.2 0.53% 24.97
25 2,453.9 69,324.1 1.32% 7.97 75 974.9 66,299.2 0.52% 25.38
26 2,346.6 69,146.4 1.26% 8.28 76 962.7 66,274.5 0.52% 25.82
27 2,290.3 69,034.3 1.23% 8.63 77 951.0 66,250.5 0.51% 26.27
28 2,211.5 68,889.0 1.19% 8.93 78 939.9 66,227.2 0.51% 26.70
29 2,152.9 68,798.3 1.16% 9.25 79 928.7 66,204.9 0.50% 27.13
30 2,097.5 68,667.9 1.13% 9.58 80 917.5 66,182.4 0.49% 27.57
31 2,034.9 68,583.5 1.10% 9.88 81 906.2 66,160.0 0.49% 28.00
32 2,001.4 68,466.1 1.08% 10.20 82 894.9 66,137.6 0.48% 28.43
33 1,935.2 68,382.5 1.04% 10.53 83 883.8 66,115.7 0.48% 28.87
34 1,913.9 68,278.0 1.03% 10.85 84 872.7 66,093.8 0.47% 29.30
35 1,854.2 68,197.6 1.00% 11.15 85 861.8 66,072.4 0.46% 29.75
36 1,830.5 68,101.6 0.99% 11.50 86 851.0 66,051.0 0.46% 30.18
37 1,777.3 68,024.0 0.96% 11.80 87 840.3 66,030.1 0.45% 30.62
38 1,750.8 67,935.6 0.94% 12.12 88 829.9 66,010.2 0.45% 31.05
39 1,703.2 67,862.8 0.92% 12.45 89 820.2 65,991.2 0.44% 31.48
40 1,674.6 67,782.4 0.90% 12.75 90 811.1 65,972.3 0.44% 31.93
41 1,631.6 67,714.8 0.88% 13.05 91 802.1 65,953.8 0.43% 32.37
42 1,603.3 67,645.8 0.86% 13.38 92 793.3 65,935.0 0.43% 32.78
43 1,568.2 67,586.0 0.84% 13.68 93 784.5 65,917.1 0.42% 33.22
44 1,542.1 67,523.9 0.83% 14.00 94 775.9 65,899.0 0.42% 33.58
45 1,512.3 67,465.3 0.81% 14.32 95 767.3 65,881.9 0.41% 34.03
46 1,485.3 67,407.9 0.80% 14.65 96 759.1 65,865.5 0.41% 34.48
47 1,459.4 67,351.6 0.79% 14.97 97 751.6 65,850.8 0.40% 34.90
48 1,430.6 67,297.6 0.77% 15.28 98 744.6 65,836.1 0.40% 35.32
49 1,408.1 67,247.3 0.76% 15.60 99 737.5 65,821.6 0.40% 35.73
50 1,380.6 67,200.2 0.74% 15.92 100 730.4∗∗ 65,806.7∗∗ 0.39% 36.15
∗Itr: iteration number; 𝐶𝑘 and𝐺𝑘: capacity and occupation of parking zone “𝑘.” 𝐹𝑘𝑞 and 𝐺𝑘𝑞 are parking rationing and ration consumption of parking “𝑘” for
destination “𝑞”;%Err 𝑘 =∑𝑘 |𝐶𝑘 − 𝐺𝑘|/∑𝑘 𝐶𝑘.
∗∗Target values for∑𝑘 |𝐶𝑘 − 𝐺𝑘| and∑𝑘𝑞 |𝐹𝑘𝑞 − 𝐺𝑘𝑞| are 0.01 and 63,664.13, respectively.
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to note that any change in the supply side of an equilibrated
transport systemmust bemade by due diligence due to Braess
Paradox [41–43]. (iii) Alternatively, location attractiveness
can be adjusted through changing parking zone attractiveness
characteristics. For example fees can be managed to balance
demand among the parking locations. What is a fair parking
fee?The parking fees fed into the Logit parking choice model
can be adjusted until the betas for the parking facilities are
equalized. This represents a condition where all parking is
valued based on its relative value to drivers. (iv) Given an
underutilized on-street parking facility, how many parking
spaces can be reclaimed for other uses such as green spaces
or to create additional roadway capacity? One can reclaim
parking spaces until the beta becomes nonzero. (v) Is the city’s
parking system operating efficiently? If the betas across all the
parking facilities are equal, then the system is operating effi-
ciently. The degree to which the betas are unequal indicates
the extent of the system’s inefficiency. Betas greater than zero
indicate a parking shortage. Betas equal to zero mean that
there is parking surplus. (vi) Finally, the magnitude of the
betas can represent the difficulty of searching for and finding
a parking space. Bagloee et al. [10] suggested a convex and
nondecreasing function of beta for parking search time to
be considered in the parking utility functions. It is similar to
what Lam et al. [25] and Tsai and Chu [44] suggest.

