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This paper presents a neural network for designing of a PID controller for suspension system. The suspension system, designed
as a quarter model, is used to simplify the problem to one-dimensional spring-damper system. In this paper, back propagation
neural network (BPN) has been used for determining the gain parameters of a PID controller for suspension system of automotive.
The BPN method is found to be the most accurate and quick. The best results were obtained by the BPN by Levenberg-Marquardt
algorithm training with 10 neurons in the one hidden layer. Training was continued until the mean squared error is less than 1𝑒−5.
Desired error value was achieved in the BPN, and the BPN was tested with both data used and not used for training. By training of
this network, it is possible to estimate the gain parameters of PID controller at any condition.The inputs of network are automotive
velocity, overshoot percentage, settling time, and steady state error of suspension system response. Also outputs of the net are the
gain parameters of PID controller. Resultant low relative error value of the ANN model indicates the usability of the BPN in this
area.

1. Introduction

Vehicle suspension serves as the basic function of isolating
passengers and the chassis from the roughness of the road
to provide a more comfortable ride. In other words, a
very important role of the suspension system is the ride
control. Due to developments in the control technology,
electronically controlled suspensions have gainedmore inter-
est. These suspensions have active components controlled
by a microprocessor. By using this arrangement, significant
achievements in vehicle response can be carried out. Selec-
tion of the controlmethod is also important during the design
process.The design of vehicle suspension systems is an active
research field in which one of the objectives is to improve
the passenger’s comfort through the vibration reduction
of the internal engine and external road disturbances [1–
3]. A design of a mixed suspension system (an actuator
in tandem with a conventional passive suspension) for the
axletree of a road vehicle based on a linear model with
4 degrees of freedom (dof) has been realized in [4]. The
authors proposed an optimal control law that was aimed at

optimizing the suspension performance while ensuring that
the magnitude of the forces generated by the two actuators
and the total forces applied between wheel and body never
exceeded the given bounds. Neural network (NN) controllers
parallel to McPherson strut-type independent suspensions
have been realized in [5].Themajor advantages of this control
method were its success, robust structure and the ability and
adaptation of using these types of controllers on vehicles.
Hac [6] applied optimal linear preview control on the active
suspensions of a quarter car model. An investigation of the
variation of vertical vibrations of vehicles using a radial
basis neural network (RBNN) has been presented in [7, 8].
The RBNN was employed to predict the desired values of
amplitude of acceleration for different road conditions such
as concrete, waved stone, block paved, and country roads.The
proposed neural system was also tested for different natural
frequencies and the ratios of damping. Amethodology for the
design of active/hybrid car suspension systems with the goal
to maximize passenger comfort (minimization of passenger
acceleration) was presented by Spentzas and Kanarachos
[9]. For this reason, a neural network (NN) controller was
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Figure 1: A quarter-car model of suspension system.

proposed, which corresponds to a Taylor series approxima-
tion of the (unknown) nonlinear control function and the
NN was due to the numerous local minima trained using a
semistochastic parameter optimization method. The use of
fuzzy-logic-based control for the vehicle-active suspension
systems with the two variables going to the fuzzy controller as
the active suspension velocity and deflection. The capability
of fuzzy logic to model the real-world situations has resulted
in its wider application in diverse fields as well. A fuzzy-logic-
based control for vehicle-active suspension has been pro-
posed and its capabilities for the improvement of ride comfort
and vehicle maneuverability are studied through a software
simulation. A control scheme of an active suspension system
using a quarter car model has been proposed by Kim and
Ro [10]. The authors have shown that due to the presence
of nonlinearities such as a hardening spring, a quadratic
damping force, and the “tire lift-off” phenomenon in a real
suspension system, it was very difficult to achieve the desired
performance using linear control techniques. To ensure
robustness for a wide range of operating conditions, a sliding
mode controller has been designed and compared with an
existing nonlinear adaptive control scheme in the literature.
The sliding mode scheme utilizes a variant of a sky-hook
damper system as a reference model which does not require
real-time measurement of road input. A neural scheme for
controlling was presented as a bus suspension system. The
suspension system, designed as a quarter busmodel, was used
to simplify the problem to a one-dimensional spring-damper
system.The proposed controller was such that the systemwas
always operating in a closed loop, which should lead to better
performance characteristics [11].

