
Research Article
A Pareto-Based Adaptive Variable Neighborhood
Search for Biobjective Hybrid Flow Shop Scheduling
Problem with Sequence-Dependent Setup Time

Huixin Tian,1 Kun Li,2 and Wei Liu3

1School of Electrical Engineering & Automation, Tianjin Polytechnic University, Tianjin, China
2School of Management, Tianjin Polytechnic University, Tianjin, China
3Guangxi Colleges and University Key Laboratory of Minerals Engineering, Guangxi University, Guangxi, China

Correspondence should be addressed to Kun Li; lk neu@163.com

Received 29 December 2015; Revised 7 September 2016; Accepted 12 October 2016

Academic Editor: Yan-Jun Liu

Copyright © 2016 Huixin Tian et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Different frommost researches focused on the single objective hybrid flowshop scheduling (HFS) problem, this paper investigates a
biobjective HFS problem with sequence dependent setup time.The two objectives are the minimization of total weighted tardiness
and the total setup time. To efficiently solve this problem, a Pareto-based adaptive biobjective variable neighborhood search
(PABOVNS) is developed. In the proposed PABOVNS, a solution is denoted as a sequence of all jobs and a decoding procedure
is presented to obtain the corresponding complete schedule. In addition, the proposed PABOVNS has three major features that
can guarantee a good balance of exploration and exploitation. First, an adaptive selection strategy of neighborhoods is proposed to
automatically select the most promising neighborhood instead of the sequential selection strategy of canonical VNS. Second, a two
phase multiobjective local search based on neighborhood search and path relinking is designed for each selected neighborhood.
Third, an external archive with diversity maintenance is adopted to store the nondominated solutions and at the same time provide
initial solutions for the local search. Computational results based on randomly generated instances show that the PABOVNS is
efficient and even superior to some other powerful multiobjective algorithms in the literature.

1. Introduction

In a typical hybrid flow shop scheduling (HFS) problem
(Figure 1), a set of 𝑛 jobs need to be processed through 𝑀
production stages and at each stage 𝑘 there are 𝑚𝑘 identical
parallel machines. Once completed at one stage, a job can
be directly sent to the immediately following stage if at least
one machine in this stage is available or can be stored at the
infinite buffer between consecutive stages. The task of the
HFS problem is to establish a production schedule so that
some performance can be optimized (e.g., minimization of
makespan, total weighted completion time, and tardiness of
jobs [1]).

The HFS problem has been one of the important research
issues in the production scheduling since proposed because
many practical production scheduling problems can be

modeled as a HFS problem [2, 3]. For example, in the iron
and steel industry, most products are generally obtained
by processing slabs through several consecutive stages, that
is, hot rolling, cold rolling, and the continuous annealing
(Figure 2).

Different from the single objective HFS problem in the
literature, in practical production decision makers usually
need to consider multiple objectives during scheduling, for
example, (1) minimization of the total sequence-dependent
setup times between consecutive jobs and (2)minimization of
the total tardiness of all jobs.The two objectives are generally
conflicting with each other. For example, to guarantee jobs
can be completed before their due dates, urgent jobs should
be arranged for production as early as possible, which in turn
often causes huge transition of dimension or setup times.
On the contrary, a good transition of dimension or small

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 1257060, 11 pages
http://dx.doi.org/10.1155/2016/1257060

2 Mathematical Problems in Engineering

1

2

1

2

1

2

Stage 1 Stage 2 Stage M

m1 m2 mS

Buffer
M-1

Buffer 1 · · ·
.
.
.

.

.

.
.
.
.

Figure 1: Structure of the hybrid flow shop with infinite buffers.

setup time also often causes large tardiness of jobs in practical
production.

Therefore, in this paper we consider the biobjective HFS
and develop a Pareto-based adaptive biobjective variable
neighborhood search (PABOVNS) algorithm to solve it. The
major features of the proposed PABOVNS algorithm are as
follows.

(i) In the PABOVNS, a solution is coded as a sequence
of all jobs and a decoding procedure is designed to
obtain the corresponding complete schedule.

(ii) Since the adaptive strategy has been successfully
used in the control system design and intelligent
algorithms [4–11], an adaptive selection strategy of
neighborhoods is proposed in the PABOVNS to select
the most promising neighborhood, instead of the
sequential selection strategy of canonical variable
neighborhood search (VNS).

