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Backtracking search algorithm (BSA) is a relatively new evolutionary algorithm, which has a good optimization performance
just like other population-based algorithms. However, there is also an insufficiency in BSA regarding its convergence speed and
convergence precision. For solving the problem shown in BSA, this article proposes an improved BSA named COBSA. Enlightened
by particle swarm optimization (PSO) algorithm, population control factor is added to the variation equation aiming to improve the
convergence speed of BSA, so as to make algorithm have a better ability of escaping the local optimum. In addition, enlightened by
differential evolution (DE) algorithm, this article proposes a novel evolutionary equation based on the fact that the disadvantaged
group will search just around the best individual chosen from previous iteration to enhance the ability of local search. Simulation
experiments based on a set of 18 benchmark functions show that, in general, COBSA displays obvious superiority in convergence
speed and convergence precision when compared with BSA and the comparison algorithms.

1. Introduction

In the rapid development of science and technology today,
people set a high demand for optimization algorithms, and
evolutionary algorithms are popular with people owing to
its simple structure and less solving parameters, such as
particle swarm optimization (PSO) algorithm [1], ant colony
optimization (ACO) algorithm [2], and genetic algorithm
(GA) [3]. However, a higher request is set for optimization
algorithms when the multidimensional, multimodal, and
nonlinear problems arise in academic research. So many
scholars presented some modified evolutionary algorithms
aiming to find the best values for system’s parameters
in different circumstances in recent decades. By taking
advantage of the optimum solution, literature [4] mends
the search equation when PSO algorithm operates aiming
to accelerate convergence speed. Enlightened by biological
evolution, literature [5] developed differential evolution (DE)
algorithm, and an adaptive evolutionary strategy based on
DE is proposed in literature [6] to raise efficiency of DE
algorithm. Differential search algorithm (DSA), equipping

the new crossover and mutation strategy, is revealed in
the literature [7]. Learning from natural system, literatures
[8–10] put forward artificial bee colony (ABC) algorithm
enlightened by the natural behavior of bee, cuckoo search
(CS) algorithm enlightened by flight behavior of cuckoo,
and bat algorithm (BA) enlightened by foraging behavior
of bat. Besides, these evolutionary algorithms have found
increasingly wide utilization in many fields successfully, such
as blind source separation [11], hyperspectral unmixing [12],
and image processing [13].

BSA is such a novel computation method evolved by
Civicioglu in 2013 [14]. BSA employs fewer parameters and
has a simpler process that is efficient, fast, and able to handle
various conditions and that makes it more easily to accept
different complex problems. Literature [14] demonstrates that
BSA has similar superiority to other evolutionary algorithms
with strength of global search. Owing to its simplicity and
high-efficiency, BSA has caught many scholars’ attention [15,
16].

However, there are also some challenging complications
arisen in BSA. For example, the convergence speed of BSA
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is typically slower than these typical evolutionary algorithms
(DE and PSO) in the early stage as a result of ignoring
the importance of optimal individual that makes BSA dif-
ficult to achieve the satisfactory outcome when handling
some complex problems.Therefore, accelerating convergence
speed and improving convergence precision have become two
relatively valuable and significative targets in BSA’s study. A
number of modified BSA aiming to reach above two targets
have, hence, been put forward since its appearance. For
example, literature [17] focuses on improving convergence
precision by proposing the optimal evolution equation and
optimal search equation but brings extra evaluations. Lit-
eratures [18, 19] focus on convergence precision and globe
convergence by employing variation coefficient and selection
mechanism but sacrifice iteration numbers as a result. An
improved BSA is proposed in this article following the
purpose of accelerating convergence speed and improving
convergence precision when iteration numbers are lower.
Firstly, to accelerate the convergence speed of population
in the early stage, population control factor is added to the
evolution equation. What is more, an evolutionary equation
based on the fact that the disadvantaged groupwill search just
around the best individual chosen from previous iteration
is proposed to enhance the ability of local search. Simula-
tion experiments based on 18 benchmark functions show
that the improved algorithm can improve performance and
productivity of BSA effectively and is a feasible evolutionary
algorithm.