As seen from previous studies, the researcher used the
NN for control of suspension system, but in this study we
use the BP neural network to estimate a PID controller. Also
the constrains such as overshoot, settling time, and road
condition to design a PID controller for suspension system
with NN are not examined by other authors. To the authors’
best knowledge, no previous studies which cover all these
issues are available.

In this paper, a BP neural network was investigated
to estimate the gain parameters of PID controller for a
suspension system of automotive. The paper is organized in
the following manner. Section 2 contains a description of the
mathematical model and the problem statement. Section 3
recalls the artificial neural network. Section 4 proposes net-
work development. Simulation results and discussion of the
problem are given in Section 5, and finally Section 6 gives the
conclusions of this work.

2. Mathematical Model

A quarter-car suspension system shown in Figure 1 is used
to simulate the control system.The dynamic equations of the
suspension system are of the following form [12]:

𝑚
𝑠
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𝑠
= −𝑏
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(𝑧̇
𝑠
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𝑢
) − 𝑘
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𝑢
) + 𝑓
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𝑓
𝑎
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𝐿
𝐴
𝑃
, (3)

where𝑚
𝑠
,𝑚
𝑢
, 𝑘
𝑠
, 𝑘
𝑡
, 𝑏
𝑠
, and 𝑏

𝑡
denote the mass, the stiffness,

and the damping rate of the sprung and unsprung elements,
respectively. Variables 𝑧

𝑠
, 𝑧
𝑢
, and 𝑧

𝑟
are the displacements of

body, wheel, and road, respectively.
Also the system is equipped by a hydraulic actuator placed

between the sprung and unsprung masses to exert a force
𝑓
𝑎
between 𝑚

𝑠
and 𝑚

𝑢
. 𝑃
𝐿
and 𝐴

𝑃
are the fluid pressures in

the lower cylinder chamber of the actuator and piston area,
respectively. Several points are required to be noted;

(1) The above equations are linearized dynamic equations
at equilibrium point and the vehicle speed is constant.

(2) Variables 𝑧
𝑠
, 𝑧
𝑢
, and 𝑧

𝑟
are measured from the static

equilibrium position.

(3) The linearized dynamic behavior of tire through
interaction with the road is justified where the tire is
in contact with the road.

(4) The applied force on tire can be considered as a
disturbance force in the system.

Therefore,

𝑓dis = 𝑏𝑡 (𝑧̇𝑟 − 𝑧̇𝑢) + 𝑘𝑡 (𝑧𝑟 − 𝑧𝑢) , (4)

where 𝑓dis is an applied force on the tire from the road.
Equation (2) can be rewritten as

𝑚
𝑢
𝑧̈
𝑢
= 𝑏
𝑠
(𝑧̇
𝑠
− 𝑧̇
𝑢
) + 𝑘
𝑠
(𝑧
𝑠
− 𝑧
𝑢
) + 𝑓dis − 𝑓𝑎. (5)

Assume that all of the initial conditions are zero, so these
equations represent the situation when the wheel goes up a
bump. The dynamic equations above can be expressed in a
form of transfer functions by taking Laplace transform of the
above equations. When the disturbance input 𝑧

𝑟
was only
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Figure 2: (a) A biological nervous systems and (b) an artificial neuron model.

considered, 𝑓
𝑎
was set to zero. Thus, the transfer function
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(6)

When the control input 𝑓
𝑎
only was considered, 𝑧

𝑟
was set

to zero. Thus, the transfer function 𝐺
2
(𝑠) can be written as

follows:
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Δ
. (7)

In this context, it is assumed that the car experiences a
sinusoidal disturbance from the road, described by the
following equation:

𝑧
𝑟
(𝑡) = (0.01𝑚) sin (𝜔

𝑏
𝑡) , (8)