(iii) A two-phase multiobjective local search based on
neighborhood search and path relinking [12] is
designed for each selected neighborhood.

(iv) An external archive with diversity maintenance based
on Pareto concept is adopted to store the nondom-
inated solutions obtained by PABOVNS and at the
same time it can provide initial solutions for the local
search of PABOVNS.

The rest of this paper is organized as follows. Section 2
reviewed the related research results on HFS problem and
biobjective HFS problem in the literature. The description
of the biobjective HFS problem is given in Section 3. In
Section 4, the proposed PABOVNS is described in detail.
Computational results on randomly generated instances are
presented in Section 5. Finally, the paper is concluded in
Section 6.

2. Literature Review

Since proposed, the HFS problem has drawn a great deal of
attention from researchers. Detailed reviews on the complex-
ity, scheduling criteria, solving approaches, and applications
of HFS problem can be found in Linn and Zhang [13], Ruiz
and Vazquez-Rodriguez [14], and Ribas et al. [1]. Based on
these reviews, it can be found that most previous researches
focused on the single objective and that the solutionmethods
in the literature can be classified into three categories: exact
methods, heuristic methods, and metaheuristic methods.

Among the exact methods for the HFS problem, branch-
and-bound (B&B) is the most preferred solution method.

Dessouky et al. [15] first presented B&B method for the two-
and three-stage HFS with uniform parallel machines, and
the other kinds of B&B methods have been proposed for the
general HFS problem with any amount of stages and parallel
machines in many references [16–18].

Although the B&Bmethod can solve the HFS problem to
optimality, it should be noted that the size of solved problems
is relatively small. Consequently, many researchers turned to
develop dispatching rules and constructive heuristics so as to
quickly obtain a near-optimal solution for the complex HFS
problem. Brah [19] compared 10 different dispatching rules
for the HFS with multiple stages to minimize the maximum
tardiness. Guinet and Solomon [20] presented several dis-
patching rules and tailored heuristics for the 𝑀-stage HFS
problem to minimize makespan and maximum tardiness.
Sevastianov [21] and Kyparisis and Koulamas [22] tackled
the HFS problem with multiple stages and uniform paral-
lel machines in each stage and developed some heuristics
to minimize makespan. Botta-Genoulaz [23] presented six
heuristics for the HFS problem with precedence constraints
so as to minimize the maximum lateness of jobs. Yang et
al. [24] compared three heuristics based decomposition and
local search methods for the HFS problem to minimize the
total weighted tardiness. Recently, Lee et al. [25] developed an
efficient heuristic based on the beam search andNEHmethod
for the HFS problem.

The advantage of constructive heuristics is that they
can provide a feasible solution quickly; however, the quality
of the obtained solution is often not good enough for
practical production. So metaheuristics become more and
more popular for HFS problems in the literature. Grabowski
and Pempera [26] investigated a no-wait HFS derived from
real manufacturing system and developed a tabu search
algorithm. Both Sawik [27] and Wardono and Fathi [28]
proposed tabu search algorithm for the HFS problem with
limited buffers. Wang and Tang [29] developed a hybrid
tabu search that incorporated scatter search for the HFS
with finite intermediate buffers. Cui and Gu [30] presented
a discrete group search optimizer for HFS with random
breakdown. Xiao et al. [31] designed a genetic algorithm
for the M-stage HFS problem to minimize makespan. For
the HFS problem with sequence-dependent setup times,
Kurz and Askin [32] presented a genetic algorithm with the
random keys representation. Ruiz and Maroto [33] further
considered both the sequence-dependent setup times and
machine eligibility in HFS problems and proposed a genetic
algorithm. Zhang et al. [34] studied the HFS problem derived
from a practical aeronautic production environment and
developed a genetic algorithm hybrid with clustering. An
artificial immune system was presented by Engin and Döyen
[35] forHFS problem tominimizemakespan. Tang andWang
[36] proposed an improved particle swarm optimization
algorithm for the HFS problem. Ying and Lin [37] developed
an ant colony optimization algorithm for the multiprocessor
task problem with job precedence.