The rest of this article is arranged as follows. This article
will describe BSA briefly in the second section; the improved
algorithmwill be introduced in the third section; in the fourth
section, the simulation results will be presented; the fifth
section is the discussion about the variance 𝑞 appearing in the
first strategy; in the last, this article will draw a conclusion.

2. Backtracking Search Algorithm

Similar to other evolutionary algorithms, BSA is also a
population-based evolutionary algorithm designed to find
a global optimum; the solving process can be described by
dividing its operation into five steps as is done in other
evolutionary algorithms: population initialization, histor-
ical population setting, population evolution, population
crossover, and greedy selection. Specific steps of the basic
BSA can be described as follows.

2.1. Population Initialization. 𝑁 numbers of randomly
emerged 𝐷-dimensional vectors make up the initial solution
of BSA. And the random initialization method can be
summarized as follows:

Pop𝑖,𝑗 ∼ 𝑈 (low𝑗, up𝑗) , (1)

where 𝑖 ∈ [1, 2, 3, . . . , 𝑁] and 𝑗 ∈ [1, 2, 3, . . . , 𝐷]; low and
up stand for the lower and upper bound of search space,
respectively; 𝑈 is the uniform distribution function.

2.2. Historical Population Setting. BSA chooses the previous
population randomly by appointing the Oldpop as history

population employed with the intent of controlling the search
space and remembers the position until the Oldpop gets
changed. What makes BSA have memory function is two
numbers 𝑎 and 𝑏 generated randomly when the cycle starts.
If 𝑎 < 𝑏, then Oldpop = Pop; meanwhile, the order of the
individual in Oldpop will be arrayed randomly.

2.3. Population Evolution. At this stage, BSAwill generate the
new population, making full use of its previous experiment
based on Pop and Oldpop; evolutionary equation is as
follows:

𝑀 = Pop + 𝐹 ∗ (Oldpop − Pop) , (2)

where 𝐹𝑖 = 3 ∗ rand, 𝑖 ∈ [1, 2, 3, . . . , 𝑁] and rand is a random
number in the rang [0, 1]; 𝐹 is a parameter, controlling range
of the search direction matrix (Oldpop − Pop).
2.4. Population Crossover. The new population crossover
strategy different from DE shown in BSA is that the mixed
proportion parameter is employed to control the numbers of
cross particle. Equation is given as follows:

𝑇𝑖,𝑗 = {{{
𝑀𝑖,𝑗, map𝑖,𝑗 = 1,
Pop𝑖,𝑗, map𝑖,𝑗 = 0, (3)

where map is𝑁×𝐷matrix which only contains 0 and 1, and
its initial value is 1. Its specific calculation formula is given as
follows:

map𝑖,𝑢(1:[𝑚𝑟∗rand∗𝐷]) = 0, 𝑎 < 𝑏,
map𝑖,randi(𝐷) = 0, 𝑎 ≥ 𝑏, (4)

where randi is an integer selected from 0 to 𝐷 randomly;𝑚𝑟
is a mixed proportion parameter, and𝑚𝑟 = 1; rand is chosen
randomly in the range [0, 1], and so do 𝑎 and 𝑏; 𝑢 is an integer
vector sorted randomly, and 𝑢 ∈ [1, 2, 3, . . . , 𝐷]. The map in
the crossover stage controls the numbers of individual that
will mutate by using [𝑚𝑟∗rand∗𝐷] and randi(𝐷). When 𝑎 <𝑏, map𝑖 is a two-element vector which containsmany random
positions; otherwise, a vector just containing an element “0”
will be shown in the map𝑖. Some individuals generated in
the crossover stage can overflow the limited search space as a
result of crossover strategy. For this, a boundary control to the
individuals beyond the search space will be conducted using
(1) again.