𝜔
𝑏
= 0.2909𝑣, (9)

where 𝑣 is velocity of car on km/ℎ, 𝜔
𝑏
is on rad/sec, and𝑚 is

total unsprung and sprung mass.
Assuming that each amplitude is completely decoupled

and controlled independently from other amplitudes, the
control input signal is given by

𝑓 (𝑡) = 𝐾
𝑃
𝑒 (𝑡) + 𝐾

𝐼
∫ 𝑒 (𝑡) 𝑑𝑡 + 𝐾

𝐷

𝑑𝑒 (𝑡)

𝑑𝑡
. (10)

In (10), 𝑒(𝑡) is the control error
𝑒 (𝑡) = 𝑦

𝑑
(𝑡) − 𝑦 (𝑡) , (11)

where 𝑦
𝑑
(𝑡) is the desired car amplitude of displacement and

𝑦(𝑡) is the current measured car amplitude. 𝐾
𝑃
is called the

proportional gain,𝐾
𝐼
the integral gain, and𝐾

𝐷
the derivative

gain.

3. Artificial Neural Networks

Artificial NNs are nonlinear mapping systems with a struc-
ture loosely based on principles observed in biological ner-
vous systems. In greatly simplified terms as can be seen from
Figure 2(a), a typical real neuron has a branching dendritic
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Figure 3: A layered feed-forward artificial NN.

tree that collects signals from many other neurons in a
limited area, a cell body that integrates collected signals and
generates a response signal (as well as manages metabolic
functions), and a long branching axon that distributes the
response through contacts with dendritic trees of many other
neurons. The response of each neuron is a relatively simple
nonlinear function of its inputs and is largely determined by
the strengths of the connections from its inputs. In spite of
the relative simplicity of the individual units, systems con-
taining many neurons can generate complex and interesting
behaviours.

An ANN shown in Figure 3 is very loosely based on these
ideas. In the most general terms, an NN consists of a large
number of simple processors linked byweighted connections.
By analogy, the processing nodes may be called neurons.

Each node output depends only on information that
is locally available at the node, either stored internally or
arriving via the weighted connections. Each unit receives
inputs from many other nodes and transmits its output to
other nodes. By itself, a single processing element is not very
powerful; it generates a scalar output with a single numerical
value, which is a simple nonlinear function of its inputs. The
power of the system emerges from the combination of many
units in an appropriate way.

A network is specialized to implement different functions
by varying the connection topology and the values of the
connecting weights. Complex functions can be implemented
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by connecting units together with appropriate weights. In
fact, it has been shown that a sufficiently large network with
an appropriate structure and property chosen weights can
approximate with arbitrary accuracy any function satisfying
certain broad constraints. Usually, the processing units have
responses like (see Figure 2(b))

𝑦 = 𝑓(∑

𝑖

𝑢
𝑖
) , (12)

where 𝑢
𝑖
are the output signals of hidden layer to output

layer, and 𝑓(𝑢
𝑖
) is a simple nonlinear function such as the

sigmoid or logistic function. This unit computes a weighted
linear combination of its inputs and passes this through
the nonlinearity to produce a scalar output. In general, it
is a bounded nondecreasing nonlinear function; the logistic
function is a common choice. This model is, of course, a
drastically simplified approximation of real nervous systems.
The intent is to capture themajor characteristics important in
the information processing functions of real networks with-
out varying too much about physical constraints imposed by
biology. The impressive advantages of NNs are the capability
of solving highly nonlinear and complex problems and the
efficiency of processing imprecise and noisy data. Mainly,
there are three types of training conditions for NNs, namely,
supervised training, graded training, and self-organization
training. Supervised training, which is adopted in this study,
can be applied as follows.

(1) First, the dataset of the system, including input and
output values, is established.

(2) The dataset is normalized according to the algorithm.

(3) Then, the algorithm is run.

(4) Finally, the desired output values corresponding to
the input used in test phase.