As reviewed above, different kinds of solution methods
have been proposed in the literature for the HFS problem
and most of them are focused on the single objective
HFS problem. Although some researchers have paid more

Mathematical Problems in Engineering 3

Hot rolling line 1

Hot rolling line 2

Hot rolling line 3

Cold rolling line 1

Cold rolling line 2

Continuous annealing 1

Continuous annealing 2Slabs

Figure 2: Illustration of hybrid flow shop in iron and steel industry.

attention to the multiobjective HFS problem, the related
references are very few in the literature. Behnamian et al.
[38] presented a three-phase hybrid metaheuristic based on
Pareto optimal concept for a biobjective HFS tominimize the
makespan and the earliness and tardiness of jobs. Rashidi et
al. [39] developed a parallel multiobjective genetic algorithm
for the biobjective HFS problem to minimize the makespan
and total tardiness of jobs by dividing the population into
several different subpopulations. Then, each subpopulation
was assigned with different weights that were used to aggre-
gate the two objectives. Abyaneh and Zandieh [40] proposed
several methods for the biobjective HFS with sequence-
dependent setup times and limited buffers. A biobjective
local search algorithm was presented by Mousavi et al. [41]
for the HFS to minimize the objectives of makespan and
total tardiness. Recently, Marichelvam et al. [42] developed
a discrete firefly algorithm for the biobjective HFS problem
to minimize the makespan and mean flow time.

3. Problem Statement

The biobjective HFS problem considered in this paper can be
stated as follows. There are a set of 𝑛 jobs to be processed
successively through 𝑀 production stages, each of which
has 𝑚𝑘 identical parallel machines and any machine can be
used to process jobs. It is assumed that all jobs have arrived
as time zero. Each job 𝑖 (𝑖 = 1, 2, . . . , 𝑛) has a positive
processing time 𝑝𝑖𝑘 at each stage 𝑘 (𝑘 = 1, 2, . . . ,𝑀), a due
date 𝑑𝑖 (𝑑𝑖 > 0), and a weight 𝑤𝑖 (𝑤𝑖 > 0). Once a job has
completed the required processing at a stage, it can be stored
at the infinite buffer between consecutive stages or sent to the
immediately following stage if at least one machine in this
stage is available. In each stage 𝑘, whenever two jobs 𝑖 and 𝑗
are adjacent in the processing sequence of a machine (i.e., job
𝑗 is processed immediately after job 𝑖 on the samemachine in
stage 𝑘), a setup time 𝑡𝑖𝑗𝑘 (𝑡𝑖𝑗𝑘 ≥ 0) will be needed. Different
from the objectives considered in previous literature [38–
42] (e.g., makespan and total tardiness), the task of our HFS
problem is to minimize the total sequence-dependent setup
times and the total weighted tardiness of all jobs. The two
objectives are adopted based on the description described for
the practical production scheduling of iron and steel industry
(Figure 2).

4. Pareto-Based Biobjective Variable
Neighborhood Search

4.1. Canonical Single Objective VNS. VNS is a simple but
powerful search algorithm for combinatorial optimization
problems. The procedure of canonical VNS for the single
objective optimization problem is given in Algorithm 1. The
main search mechanism of VNS is to systematically change
the neighborhood among candidate neighborhoods so as to
enhance the search diversity.

Since proposed by Mladenović and Hansen [43], VNS
has been successfully adopted to solve many kinds of difficult
combinatorial optimization problems, especially the schedul-
ing problems [44–46]. Therefore, in this paper we also adopt
VNS and extend it to solve the biobjectiveHFS problembased
on the Pareto dominance concept.

4.2. Multiobjective Optimization Based on Pareto Dominance.
To give a clear description of our PABOVNS algorithm, we
first give some explanations on the multiobjective optimiza-
tion based on the concept of Pareto dominance.