2.5. Greedy Selection. When BSA finishes above steps, the
new population 𝑇𝑖 that have better position than original
population Pop𝑖 are used to update the Pop𝑖 based on greedy
selection and become new candidate solution. Meanwhile,
if the best individual of new population has a lower fitness
than optimumobtained from previous iterations, the original
one will be replaced to be the new optimum. Pop𝑖 and
optimum will remain when conditions mentioned above are
not satisfied.
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3. The Improved Backtracking
Search Algorithm

In the above part, BSA is introduced briefly, and it can be
known easily that BSA equipping a single control parameter,
a trial population (Oldpop), and a simple structure has
a good ability to explore search space in the early stage.
However, it is a common phenomenon for evolutionary
algorithms falling into local optimum easily when facing the
multimodal and nonlinear problems, and so does BSA. In
this regard, an improved BSA based on population control
factor and optimal learning strategy enlightened by PSO and
DE, respectively, is presented in this article. On the one hand,
population control factor that regulates search direction of
population is employed when BSA operates; on the other
hand, disadvantaged group is guided to have optimal learning
with the help of the optimal individual of the previous
iteration. Specific improvements are as follows.

3.1. Improved BSA Based on Population Control Factor
(CBSA). Shortage shown in the BSA is that the Pop in the
variation equation (2) has stochastic character, which makes
BSA lack memory about position of population when the
trend of expanding search space and exploring the new
search area follows. Namely, Pop has the trend of global
optimization.Therefore, we can take global search firstly and
local fine search later into account. Enlightened by literature
[20], inertia weight is employed to the evolutionary equation
(2), and the new evolutionary equation is as follows:

𝑀 = 𝑤 ∗ Pop + 𝐹 ∗ (Oldpop − Pop) , (5)

where 𝑤 is a variable parameter, changing with the increase
of iteration numbers linearly. So the target we just referred
above can be reached on condition that the algorithm has
a stronger ability of global search when 𝑤 is larger, and the
algorithm tends to local search when 𝑤 is smaller. Thus,
we can employ a global coefficient adaptively to improve
the search accuracy and search efficiency when facing some
complex optimization problems. But, every coin has two
sides. This strategy cannot reflect the actual optimization
search process when the algorithm we just proposed faces
some nonlinear problems as a result of linearity shown in 𝑤,
so this article presents the following search equation again:

𝑀 = 𝑚 ∗ 𝑤 ∗ Pop + 𝐹 ∗ (Oldpop − Pop) , (6)

where 𝑚 is a 𝑁 × 𝐷 matrix and the elements in matrix 𝑚
fit normal distribution following the condition that mean is𝑝 = 1 while variance is 𝑞 = 0.3. Thus, a disturbance will
be produced to (𝑤 ∗ Pop) to help algorithm escape the local
optimumwhen algorithm handles some nonlinear problems.
In the last, the final evolution equation is summarized as

𝑀 = 𝑐 ∗ Pop + 𝐹 ∗ (Oldpop − Pop) , (7)

where 𝑐 = 𝑚 ∗ 𝑤, named population control factor.
The above evolutionary equation can not only improve the
convergence speed with the help of 𝑤 but also enhance the
ability of escaping the local optimum with the help of 𝑚.

New individual will
appear in the optimal
solution nearby in a
high probability

New individual will
be away from the
optimal solution in
a small probability

−4 −2−8 6 80 2 4−6

Figure 1: Standard normal distribution.

Based on simulation experiments, it is proved strongly that
the improved algorithm has a great performance on the
convergence speed.