3.1. Back Propagation Neural Network. Back propagation
neural network (BPN), developed by Rumelhart et al. [13],
is the most prevalent of the supervised learning models of
ANN. BPN used the gradient steepest descent method to
correct theweight of the interconnectivity neuron. BPNeasily
solved the interaction of processing elements by adding hid-
den layers. In the learning process BPN, the interconnective
weights are adjusted using an error convergence technique to
obtain a desired output for a given input. In general, the error
at the output layer in the BPN model propagates backward
to the input layer through the hidden layer in the network to
obtain the final desired output. The gradient descent method
is utilized to calculate the weight of the network and adjusts
the weight of interconnectives to minimize the output error.
The formulas used in this algorithm are as follows.

(1) Hidden layer calculation results are

net
𝑖
= ∑𝑥

𝑖
𝑤
𝑖

𝑦
𝑖
= 𝑓 (net

𝑖
) ,

(13)

where 𝑥
𝑖
and 𝑤

𝑖
are input data and weights of the

input data, respectively. 𝑓 is activation function, and
𝑦
𝑖
is the result obtained from hidden layer.

(2) Output layer calculation results are

net
𝑘
= ∑𝑦

𝑖
𝑤
𝑗𝑘

𝑜
𝑘
= 𝑓 (net

𝑘
) ,

(14)

where 𝑤
𝑗𝑘

are weights of output layer, and 𝑜
𝑘
is the

result obtained from output layer.
(3) Activation functions used in layers are logsig, tansig,

and linear as

𝑓 (net
𝑖
) =

1

1 + 𝑒
−net𝑖

(logsig)

𝑓 (net
𝑖
) =

1 − 𝑒
−net𝑖

1 + 𝑒
−net𝑖

(tansig)

𝑓 (net
𝑖
) = net

𝑖
(linear) .

(15)

(4) Errors made at the end of one cycle are

𝑒
𝑘
= (𝑡
𝑘
− 𝑜
𝑘
) 𝑜
𝑘
(1 − 𝑜

𝑘
)

𝑒
𝑖
= 𝑦
𝑖
(1 − 𝑦

𝑖
)∑𝑒
𝑘
𝑤
𝑖𝑗
,

(16)

where 𝑡
𝑘
is result expected from output layer, 𝑒

𝑘
is

error occurred at output layer, and 𝑒
𝑖
is error occurred

at hidden layer.
(5) Weights can be changed using these calculated error

values according to (17) as

𝑤
𝑗𝑘
= 𝑤
𝑗𝑘
+ 𝛼𝑒
𝑘
𝑦
𝑖
+ 𝛽Δ𝑤

𝑗𝑘

𝑤
𝑖𝑗
= 𝑤
𝑖𝑗
+ 𝛼𝑒
𝑖
𝑥
𝑖
+ 𝛽Δ𝑤

𝑖𝑗
,

(17)

where 𝑤
𝑖𝑗

are weights of output layer. Δ𝑤
𝑗𝑘

and
Δ𝑤
𝑖𝑗
are correction made in weights at the previous

calculation. 𝛼 is learning ratio, and 𝛽 is momentum
term that is used to adjust weights. In this paper, 𝛼 =
0.65 and 𝛽 = 0.9 are used.

(6) Square error, occurred in one cycle, can be found by
(18) as

𝑒 = ∑0.5
󵄨󵄨󵄨󵄨𝑡𝑘 − 𝑜𝑘

󵄨󵄨󵄨󵄨

2

. (18)

The completion of training the BPN, relative error
(RE) for each data, andmean relative error (MRE) for
all data are calculated according to (19), respectively,
as

RE = (
100 (𝑡

𝑘
− 𝑜
𝑘
)

𝑡
𝑘

)

MRE = 1
𝑛

𝑛

∑

𝑖=1

(
100 (𝑡

𝑘
− 𝑜
𝑘
)

𝑡
𝑘

) ,

(19)

where 𝑛 is the number of data [14, 15].



Journal of Engineering 5

Table 1: System specifications.