Instead of optimizing a single objective, the multiobjec-
tive optimization endeavors to simultaneously achieve the
optimization of multiple objectives that are conflicting with
each other. For two given solutions, namely, 𝑋1 and 𝑋2, let
the 𝑘th (𝑘 = 1, . . . , 𝐾) objective of them be denoted by
𝑓𝑘(𝑋1) and 𝑓𝑘(𝑋2), and then solution𝑋1 is said to dominate
𝑋2 if and only if the following two conditions are satisfied:
(1) 𝑓𝑘(𝑋1) ≤ 𝑓𝑘(𝑋2) for every objective 𝑘; and (2) at the
same time there exists at least one objective 𝑗 such that
𝑓𝑗(𝑋1) < 𝑓𝑗(𝑋2). If each one of a set of solutions cannot
dominate any other solution, then the set of solutions are
called the nondominated solutions. So if a solution 𝑋 is not
dominated by any other solution in the solution space, then
solution 𝑋 is called a Pareto optimal solution and the set of
all Pareto optimal solutions is called the Pareto optimal set.
Correspondingly, the objective vectors of the Pareto optimal
set in the objective space are called the Pareto front. The
task of multiobjective optimization is to achieve the Pareto
optimal set so that the corresponding Pareto front can be
distributed as evenly as possible in the objective space.

4.3. PABOVNS Algorithm. Based on the four features
described above, the overall framework of the proposed

4 Mathematical Problems in Engineering

(1) Input: initial solution 𝑠0, a set of candidate neighborhoods𝑁 = {𝑛1, 𝑛2, . . . , 𝑛𝑞}, 𝑔max
(2) Set the iteration number 𝑔 = 1.
(3) while 𝑔 < 𝑔max
(4) 𝑖 fl 1
(5) while 𝑖 ≤ 𝑞 do
(6) 𝑠 fl 𝑆ℎ𝑎𝑘𝑖𝑛𝑔 (𝑠0, 𝑛𝑖) //a random solution 𝑠 is generated in neighborhood 𝑛𝑖
(7) 𝑠󸀠 fl 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ (𝑠, 𝑛𝑖) //improve 𝑠 in neighborhood 𝑛𝑖 and get new solution 𝑠󸀠

(8) if 𝑠󸀠 is better than 𝑠0
(9) 𝑠0 fl 𝑠󸀠

(10) 𝑖 fl 1 //next search will start from the first neighborhood
(11) else
(12) 𝑖 fl 𝑖 + 1 //next neighborhood is selected
(13) end if
(14) end while
(15) 𝑔 = 𝑔 + 1
(16) end while

Algorithm 1: Search process of canonical VNS.

(1) Input: a set of 𝑞 candidate neighborhoods𝑁 = {𝑛1, 𝑛2, . . . , 𝑛𝑞}, the maximum iterations 𝑔max, the
selection probability of each neighborhood 𝑗 to be 𝑝𝑗 fl 1/𝑞, the iteration number 𝑔 fl 0, the
external archive 𝐴 to be empty, and 𝑖 = 0.

(2) Initialization of external archive 𝐴:
(3) Generate an initial solution 𝑆0 fl 𝐶𝑟𝑒𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛() and set 𝐴 fl {𝑆0}
(4) while 𝑖 ≤ 𝑞 //q is the sum of candidate neighborhoods
(5) 𝑁𝑆 fl 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑆0, 𝑛𝑖) //perform multi-objective local search on 𝑆0 in 𝑛𝑖 and

obtains a set of non-dominated solutions𝑁𝑆
(6) 𝐴 fl 𝑈𝑝𝑑𝑎𝑡𝑒𝐴𝑟𝑐ℎ𝑖V𝑒(𝐴,𝑁𝑆) //update the external archive 𝐴 with𝑁𝑆
(7) 𝑖 fl 𝑖 + 1
(8) end while
(9) while 𝑔 < 𝑔max
(10) 𝑙 fl 𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑() //select a neighborhood based on selection probabilities
(11) Multi-objective local search: Phase I – neighborhood search:
(12) 𝑆 fl 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐴) //randomly select a solution from 𝐴
(13) 𝑆󸀠 fl 𝑆ℎ𝑎𝑘𝑖𝑛𝑔(𝑆, 𝑛𝑙) //a random solution 𝑆󸀠 is generated in neighborhood 𝑛𝑙
(14) 𝑁𝑆1 fl 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑆󸀠, 𝑛𝑙) //perform multi-objective local search on 𝑆󸀠 in 𝑛𝑙
(15) Multi-objective local search: Phase II – path relinking :
(16) 𝑆1 fl 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐴) //randomly select a solution 𝑆1 from 𝐴
(17) 𝑆2 fl 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝐴) //randomly select another solution 𝑆2 from 𝐴
(18) 𝑁𝑆2 fl 𝑃𝑎𝑡ℎ𝑅𝑒𝑙𝑖𝑛𝑘𝑖𝑛𝑔(𝑆1, 𝑆2, 𝑛𝑙) //perform multi-objective path relinking from 𝑆1 to 𝑆2
(19) Update external archive and selection probability of the selected neighborhood:
(20) 𝐴 fl 𝑈𝑝𝑑𝑎𝑡𝑒𝐴𝑟𝑐ℎ𝑖V𝑒(𝐴,𝑁𝑆1, 𝑁𝑆2) //update the external archive 𝐴 with𝑁𝑆1 and𝑁𝑆2
(21) UpdateProbability(𝑛𝑙) //update the selection probability of neighborhood 𝑛𝑙
(22) 𝑔 fl 𝑔 + 1
(23) end while