3.2. Improved BSA Based on Optimal Learning Strategy
(OBSA). Another shortage shown in BSA is that BSA does
not acquire enough experience, taking full advantage of the
best current individual, from DE. Besides, it is important
for evolutionary algorithms to find a balance between global
search and local search. It can be known that BSA, in focus
on global optimization with (2), displays a poor ability of
local search, because it ignores the importance of optimum
individual.Theoptimum individual in the current population
is very meaningful source that can be used to improve
local search. In this regard, enlightened by literature [5]
and literature [21], this article proposes the following search
equation:

V𝑖,𝑗 = 𝑥best,𝑗 + 𝑚 ∗ Pop𝑖,𝑗, (8)

where 𝑚 = 3 ∗ randn, 𝑥best,𝑗 is the optimum solution
in the current population, and randn is standard normal
distribution. Obvious observation can be acquired from
Figure 1 that the new individual dominated by (8) can be
random enough for local search owing a high probability that
the new individual will appear around the best individual.
Namely, the evolutionary equation described by (8) is good
at local search but poor at global search.

3.3. Improved BSA Based on Population Control Factor and
Optimal Learning Strategy (COBSA). With purpose of solv-
ing the shortage of slow convergence speed in the early
stage and low convergence precision in the late stage shown
in BSA, an improved BSA based on population control
factor and optimal learning strategy in combination with
Sections 3.1 and 3.2 is presented in this article. The improved
BSAnamedCOBSAproduces the newpopulation by employ-
ing (7), and optimal learning strategy based on (8) will be
applied to the disadvantaged group that has a worse behavior
than previous population. The specific steps of the COBSA
are given as follows.

Step 1. Initialize the population Pop and Oldpop.
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Step 2. Generate two numbers 𝑎 and 𝑏 randomly, if 𝑎 < 𝑏,
Oldpop = Pop, and Oldpop will be arrayed randomly later.

Step 3. Produce a new population on the basis of initial
population by employing (7).

Step 4. Generate cross matrix map by using (4).

Step 5. Take cross strategy through (3).

Step 6. Initialize the individual that is out of boundary.

Step 7. Seek the value of the population, and disadvantaged
group is guided to have optimal learning by employing (8).

Step 8. Select the optimal population according to the greedy
selection mechanism.

Step 9. Judge whether the cyclemeets the target; if not, return
to Step 2.

Step 10. Output optimal solution.

4. Experiment and Result Analysis

In order to verify effectiveness of the improved algorithm
proposed in this article, COBSA is applied to minimize a set
of 18 benchmark functions commonly used in optimization
algorithms. Table 1 presents in detail function form, search
space, and function dimension used for the evolutionary
algorithms in the tests. Some problems will arise when
COBSA operates owing to the different characters shown in
the 18 benchmark functions. 𝑓1∼𝑓5, 𝑓11∼𝑓13, and 𝑓17 are
unimodal and continuous functions. 𝑓6∼𝑓8, 𝑓10, 𝑓14, 𝑓16,
and 𝑓18 are multipeak and the number of local minimum
values will increase obviously when dimension𝐷 gets larger.𝑓9 is the Rosenbrock function which is unimodal when 𝐷 =2 and 3, but numerous local minimum values will arise when
problem dimension is high [22].𝑓15 is the three-hump camel
function in 𝐷 = 2, having three local minimum values. This
article adjusts the form of some functions for convenience
to compare when different versions in different literatures
shown in these functions are considered.

Enlightened by literatures [23–25], the followingmethods
are designed to evaluate the performance of COBSA: (1)
convergence performance in fixed iteration; (2) iteration
performance in fixed precision; (3) comparison algorithms
employed to compare with COBSA; (4) statistical test based
on the Wilcoxon Signed-Rank Test used to analyse the
property of COBSA and comparison algorithms.

The parameters of algorithm used in the evaluation
methods (1), (2), (3), and (4) are listed as follows: the
population size is 30, the maximum cycle of times to be
evaluated for each benchmark functions is 1000, and the final
result is the average value based on 20 independent running
times.

4.1. Convergence Performance in Fixed Iteration. In this
section, in order to analyse how much the population con-
trol factor and the optimal learning strategy contribute to

improve the performance of BSA, this article compares the
convergence speed and convergence precision of BSA, CBSA,
OBSA, and COBSA based on the 18 objective functions when
the maximum cycle is 1000. And the fitness of function takes
the logarithmof 10 to display the difference shown in different
strategy more obviously.