𝑚
𝑠
= 243 kg 𝑘

𝑠
= 14671N/m

𝑚
𝑢
= 40 kg 𝑘

𝑡
= 124660N/m

𝑏
𝑠
= 370N/(m/s) 𝐴

𝑃
= 3.35 × 10

−4m2

𝑏
𝑡
= 414N/(m/s) 𝑃

𝐿
= 10342500Pa

4. Network Development

4.1. Input and Output Data. The speed of automotive is
changed between 10 and 55m/sec. The overshoot, settling
time, and steady state error of system response are assumed
between 1% and 10%, 0.3 and 1.5 second, and 0% and 2%,
respectively.These parameters are the input value of network.
Finally, the outputs of net are the gain parameters of the PID
controller.

4.2. Network Configuration. The nodes at the input and
output layer are determined by the number of predictor and
predicted variables. In this research, there are 4 nodes in
the input layers due to the number of input variables, and 3
nodes in the output layer, for similar reasons. There are no
rules given to determine the exact number of hidden layers
and the number of nodes in hidden layers. A large number
of hidden-layer nodes will lead to an overfit at intermediate
points, which can slow down the operation of NN. On the
other hand, an accurate output may not be achieved if too
few hidden layer nodes are included in the neural network.
The results show that the best configuration of the network is
achieved by one hidden layer. The number of nodes in the
input layer, in the hidden layer, and in the output layer is
chosen to 4–10–3, respectively.The activation function in the
input and the hidden layers is sigmoid function and linear
function in the output layer.

4.3. Preprocessing the Data. For a proper working of the
neural network, a preprocessing of the input and output data
is performed. The input values are normalized between −1
and 1, since the activation function is a sigmoid function
in the input layer. Normalization is made by the following
function:

𝑥norm = 2 ⋅
𝑥 − 𝑥min
𝑥max − 𝑥min

− 1. (20)

Theoutput values are normalized between 0 and 1 and a linear
function in the output layer [16].

4.4. Training of theNetwork. Once a network is structured for
a particular application, that network is ready to be trained.
To start this process the initial weights are chosen randomly.
During the training, the weights are iteratively adjusted to
minimize the network performance function. As perfor-
mance function the mean square error, the average squared
error between the network output and the target output is
applied. For the training of the network theMATLABNeural
Network Toolbox is used [17]. The Levenberg-Marquardt
algorithm is chosen to perform the training with the default
values suggested in [18]. In this work, for training is used
of three functions, newelm, newff, and newcf. The stopping

Table 2: The test data values set used in the BPN.

Number Overshoot
(%)

Settling time
(sec)

Steady state error
(%)

Velocity
(m/s)

1 1 0.35 1 10
2 2 0.44 2 15
3 0.5 0.52 1 20
4 1.5 1 0.09 25
5 4 1.2 0.085 30
6 5.5 1.3 2.5 35
7 6 1.4 0.05 40
8 7 1.5 0.35 45
9 2.5 0.65 0.15 50
10 10 0.73 0.1 55
11 3.5 0.84 0.01 52
12 4.3 1.25 0.012 32
13 1.52 0.55 0.001 23
14 4.5 1.27 0 42

Table 3: The variable training methods.

Acronym Description
LM Levenberg-Marquardt
BFG BFGS quasinewton
RP Resilient back propagation
SCG Scaled conjugate gradient
CGB Conjugate gradient with Powell/Beale restarts
CGF Fletcher-Powell conjugate gradient
CGP Polak-Ribiére conjugate gradient
OSS One-step secant
GDX Variable learning rate back propagation

Table 4: The variable activation functions in the layers.

Number The activation function
Hidden layer Output layer

1 logsig logsig
2 logsig tansig
3 logsig purelin
4 tansig tansig
5 tansig logsig
6 tansig purelin

criteria are adjusted; that is the mean square error should
be less than 10−5 and the number of epochs (iterations)
should be less than 5000. The BPN learning process involves
a forward propagation pass calculating the outputs using the
inputs, weights, and neuron transfer functions, as well as
a back propagation pass correcting the weights using the
error between the predicted and target values. The major
advantage of the BPN model is its ability to learn from
examples without requiring principal knowledge of domain
problems. In addition, it is very effective in dealing with large
amounts of data. The structure of the BPN model can easily
be constructed according to the domain problem and the
availability of data attributes.
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Table 5: The (𝑅2) values for PID gain parameters with various neurons in the hidden layer.