Algorithm 2: Overall procedure of the proposed PABOVNS.

PABOVNS algorithm can be given in Algorithm 2 and the
components of it are described in the following subsections.

In the PABOVNS, we first generate an initial solution 𝑠0
by theCreateInitialSolution() method.Then, amultiobjective
neighborhood search LocalSearch() is performed on 𝑠0 from
neighborhood 𝑛1 to 𝑛𝑞 so as to initialize the external archive
𝐴. Subsequently, at each iteration of the VNS algorithm
we will first select a neighborhood 𝑛𝑙 by the adaptive
selection method SelectNeighborhood() based on selection

probabilities of neighborhoods and then perform the
two-phase multiobjective local search. In the first phase,
LocalSearch() is carried out on a perturbed solution, which
is randomly selected from𝐴, in the selected neighborhood 𝑛𝑙
and a set of nondominated solutions (i.e., 𝑁𝑆1) is obtained.
In the second phase, two random solutions 𝑠1 and 𝑠2 are first
selected from 𝐴 and then the multiobjective path-relinking
method PathRelinking() based on the selected neighborhood
𝑛𝑙 is adopted to obtain another set of nondominated solutions

Mathematical Problems in Engineering 5

(i.e., 𝑁𝑆2). Finally, the nondominated solutions of 𝑁𝑆1 and
𝑁𝑆2 obtained in the two-phase local search are used to
update the external archive 𝐴. Whenever 𝐴 can be improved
by𝑁𝑆, the selection probability of the selected neighborhood
𝑛𝑙 will be increased. On the contrary, if 𝑁𝑆 fails to update
𝐴, the selection probability of neighborhood 𝑛𝑙 will be
decreased.

4.3.1. Solution Representation. The decision variables in HFS
consist of two parts: the allocation of jobs tomachines in each
stage and the scheduling of jobs assigned to each machine. In
the literature, the random key representation is often adopted
[39, 41]. In this representation, each job is assigned to a
real number that is generated within [1, 1 + 𝑚𝑗) for each
stage 𝑗. The integer part denotes the machine number to
which this job is assigned and the fractional part is used
to determine the sequence of jobs assigned to the same
machine (e.g., sort these jobs in the nondescending order of
the factional part). Although this representation method is
simple, it is still difficult to define neighborhood structures.
For example, for the job sequence of a certain machine, the
insertion of a job from its originally assigned position to
another position can be achieved by changing the fractional
part of a job. However, such an insertion move is quite
random because we have to sort the fractional part of jobs
first if we want to accurately insert this job to a designated
position. Therefore, we prefer to adopt a discrete version of
solution representation so as to make it easy for solution
space construction and neighborhood search. In this kind of
representation, a solution is denoted as a sequence of all jobs
(just like the solution for a canonical flow shop scheduling
problem) and a decoding procedure is presented to obtain the
corresponding complete schedule.

For a given solution represented by 𝑆 = (𝑠1, . . . , 𝑠𝑘, . . . , 𝑠𝑛)
in which 𝑠𝑘 denotes the job arranged at the 𝑘th position, the
decoding procedure to construct a complete schedule of HFS
can be given as follows.

Step 1. Set the earliest available time of all machines to be
zero.

Step 2. Set 𝑖 = 𝑚1, and allocate the first𝑚1 jobs in 𝑠 to the𝑚1
machines in Stage 1.

Step 3. Calculate the completion time of each job currently
processed in Stage 1 and then make the complete schedule of
the first completed job in Stage 1 on the next stages based on
the first availablemachine rule (i.e., assign the first completed
job to the first available machine in each of the next stages).
Calculate the completion time of this job on each stage and
then update the first available time of each machine in each
stage.