Important observation on convergence speed and con-
vergence precision of different algorithms can be obtained
from the result displayed in Figure 2. A better performance
on convergence speed shown in CBSA is displayed when
BSA works under the same condition, which implies the
efficiency of evolution equation (7) powerfully. It also can be
obtained from Figure 2 that OBSA has better convergence
precision than that of BSA in the late stage, which shows the
correctness of search equation (8) proposed in Section 3.2.
Meanwhile, we can learn that the COBSA in combination
with CBSA and OBSA, displaying faster speed and higher
precision in Figure 2, has a more obvious influence on the
performance of BSA when compared with BSA, CBSA, and
OBSA.

4.2. Iteration Performance in Fixed Precision. In this section,
the performance of each algorithm depended on the itera-
tion numbers when evolution precision which is limited is
employed to make a comparison. All the algorithms have
been run 20 times independently based on 18 objective
functions. For each function, the current cycle will stop
either when the precision is less than the limitation given in
Table 2 or when the maximum cycle is satisfied. The results,
including BSA, CBSA, OBSA, and COBSA, are displayed in
Table 2 in terms of min, max, mean, SR, and EI. Specific
expression of each parameter we just mentioned is as follows:
the success rate (SR) = numbers of achieving target precision÷ total numbers of experiment; expected iterations (EI)
= the numbers of particle × average iteration numbers ÷
success rate. And “∞” appearing in Table 2 indicates that the
expected iterations are infinite.

An interesting result is that BSA does not meet the target
precision for all functions except Sumpower 𝑓3, and the SR
of BSA is just 0.15 on function Sumpower 𝑓3 when that of
CBSA, OBSA, and COBSA is 1. Besides, for other functions,
a higher SR and less EI are displayed when CBSA and OBSA
are compared with BSA, while COBSA has 100% success rate
for all functions with least expected iteration. The iteration
performance in fixed precision in this section also proves the
superiority of COBSA.

4.3. Experiment Based on Comparison Algorithms. In this
section, some relatively new evolutionary algorithms evolv-
ing in recent decades are employed to compare with COBSA.
ABC (limit = 100), MABC (limit = 100), BA (𝐴 = 0.5, 𝑟 = 0.5,𝑓max = 2, 𝑓min = 0, 𝛼 = 0.9, and 𝛾 = 0.9), DSA, and BSA
are included. The result is judged in terms of mean, standard
deviation (std) of the solution obtained from 20 independent
tests.

As it can be obtained from Table 3, COBSA offers a
higher convergence precision on almost all functions while
the stander deviation of COBSA is also much smaller than
that of the comparison algorithms. In particular, COBSA can
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Table 1: Test function.

Function Function expression Dim Search space

Sphere 𝑓1 𝑓(𝑥) = 𝑛∑
𝑖=1

𝑥2𝑖 30 [−100, 100]
Sumsquare 𝑓2 𝑓(𝑥) = 𝑛∑

𝑖=1

𝑖𝑥2𝑖 60 [−10, 10]
Sumpower 𝑓3 𝑓(𝑥) = 𝑛∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨𝑖+1 60 [−1, 1]
Schwefel2.22 𝑓4 𝑓(𝑥) = 𝑛∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 +
𝑛∏
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 100 [−10, 10]
Exponential 𝑓5 𝑓(𝑥) = exp(0.5 ∗ 𝑛∑

𝑖=1

𝑥𝑖) − 1 60 [−1.28, 1.28]
Alpine 𝑓6 𝑓(𝑥) = 𝑛∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 sin (𝑥𝑖) + 0.1𝑥𝑖󵄨󵄨󵄨󵄨 60 [−10, 10]
Rastrigin 𝑓7 𝑓(𝑥) = 𝑛∑