Similarly, with respect to the shadow price of park-
ing rationing (𝜃𝑘𝑞 or theta): (i) parking spaces have been
reserved for various parking permit holders, neighborhood
businesses, or various parking durations (rationed). Is the
current rationing system efficient? The degree to which the
rationing is efficient can be evaluated by how close to equal
thetas are. (ii) How many parking spaces can be reserved for
various purposes? The number of reserved parking spaces
can be increased as long as the theta for both reserved and
nonreserved parking spaces is equal. (iii)What is a fair charge
for reserved parking? Reserved parking fees can be raised
until the theta for both reserved and nonreserved spaces
become even. (iv) Zoning authorities are beginning to shift
away from a philosophy of requiring a minimum number
of parking spaces for development based solely on land
use. They are beginning to consider development location
and the other existing parking supply [45]. What is the
appropriate parking requirement for a newdevelopment?The
development should provide as many parking spaces as it
takes to result in a zero theta.

6. Summary and Conclusions

We developed a model for heterogeneous parking planning
that addresses a variety of deficiencies identified in previous
studies. The parking choices are considered within the struc-
ture of a Logit model, taking advantage of available datasets
and rich literature. A mathematical programming problem is
introduced to explicitly consider parking capacities and park-
ing rationing constraints. Introduction of parking rationing
along with other constraints is a unique aspect of this study.
Consideration of parking rationing is intended to cover real
life situations including private parking, reserved parking,
different parking duration (short term or long term demand),

and VIP and disabled parking. A solution algorithm using
Successive Coordinate Descent was developed for the Logit-
based mathematical programming. The algorithm was tested
on an artificial but real-sized and challenging CBD case. The
results show the algorithm’s convergence.

The algorithm’s output includes shadowprices for parking
capacity and parking rationing constraints. The shadow
prices contain important information which is a key to
addressing a variety of parking issues, such as the location
of parking shortages, identification of fair parking charges,
and how many parking spaces can be dedicated to reserved
parking.

This study addresses some shortcomings in the current
state of parking modeling. Nonetheless it opens the door to
additional study topics. The impacts of parking shortages on
departure time have been echoed in the literature. As such
consideration of changes in departure times in the parking
choices and traffic assignment is a worthwhile investigation.
In the same spirit, it would also be interesting to extend the
methodology to accommodate dynamic changes in parking
demand to create a real-timemodel. (The dynamic changes in
the parking has been set as part of future works.The dynamic
aspects of transport modeling can be viewed under Dynamic
Traffic Assignment (DTA), which is still an evolving as well
as daunting subject. We here at Monash University have
embarked on developing the DTA for the city of Melbourne.
Hence we are mindful of the complexity of the dynamic
features. Therefore it is safe to say that when it comes to
parking modeling, the literature first needs to establish a
solid ground based on macro parking modeling. Once it is
achieved, then, other extensions such as dynamic changes
can be added. This paper is an attempt for the first phase,
i.e., a macro parking modeling, which is strongly felt missing
in the literature.) While the numerical test showed that
the methodology is able to address large-size cases, the
application to real datasets has yet to be addressed.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] H. Yang, W. Liu, X. Wang, and X. Zhang, “On the morning
commute problem with bottleneck congestion and parking
space constraints,” Transportation Research B: Methodological,
vol. 58, pp. 106–118, 2013.