Step 4. Set 𝑖 = 𝑖 + 1. If 𝑖 > 𝑛, stop; otherwise, allocate job 𝑠𝑖 to
the first available machine in Stage 1 and go to Step 2.

In the above greedy decoding heuristic, the principle is
that we select the first completed job in Stage 1 and thenmake
its schedule on the next stages based on the first available

machine rule. After this, next job is assigned to the first
available machine in Stage 1. This process will be repeated
until all the jobs have been scheduled. Since the intermediate
buffer is infinite, the heuristic is quite simple. Based on
this decoding method, we can deal with the neighborhood
construction and search using the same way as for the flow
shop scheduling whose solution is also represented as a
sequence of jobs.

4.3.2. Initialization of the External Archive A

(1) CreateInitialSolution(): Generation of Initial Solution. The
initial solution 𝑠0 is generated by a modified version of
NEH method proposed by Nawaz et al. [47]. Since NEH is
used in the single objective environment, we use the linear
combination of the two objectives (i.e., 𝑓1 + 𝑓2, where 𝑓1
and 𝑓2 denote the total setup times and the total weighted
tardiness). The procedure of this method can be described as
follows.

Step 1. Sort all the jobs with the nondescending order of
their due dates and denote the obtained job sequence as 𝑆 =
(𝑠1, 𝑠2, . . . , 𝑠𝑛).

Step 2. Select the first two jobs 𝑠1 and 𝑠2 and determine their
best sequence as if there are only the two jobs to be scheduled.
Let the obtained partial sequence be 𝑆󸀠.

Step 3. Select the next job from 𝑆 and insert it into 𝑆󸀠 at
the optimal position that can result in a minimal increase
of the sum of setup time and weighted tardiness of jobs
in 𝑆󸀠.

Step 4. Repeat Step 3 until all jobs have been inserted to 𝑆󸀠,
and then calculate the two objectives of the obtained solution
𝑆󸀠. Set 𝑠0 = 𝑆󸀠.

In the above procedure, the decoding method described
above will be used to transform each partial solution into the
corresponding HFS schedule so as to evaluate the increase
value of setup time and job tardiness.

(2) LocalSearch(): Multiobjective Local Search Based on
Neighborhood Search. As shown in [48], the multiobjective
local search is very important for scheduling problems. So
based on the initial solution 𝑠0, we next turn to generate
a set of nondominated solutions by a neighborhood based
multiobjective local search. Since a solution is denoted as
a job sequence, we adopt four kinds of neighborhoods:
insertion, swap, block insertion, and block swap. The first
two neighborhoods are often used for flow shop scheduling
problems. The description of each neighborhood is given as
follows.

(i) The insertion move removes a job in its current
position and then inserts it to another position in a
solution.

(ii) The swap move just swaps two jobs each time in a
solution.

6 Mathematical Problems in Engineering

(iii) The block insertion move removes two adjacent jobs
from their current position and then inserts them to
another two adjacent positions.

(iv) The block swap move swaps two adjacent jobs with
the other two adjacent jobs.

A neighborhood of a solution consists of all the possible
neighborhood solutions that can be obtained by performing
this kind of neighborhood move on this solution. In our
algorithm, the four neighborhood are denoted as 𝑛1, 𝑛2, 𝑛3,
and, 𝑛4.

During the local search, whenever a new solution is
generated, it will be added to a solution set named 𝑁𝑆. After
the search of a neighborhood, 𝑁𝑆 will be truncated to only
contain the nondominated solutions and then 𝑁𝑆 is used to
update the external archive 𝐴.