𝑖=1

(𝑥2𝑖 − 10 cos 2𝜋𝑥𝑖) + 10 100 [−100, 100]
Griewank 𝑓8 𝑓(𝑥) = 14000

𝑛∑
𝑖=1

(𝑥𝑖)2 − 𝑛∏
𝑖=1

cos( 𝑥𝑖√𝑥𝑖) + 1 60 [−600, 600]
Rosenbrock 𝑓9 𝑓(𝑥) = 𝑛−1∑

𝑖=1

[100 (𝑥2𝑖 − 𝑥𝑖+1)2 + (𝑥𝑖 − 1)2] 30 [−30, 30]
Ackley 𝑓10 𝑓 (𝑥) = −20 exp(−0.2√ 1𝑛

𝑛∑
𝑖=1

𝑥2𝑖) − exp(1𝑛
𝑛∑
𝑖=1

cos (2𝜋𝑥𝑖)) + 20 + 𝑒 60 [−32, 32]
R-H-Ellipsoid𝑓11 𝑓(𝑥) = 𝑛∑

𝑖=1

𝑖∑
𝑗=1

𝑥2𝑗 80 [−100, 100]

Schwefel1.2 𝑓12 𝑓(𝑥) = 𝑛∑
𝑖=1

( 𝑖∑
𝑗=1

𝑥𝑗)
2

10 [−30, 30]
Elliptic 𝑓13 𝑓(𝑥) = 𝑛∑

𝑖=1

(106)(𝑖−1)/(𝑛−1) 𝑥2𝑖 30 [−100, 100]

NCRastrigin𝑓14
𝑓(𝑥) = 𝑛∑

𝑖=1

(𝑦2𝑖 − 10 cos 2𝜋𝑦𝑖) + 10

𝑦𝑖 = {{{{{
𝑥𝑖, 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 < 12 ,
round(2𝑥𝑖)2 , |𝑥𝑖| ≥ 12

50 [−5.12, 5.12]

T-H camel 𝑓15 𝑓(𝑥) = 2𝑥21 − 1.05𝑥41 + 𝑥
6
16 + 𝑥1𝑥2 + 𝑥22 2 [−5, 5]

Schaffer 𝑓16 𝑓(𝑥) = ( 𝑛∑
𝑖=1

𝑥2𝑖)
0.25 (sin2 (50( 𝑛∑

𝑖=1

𝑥2𝑖)
0.1) + 1) 10 [−100, 100]

Powell 𝑓17 𝑓(𝑥) = 𝑛/4∑
𝑖=1

[(𝑥4𝑖−3 + 10𝑥4𝑖−2)2 + 5 (𝑥4𝑖−1 − 𝑥4𝑖)2 + (𝑥4𝑖−2 − 2𝑥4𝑖−1)4 + 10 (𝑥4𝑖−3 + 𝑥4𝑖)4] 70 [5, −4]

Weierstrass 𝑓18 𝑓 (𝑥) = 𝑛∑
𝑖=1

(𝑘max∑
𝑘=0

[𝑎𝑘 cos (2𝜋𝑏𝑘 (𝑥𝑖 + 0.5))]) − 𝑛𝑘max∑
𝑘=0

[𝑎𝑘 cos (2𝜋𝑏𝑘0.5)]
𝑎 = 0.5 𝑏 = 3 𝑘max = 20 60 [−0.5, 0.5]

find optimal solution when facing Rastrigin 𝑓7, Griewank𝑓8, NCRastrigin 𝑓14, and Weierstrass 𝑓18. However, in the
case of Rosenbrock 𝑓9, the convergence precision of COBSA
is worse compared to that of ABC and MABC, since ABC
is just one magnitude order higher when compared with
COBSA on Rosenbrock 𝑓9; the superiority of ABC and
MABC is not very obvious. Besides, COBSA displays a more
stable search process than ABC and MABC owing to a lower
stander deviation on Rosenbrock 𝑓9.