[2] P. Coppola, “A joint model of mode/parking choice with
elastic parking demand,” in Transportation Planning, pp. 85–
104, Springer, Berlin, Germany, 2002.

[3] G. N. Bifulco, “A stochastic user equilibrium assignment model
for the evaluation of parking policies,” European Journal of
Operational Research, vol. 71, no. 2, pp. 269–287, 1993.

[4] Z. S. Qian, F. E. Xiao, and H. M. Zhang, “The economics of
parking provision for the morning commute,” Transportation
Research A: Policy and Practice, vol. 45, no. 9, pp. 861–879, 2011.

[5] W. Liu, H. Yang, and Y. Yin, “Expirable parking reservations for
managing morning commute with parking space constraints,”



12 Mathematical Problems in Engineering

Transportation Research Part C: Emerging Technologies, vol. 44,
pp. 185–201, 2014.

[6] W. Liu, H. Yang, Y. Yin, and F. Zhang, “A novel permit scheme
for managing parking competition and bottleneck congestion,”
Transportation Research C: Emerging Technologies, vol. 44, pp.
265–281, 2014.

[7] H. Yang and X. Wang, “Managing network mobility with trad-
able credits,” Transportation Research Part B: Methodological,
vol. 45, no. 3, pp. 580–594, 2011.

[8] X. Zhang, H. Yang, and H.-J. Huang, “Improving travel effi-
ciency by parking permits distribution and trading,” Trans-
portation Research Part B: Methodological, vol. 45, no. 7, pp.
1018–1034, 2011.

[9] V. L. Makarov and A. M. Rubinov,Mathematical Theory of Eco-
nomic Dynamics and Equilibria, Springer Science & Business
Media, 2012.

[10] S. A. Bagloee, M. Asadi, and L. Richardson, “Methodology for
parking modeling and pricing in traffic impact studies,” Trans-
portation Research Record, vol. 2319, pp. 1–12, 2012.

[11] R. Arnott and E. Inci, “An integrated model of downtown
parking and traffic congestion,” Journal of Urban Economics, vol.
60, no. 3, pp. 418–442, 2006.

[12] R. Arnott and J. Rowse, “Modeling parking,” Journal of Urban
Economics, vol. 45, no. 1, pp. 97–124, 1999.

[13] M. Florian and M. Los, “Determining intermediate origin-des-
tination matrices for the analysis of composite mode trips,”
Transportation Research Part B: Methodological, vol. 13, no. 2,
pp. 91–103, 1979.

[14] M. Florian and M. Los, “Impact of the supply of parking spaces
on parking lot choice,” Transportation Research B, vol. 14, no.
1-2, pp. 155–163, 1980.

[15] M. Hudson and N. Raha, “A city-wide, capacity-constrained
parking choice model,” in Proceedings of the 2010 European
Transport Conference, Glasgow, UK, November 2010.

[16] Z.-C. Li, H.-J. Huang, W. H. K. Lam, and S. C. Wong, “A
model for evaluation of transport policies in multimodal net-
works with road and parking capacity constraints,” Journal of
Mathematical Modelling and Algorithms, vol. 6, no. 2, pp. 239–
257, 2007.

[17] P. Sattayhatewa and R. L. Smith Jr., “Development of parking
choice models for special events,” Transportation Research
Record, vol. 1858, pp. 31–38, 2003.

[18] D. A. Hensher and J. King, “Parking demand and responsive-
ness to supply, pricing and location in the Sydney central busi-
ness district,” Transportation Research A: Policy and Practice,
vol. 35, no. 3, pp. 177–196, 2001.

[19] S. Hess and J. W. Polak, Mixed Logit Modelling of Parking Type
Choice Behaviour Transportation Statistics (77–102), JD Ross
Publishing, 2009.