(3) UpdateArchive(): Update of the External Archive. In our
algorithm, the external archive 𝐴 is adopted to store the
obtained nondominated solutions. Besides, the starting solu-
tion for each iteration of the VNS is also selected from it (see
the SelectSolution() function) so as to enhance the ability of
escaping from local optimum. For a given new solution 𝑠, the
external archive 𝐴 is updated as follows: if 𝑠 is dominated by
at least one solution in 𝐴, then 𝑠 is discarded; otherwise, 𝑠 is
inserted into 𝐴. Since we have an upper bound on the size
of 𝐴, whenever the size of 𝐴 exceeds the upper bound, we
will delete the most crowded solution from 𝐴 based on the
crowding metric of each solution in 𝐴. For the biobjective
HFS, we first sort the solutions in 𝐴 with the ascending
order of the first objective (e.g., let the solution sequence as
𝑆1, 𝑆2, . . . , 𝑆|𝐴|) and then the crowding metric of a solution 𝑆𝑖
is calculated as the sumof Euclidean distances to solution 𝑆𝑖−1
and 𝑆𝑖+1. Please note that the two objectives are normalized
when calculating the Euclidean distances, and the normalized
objectives are calculated as 𝑓󸀠𝑘(𝑆) = 𝑓𝑘(𝑆)/𝑓𝑘,max in which
𝑓𝑘(𝑆) is the original 𝑘th objective function value of solution 𝑆
and𝑓𝑘,max is themaximumvalue of the 𝑘th objective function
value in the current external archive A.

4.3.3. Adaptive Selection Strategy: SelectNeighborhood() and
UpdateProbability(). In this section, we first give the defi-
nition of success and failure of a neighborhood search so as
to determine and update the selection probability of each
neighborhood.

As is shown in Algorithm 1, initially we set the selection
probability of each neighborhood to be 1/𝑞. Once the two-
phase multiobjective local search based on a neighborhood
𝑛𝑙 is completed (the nondominated solutions obtained in
each phase are stored in 𝑁𝑆1 and 𝑁𝑆2, resp.), we use the
two sets of nondominated solutions in 𝑁𝑆1 and 𝑁𝑆2 to
update the external archive 𝐴. If 𝐴 is updated (i.e., new
nondominated solutions are added into 𝐴), the neighbor-
hood 𝑛𝑙 is viewed as successful; otherwise, it is viewed
as unsuccessful. During the iteration of our algorithm, we
memorize the number of successful count succ𝑙 and the
unsuccessful count fail𝑙 of each neighborhood 𝑛𝑙. Based on
these counts, the selection probability of each neighborhood
𝑛𝑙 can be calculated as 𝑃𝑙 = 𝑆𝑙/∑

𝑞
𝑖=1 𝑆𝑙, in which 𝑆𝑙 = succ𝑙/

(succ𝑙 + fail𝑙) + 0.01 is called the success ratio. We add
0.01 to each 𝑆𝑙 so as to avoid that the denominator has
a value of zero. Based on the selection probability, we
then use the roulette wheel method to select the neighbor-
hood.

4.3.4. Two-Phase Multiobjective Local Search. After the
neighborhood is selected, the two-phase multiobjective local
search will be performed to generate new nondominated
solutions. The motivation to adopt two-phase local search is
that we want to achieve a balance between exploitation and
exploration.

In Phase I, an initial solution 𝑆 is randomly selected
and then a shaking function (i.e., 𝑆ℎ𝑎𝑘𝑖𝑛𝑔(𝑆, 𝑛𝑙)) is used
to perturb it by performing a random move selected from
𝑛𝑙. Finally, the full neighborhood search is performed on
it to obtain a set of new solutions that are stored in 𝑁𝑆1.
This full neighborhood search is the same one described
in Section 4.3.2 and its search is focused on the exploita-
tion.

Instead of focusing on exploitation, we prefer to
develop a multiobjective path-relinking search in Phase II
(𝑃𝑎𝑡ℎ𝑅𝑒𝑙𝑖𝑛𝑘𝑖𝑛𝑔(𝑆1, 𝑆2, 𝑛𝑙)) so as to enhance the exploration
ability of the local search. Path relinking (PR) is proposed by
Glover [12] to generate new solutions by exploring a path that
connects an initial solution and a target solution with a given
kind of neighborhood move. At each step of PR, a move is
performed so as to gradually decrease the difference between
the initial solution and the target solution. Once the initial
solution becomes the same one as the target solution, the
search process of PR terminates. So the search behavior of
PR is different from classical full neighborhood search and it
can be used to enhance the search diversity (i.e., exploration
ability) of local search. In our algorithm, we extend the
classical single objective PR into multiobjective PR. For
simplicity, we just give the procedure of multiobjective PR
for the swapmove as follows.