4.4. Experiment Based on Wilcoxon Signed-Rank Test. A
comparative method based on statistical analysis by using
Wilcoxon Signed-Rank Test is employed to evaluate the
performance of COBSA and comparison algorithms.

Table 4 displays the statistical results using the average
values based on 20 independent running times of COBSA
and comparison algorithms to handle the objective functions
in Table 1. The result presents that the COBSA displaying a
better statistical property successfully outperforms all of the
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Figure 2: Continued.
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Figure 2: Continued.
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Figure 2: Convergence performance in fixed iteration.
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Table 2: Iteration performance in fixed precision.

Function Limitation Algorithm Iterations Success rate Expected iterations
Min Max Mean

𝑓1 𝑒 − 24
BSA 1000 1000 1000 0 ∞
CBSA 845 925 877 1 26310
OBSA 870 1000 974 0.3 97400
COBSA 635 734 692 1 20760

𝑓2 𝑒 − 25
BSA 1000 1000 1000 0 ∞
CBSA 938 1000 971 0.95 30663
OBSA 720 1000 957 0.35 82028
COBSA 664 802 742 1 22260

𝑓3 𝑒 − 20
BSA 927 1000 993 0.15 198600
CBSA 334 442 381 1 11430
OBSA 211 353 288 1 8640
COBSA 159 259 223 1 6690

𝑓4 𝑒 − 17
BSA 1000 1000 1000 0 ∞
CBSA 844 981 877 1 26310
OBSA 791 1000 961 0.35 82371
COBSA 688 851 747 1 22410

𝑓5 𝑒 − 16
BSA 1000 1000 1000 0 ∞
CBSA 757 837 791 1 23730
OBSA 725 1000 952 0.5 57120
COBSA 613 755 675 1 20250

𝑓6 𝑒 − 18
BSA 1000 1000 1000 0 ∞
CBSA 913 1000 954 0.9 31800
OBSA 951 1000 993 0.2 148950
COBSA 711 830 784 1 23520

𝑓7 𝑒 − 5
BSA 1000 1000 1000 0 ∞
CBSA 561 646 599 1 17970
OBSA 250 541 453 1 13590
COBSA 354 488 422 1 12660

𝑓8 𝑒 − 7
BSA 1000 1000 1000 0 ∞
CBSA 477 558 529 1 15870
OBSA 329 615 465 1 13680
COBSA 247 469 411 1 12330

𝑓9 30

BSA 1000 1000 1000 0 ∞
CBSA 215 298 267 1 8010
OBSA 163 349 244 1 7320
COBSA 141 241 189 1 5670

𝑓10 𝑒 − 14
BSA 1000 1000 1000 0 ∞
CBSA 958 1000 979 0.45 65266
OBSA 830 1000 989 0.3 98900
COBSA 687 860 784 1 23520

𝑓11 𝑒 − 21
BSA 1000 1000 1000 0 ∞
CBSA 873 947 914 1 27420
OBSA 693 1000 927 0.9 30900
COBSA 629 816 710 1 21300

𝑓12 𝑒 − 14
BSA 1000 1000 1000 0 ∞
CBSA 892 1000 986 0.35 84514
OBSA 766 1000 883 0.9 29433
COBSA 532 710 624 1 18720
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Table 2: Continued.

Function Limitation Algorithm Iterations Success rate Expected iterations
Min Max Mean