Number of
hidden neuron

Acronym of training method
LM BFG RP SCG CGB CGF CGP OSS GDX

7 0.9977 0.9888 0.9819 0.9957 0.9738 0.9918 0.9905 0.9913 0.9891
8 0.9981 0.9676 0.992 0.9909 0.9942 0.9864 0.9846 0.9969 0.9916
10 0.9999 0.9981 0.9942 0.9578 0.9986 0.9978 0.9681 0.9963 0.9945
15 0.9985 0.9998 0.9967 0.9996 0.9996 0.9995 0.9595 0.9890 0.9856
18 0.9967 0.9928 0.9994 0.9998 0.9998 0.9698 0.9898 0.9898 0.9881
20 0.9998 0.9499 0.999 0.9699 0.9997 0.9698 0.9699 0.9797 0.9950
25 0.9996 0.9699 0.9994 0.9699 0.9699 0.9599 0.9899 0.9479 0.9983
26 0.9944 0.9916 0.9996 0.9797 0.9694 0.9792 0.9799 0.9688 0.9782
27 0.9989 0.9599 0.9995 0.9899 0.9899 0.9899 0.9799 0.9896 0.9870
28 0.9998 0.9939 0.9994 0.9799 0.9999 0.9599 0.9799 0.9889 0.9984
29 0.9997 0.9419 0.9997 0.9799 0.9599 0.9699 0.9799 0.9889 0.9985

Table 6: The results of the variable training methods in the BPN
with newelm function.

Acronym Epoch
in goal Error goal Train time

(s)
Test time

(s)
LM 153 met 28.724082 0.054526
BFG 1528 met 77.482451 0.046583
RP 3000 Not met 67.677318 0.046466
SCG 3000 Not met 101.328176 0.044047
CGB 2932 Not met 118.102075 0.052230
CGF 2125 Not met 88.894782 0.046125
CGP 2302 Not met 94.665335 0.046852
OSS 3000 Not met 112.071065 0.046677
GDX 3000 Not met 61.243551 0.046046

Table 7: The results of the variable training methods in the BPN
with newcf function.

Acronym Epoch
in goal Error goal Train time

(s)
Test time

(s)
LM 251 met 38.726182 0.057241
BFG 1018 met 97.481454 0.042678
RP 2439 Not met 49.16278 0.048146
SCG 1980 Not met 33.19076 0.042047
CGB 3232 Not met 128.15905 0.055130
CGF 3025 Not met 108.15282 0.056985
CGP 2100 Not met 67.150335 0.044152
OSS 1000 met 59.011265 0.058677
GDX 3230 Not met 67.120551 0.056046

5. Numerical Results

Specifications of the suspension system used for simulation
are given in Table 1. The control system is simulated subject
to a road displacement shown by (8).

Table 8: The results of the variable training methods in the BPN
with newff function.

Acronym Epoch
in goal Error goal Train time

(s)
Test time

(s)
LM 293 met 40.145082 0.054789

BFG 528 met 88.102451 0.056673

RP 1210 met 100.677318 0.056906

SCG 4000 Not met 97.949761 0.065237

CGB 3745 Not met 138.78905 0.062230

CGF 3450 Not met 112.89642 0.053565

CGP 3162 Not met 100.13335 0.056907

OSS 3400 Not met 160.14895 0.066677

GDX 2000 Not met 43.446511 0.056044

In this study, the back propagation learning algorithm
is used in a feed forward, single hidden layer network.
A variable transfer function is used as the activation function
for both the hidden layer and the output layer. Many back
propagation training algorithms were repeatedly applied
until satisfactory training was achieved. The number of test
data value used in the BPN is shown in Table 2. The names
of training algorithms are shown in Table 3. The activation
function for the hidden layer and the output layer that is used
are shown in Table 4.