[20] J. D.Hunt and S. Teply, “A nested logitmodel of parking location
choice,” Transportation Research Part B, vol. 27, no. 4, pp. 253–
265, 1993.

[21] Y. Shiftan and R. Burd-Eden, “Modeling response to parking
policy,” Transportation Research Record, vol. 1765, pp. 27–34,
2001.

[22] H. Tatsumi, “Modeling of parking lot choice behavior for traffic
simulation,” Journal of the Eastern Asia Society for Transporta-
tion Studies, vol. 5, pp. 2077–2091, 2003.

[23] D. Van der Goot, “A model to describe the choice of parking
places,” Transportation Research A: General, vol. 16, no. 2, pp.
109–115, 1982.

[24] W. Young, “Modeling parking,” in Handbook of Transport
Modelling, D. A. Hensher and K. J. Button, Eds., Elsevier,
Amsterdam, The Netherlands, 2000.

[25] W.H. K. Lam, Z.-C. Li, H.-J. Huang, and S. C.Wong, “Modeling
time-dependent travel choice problems in road networks with
multiple user classes and multiple parking facilities,” Trans-
portation Research Part B: Methodological, vol. 40, no. 5, pp.
368–395, 2006.

[26] K.Martens and I. Benenson, “Evaluating urban parking policies
with agent-based model of driver parking behavior,” Trans-
portation Research Record, vol. 2046, pp. 37–44, 2008.

[27] R. Petiot, “Parking enforcement and travel demand manage-
ment,” Transport Policy, vol. 11, no. 4, pp. 399–411, 2004.

[28] T. Larsson and M. Patriksson, “An augmented lagrangean dual
algorithm for link capacity side constrained traffic assignment
problems,”TransportationResearchB, vol. 29, no. 6, pp. 433–455,
1995.

[29] T. Larsson and M. Patriksson, “Side constrained traffic equi-
libriummodels-analysis, computation and applications,” Trans-
portationResearch Part B:Methodological, vol. 33, no. 4, pp. 233–
264, 1999.

[30] J. G. Wardrop, “Road paper. Some theoretical aspects of road
traffic research,” Proceedings of the Institution of Civil Engineers,
vol. 1, no. 3, pp. 325–362, 1952.

[31] Z. Li, H. Huang, H. K. L. William, and S. Wong, “Optimization
of time-varying parking charges and parking supply in net-
works withmultiple user classes andmultiple parking facilities,”
Tsinghua Science & Technology, vol. 12, pp. 167–177, 2007.

[32] X. Zhang, H.-J. Huang, and H. M. Zhang, “Integrated daily
commuting patterns and optimal road tolls and parking fees in
a linear city,” Transportation Research B:Methodological, vol. 42,
no. 1, pp. 38–56, 2008.

[33] Z. S. Qian, F. E. Xiao, and H. M. Zhang, “Managing morning
commute traffic with parking,” Transportation Research Part B:
Methodological, vol. 46, no. 7, pp. 894–916, 2012.

[34] K. Dieussaert, K. Aerts, T. Steenberghen, S. Maerivoet, and K.
Spitaels, “SUSTAPARK: an agent-based model for simulating
parking search,” in Proceedings of the AGILE International Con-
ference onGeographic Information Science, Hannover, Germany,
2009.

[35] J. de Dios Ortuzar and L. G. Willumsen, Modelling Transport,
Wiley, 1994.

[36] H. Spiess,A Logit Parking ChoiceModel with Explicit Capacities,
EMME/2 Support Center, Aegerten, Switzerland, 1996.

[37] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming,
vol. 116, Springer, New York, NY, USA, 2008.

[38] S. A. Bagloee and C. G. Reddick, “A logit model for budget allo-
cation subject to multi budget sources,” International Journal of
Strategic Decision Sciences, vol. 2, no. 3, pp. 1–17, 2011.

[39] L. M. Leemis and S. K. Park, Discrete-Event Simulation: A First
Course, Pearson Prentice Hall, Upper Saddle River, NJ, USA,
2006.
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