𝑓13 𝑒 − 07
BSA 1000 1000 1000 0 ∞
CBSA 630 700 667 1 20010
OBSA 505 1000 821 0.85 28976
COBSA 524 611 566 1 16980

𝑓14 𝑒 − 05
BSA 1000 1000 1000 0 ∞
CBSA 590 790 679 1 20370
OBSA 286 960 608 1 18240
COBSA 424 556 492 1 14760

𝑓15 𝑒 − 80
BSA 1000 1000 1000 0 ∞
CBSA 869 1000 973 0.6 48650
OBSA 803 1000 991 0.45 66066
COBSA 763 893 786 1 10560

𝑓16 0.01

BSA 1000 1000 1000 0 ∞
CBSA 800 1000 948 0.7 40628
OBSA 596 1000 831 0.8 31162
COBSA 475 667 577 1 17310

𝑓17 𝑒 − 20
BSA 1000 1000 1000 0 ∞
CBSA 956 1000 990 0.5 59400
OBSA 658 1000 854 0.75 34160
COBSA 545 761 689 1 20670

𝑓18 0.01

BSA 1000 1000 1000 0 ∞
CBSA 256 323 294 1 8820
OBSA 172 1000 496 0.85 17505
COBSA 218 327 260 1 7800

comparison algorithms, based on theWilcoxon Signed-Rank
Test with a statistical significance value 𝛼 = 0.05.

According to the above analyses of Sections 4.1, 4.2, 4.3,
and 4.4, conclusion can be summarized safely as follows:
COBSA can improve the performance of BSA effectively, and
it is a feasible computation method.

5. The Choice of Variance 𝑞
In Section 3.1, the variance 𝑞 of matrix𝑚 plays an important
role in affecting the performance of CBSA. When 𝑞 takes
0, the matrix 𝑚 will lose its role. When 𝑞 increases from
0 to 1, the fluctuation to population Pop will also increase
correspondingly. However, a lower convergence speed will
be displayed owing to the obvious fluctuation to population
Pop when 𝑞 is large. Therefore, four objective functions
Sumsquare 𝑓2, Schwefel2.22 𝑓4, Alpine 𝑓6, and Ackley 𝑓10
are employed to analyse the effect of variance 𝑞. The fitness
of function takes the logarithm of 10 to show and observe the
curves obviously.

The result is better when the fitness of function is
smaller owing to the minimization process shown in these
functions. We can obtain from Figure 3 that variance 𝑞
affects the result obviously. CBSA plays a better performance
on Sumsquare 𝑓2 and Alpine 𝑓6 when 𝑞 = 0.3. When𝑞 takes 0.4, the fitness of Schwefel2.22 𝑓4 is better. For
Ackley 𝑓10, a lower precision is obtained when 𝑞 is around

0.3. Therefore, the selective variance 𝑞 is set at 0.3 in this
article.

Besides, we can also observe from Figure 3 that the
influence of matrix 𝑚 cannot be ignored. When variance 𝑞
is 0, the element in matrix𝑚 is 1, and as a result, the matrix𝑚
will lose its role. As it can be obtained from Figure 3, a better
performance is displayed when 𝑞 is around 0.3 rather than 0,
which proves the significance of matrix𝑚.
6. Conclusion

In order to solve the problem of slow convergence
speed and low convergence precision shown in BSA,
this article proposes an improved algorithm, named
COBSA, through employing population control factor to
the variation equation and helping disadvantaged group
have optimal learning. The experiments based on 18
benchmark functions prove that COBSA is an effective
evolutionary algorithm, and it is a feasible solution to
improve the convergence speed and convergence precision of
BSA.

However, COBSA displays a lower convergence precision
in the function Rosenbrock 𝑓9 when compared with ABC
and MABC. How to make algorithm display better perfor-
mance on functions Rosenbrock 𝑓9 is the next step in our
work. Besides, it is worth applying the algorithm proposed in
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Table 4: Statistical test based on Wilcoxon Signed-Rank Test (𝛼 = 0.05).
Algorithm versus COBSA 𝑝 value 𝑅+ 𝑅− Winner
ABC versus COBSA 2.50𝑒 − 03 16 155 COBSA
MABC versus COBSA 2.10𝑒 − 03 15 156 COBSA
DSA versus COBSA 1.96𝑒 − 04 0 171 COBSA
BSA versus COBSA 1.96𝑒 − 04 0 171 COBSA
BA versus COBSA 1.96𝑒 − 04 0 171 COBSA
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Figure 3: The influence of 𝑞.

this article to the blind source separation and hyperspectral
image processing.
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