The best combination for all methods that is used in this
paper is logsig for hidden layer and purelin for output layer. In
the hidden layer, a number of neurons from 7 to 29 are used.
The data set available for 𝐾

𝑃
, 𝐾
𝐼
, and 𝐾

𝐷
included 100 data

patterns. 𝐾
𝑃
is called the proportional gain, 𝐾

𝐼
the integral

gain, and 𝐾
𝐷
the derivative gain of a PID controller. From

these, 80 data patterns were used for training the network,
and the remaining 20 patterns were randomly selected and
used as the test data set. The regression value (𝑅2) of the
output variable values for the test data set for various neurons
in hidden layer is shown in Table 5. It should be noted
that these data were completely unknown to the network.
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Table 9: Comparison between actual gain parameters of PID and the BPN model (with newelm function).

Number 𝐾
𝑃

𝐾
𝐼

𝐾
𝐷

Actual Predicted Percentage of error Actual Predicted Percentage of error Actual Predicted Percentage of error
1 12614.31 13017.95 3.25 16743.32 16949.26 1.23 28345.20 30091.26 6.16
2 14590.41 15830.59 8.50 15234.90 16011.87 5.10 27670.82 28365.35 2.51
3 12090.59 12634.66 4.50 16045.61 16474.02 2.67 26674.96 27013.73 1.27
4 14278.66 14649.90 2.60 16396.63 16955.75 3.41 27869.42 28752.88 3.17
5 14797.23 15674.70 5.93 16853.16 17341.83 2.90 27001.56 27322.87 1.19
6 14856.34 15683.83 5.57 16166.90 16186.30 0.12 25438.94 25487.28 0.17
7 14879.61 15821.48 6.33 15879.61 15965.35 0.54 26730.38 27075.20 1.29
8 14898.49 14916.36 0.12 15990.53 16204.80 1.34 28593.77 30134.97 5.39
9 14478.19 15394.65 6.33 15069.52 15841.07 5.12 27433.71 28720.35 4.69
10 13967.83 14526.54 4.00 16649.37 16919.08 1.62 28082.82 28695.02 2.18
11 12889.63 13119.06 1.78 16298.48 16818.40 3.19 29782.51 29830.16 0.16
12 12794.88 13164.65 2.89 15589.92 15903.27 2.01 25967.69 25970.28 0.01
13 12797.34 12799.25 0.015 15590.29 16446.19 5.49 27420.55 28026.54 2.21
14 13312.90 14244.80 7.00 15690.33 16189.28 3.18 28890.69 29269.15 1.31

Table 10: Comparison between actual gain parameters of PID and the BPN model (with newcf function).

Number 𝐾
𝑃

𝐾
𝐼

𝐾
𝐷

Actual Predicted Percentage of error Actual Predicted Percentage of error Actual Predicted Percentage of error
1 12614.31 12811.09 1.56 16743.32 18136.36 8.32 28345.20 29921.19 5.56
2 14590.41 14996.02 2.78 15234.90 15496.94 1.72 27670.82 29635.44 7.10
3 12090.59 12562.12 3.90 16045.61 17080.55 6.45 26674.96 27019.06 1.29
4 14278.66 14305.78 0.19 16396.63 16832.78 2.66 27869.42 29062.23 4.28
5 14797.23 15872.98 7.27 16853.16 17139.66 1.70 27001.56 29674.71 9.90
6 14856.34 15869.54 6.82 16166.90 16186.30 0.12 25438.94 26995.80 6.12
7 14879.61 15498.60 4.16 15879.61 15881.19 0.01 26730.38 28144.41 5.29
8 14898.49 15090.68 1.29 15990.53 17563.99 9.84 28593.77 28633.80 0.14
9 14478.19 15029.80 3.81 15069.52 16107.80 6.89 27433.71 29831.41 8.74
10 13967.83 14997.25 7.37 16649.37 17528.45 5.28 28082.82 31056.79 10.59
11 12889.63 13584.38 5.39 16298.48 17493.15 7.33 29782.51 32376.56 8.71
12 12794.88 13714.83 7.19 15589.92 16480.10 5.71 25967.69 26996.01 3.96
13 12797.34 14129.54 10.41 15590.29 16605.21 6.51 27420.55 28363.81 3.44
14 13312.90 14621.55 9.83 15690.33 16237.92 3.49 28890.69 30566.35 5.80

The closer this value is to unity, the better is the prediction
accuracy. The best (𝑅2) value obtained is 0.9999, and it is
obtained from the LM algorithm by 10 neurons in hidden
layer.

In Tables 6, 7, and 8, the results of training the network
using nine different training algorithms by 10 neurons in
the hidden layer and logsig-purlin activation function are
summarized. Each entry in the table represents 14 different
trials, where different random initial weights are used in each
trial.

The fastest algorithm for this problem is the LM. On
the average, it is over two times faster than the next fastest
algorithm. This is the type of problem for which the LM
algorithm is best suited.

In Tables 9, 10, and 11 a comparison between the actual
gain parameters of PID controller and prediction with the
artificial neural network for the LMmethod is presented.The
actual valves are obtained by the written code by MATLAB.
As can be seen, the error with newelm function is very small.

Controlled and uncontrolled of sprung mass of vehicle is
compared in displacement and acceleration as shown from
Figures 4 and 5, respectively. Note that in these figures
dash and solid lines are uncontrolled and controlled cases
of sprung mass, respectively. The body displacement of
controlled system is very smooth with maximum values of
0.0015m and 0.0043m while the uncontrolled system pro-
vides high oscillations with maximum values of 0.078m and
0.1578m. The passenger comfort is provided by controlling
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Table 11: Comparison between actual gain parameters of PID and the BPN model (with newff function).

Number 𝐾
𝑃

𝐾
𝐼

𝐾
𝐷

Actual Predicted Percentage of error Actual Predicted Percentage of error Actual Predicted Percentage of error
1 12614.31 12775.77 1.28 16743.32 16818.66 0.45 28345.20 28827.06 1.70
2 14590.41 16301.86 11.73 15234.90 15516.74 1.85 27670.82 29992.40 8.39
3 12090.59 13617.63 12.63 16045.61 16457.98 2.57 26674.96 29507.84 10.62
4 14278.66 14685.60 2.85 16396.63 17701.80 7.96 27869.42 31205.38 11.97
5 14797.23 15801.96 6.79 16853.16 17773.34 5.46 27001.56 31483.81 16.60
6 14856.34 16102.78 8.39 16166.90 18824.73 16.44 25438.94 27245.10 7.10
7 14879.61 15251.60 2.50 15879.61 17230.96 8.51 26730.38 27521.59 2.96
8 14898.49 15485.49 3.94 15990.53 17490.44 9.38 28593.77 29820.44 4.29
9 14478.19 15242.63 5.28 15069.52 16379.06 8.69 27433.71 30064.60 9.59
10 13967.83 15138.33 8.38 16649.37 16922.41 1.64 28082.82 30127.24 7.28
11 12889.63 13516.06 4.86 16298.48 18495.51 13.48 29782.51 30300.72 1.74
12 12794.88 13740.42 7.39 15589.92 16004.61 2.66 25967.69 26557.15 2.27
13 12797.34 14010.52 9.48 15590.29 16329.26 4.74 27420.55 29200.14 6.49
14 13312.90 14645.52 10.01 15690.33 16459.15 4.90 28890.69 29147.81 0.89
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Figure 4: The body displacement.

the body acceleration as shown in Figure 5. The controlled
system reduces the acceleration successfully to zero after
passing disturbances while uncontrolled case shows high
accelerations.

6. Conclusions

The present study shows that for the analyses of PID con-
troller of suspension system, the BPN is a suitable method.
The BPN was successfully applied for determining the gain
parameters of a PID controller for a suspension system. Date
for developing the ANN model is obtained by the written
code withMATLAB. Results fromANNmodel are compared
with the results from the classical model. The best regression
value for the simulation is 0.9999 with newelm function.
The MRE value of the BPN model is 4.2%. The results show
that newelm function is more accurate than newff and newcf
functions. Also the Levenberg-Marquardt training is faster
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Figure 5: The body acceleration.

than other training methods. The BPN method also has the
advantages of computational speed, low cost, and ease of use
by people with little technical experience.
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