Step 1. Randomly select two solutions, namely, 𝑆1 = (𝑠11, 𝑠12,
. . . , 𝑠1𝑛) and 𝑆2 = (𝑠21, 𝑠22, . . . , 𝑠2𝑛) in which 𝑠1𝑘 and 𝑠2𝑘 denote
the job index arranged at the 𝑘th position in the two solutions,
from the external archive, and let 𝑆1 and 𝑆2 be the initial
solution and the target solution, respectively. Set 𝑘 = 1 and
𝑁𝑆2 to be empty.

Step 2. If 𝑠1𝑘 ̸= 𝑠2𝑘, find the job whose index is 𝑠2𝑘 in 𝑆1 and
swap it with 𝑠1𝑘 to generate a new solution 𝑆󸀠. Evaluate this
new solution and use it to update 𝑁𝑆2 using the follow way:
if 𝑆󸀠 is not dominated by any solution in 𝑁𝑆2, then add it to
𝑁𝑆2 and then delete all the solutions that are dominated by
𝑆󸀠; otherwise, discard 𝑆󸀠.

Step 3. Set 𝑘 = 𝑘 + 1. If 𝑘 > 𝑛, go to Step 4; otherwise, go to
Step 2.

After the two-phase multiobjective local search, two sets
of nondominated solutions (𝑁𝑆1 and𝑁𝑆2) are used to update
the external archive.

Mathematical Problems in Engineering 7

Table 1: Comparison results of the IGD metric between PABOVNS and PBOVNS.

𝑀 𝑛
Algorithms Improvement Sig CPU (seconds)

PBOVNS PABOVNS PBOVNS PABOVNS

3
30 0.0014 0.0014 0.00% − 45.08 45.03
80 0.0035 0.0034 2.86% − 120.27 120.16
100 0.0054 0.0048 11.11% + 150.24 150.19

5
30 0.0035 0.0037 −5.71% − 75.31 75.39
80 0.0082 0.0078 4.88% − 200.14 200.19
100 0.0135 0.0117 13.33% + 250.22 250.18

8
30 0.0124 0.0119 4.03% + 120.09 120.14
80 0.0438 0.0387 11.64% + 320.34 320.21
100 0.0614 0.0560 8.79% + 400.26 400.34

5. Computational Experiments

5.1. Experiment Setting. To test the performance of the
PABOVNS algorithm, computational experiments were car-
ried out based on a set of randomly generated instances. In
the experiments, our PABOVNS algorithmwas implemented
in C++ and all the experiments were carried out on a
personal computer with Intel i7 4770 CPU (3.4GHz) and
8GB memory. The parameters used in our algorithm are set
as follows: the size of the external archive 𝐴 is set to 50 and
the stopping criterion is adopted as the maximum available
CPU time that is set as 0.5 × 𝑛 × 𝑀 seconds (please note
that 𝑛 is the number of jobs and 𝑀 is the number of stages).
In the experiments, all the testing algorithms share the same
stopping criterion.

For the randomly generated instances, the number of
stages is selected from {3, 5, 8}, the number of machines in
each stage is uniformly generated in [1, 5], and the number of
jobs to be scheduled is selected from {50, 80, 100}. In addition,
the processing time of each job is uniformly generated
in [1, 100], the sequence-dependent setup time of jobs is
uniformly generated in [1, 100], and the weight of each job
is generated in [1, 5]. For the due date of each job 𝑗, we
follow the generation method in [49] for the multiobjective
permutation flow shop scheduling problem with setup times.
That is, the due date of each job is generated by 𝑑𝑗 = (𝑃𝑗+𝑆𝑗)×
(1+𝑟𝑎𝑛𝑑𝑜𝑚×3), where𝑃𝑗 is the total processing times of job 𝑗
on all stages, 𝑆𝑗 is the sumof average setup time for all possible
following jobs on all machines, and 𝑟𝑎𝑛𝑑𝑜𝑚 is a random
number uniformly distributed in [0, 1]. For each problem size
(denoted by the number of stages and the number of jobs), we
generate 30 random instances and thus there are a total of 270
instances tested in the experiments.

5.2. Performance Metrics. To evaluate the performance of
the proposed PABOVNS algorithm, the performance metric
named inverse general distance (IGD) is adopted in the
experiments because this metric has been often adopted in
the literature for multiobjective optimization (Zhou et al.
[50]). The IGD metric can be defined as IGD(𝐴, 𝑃∗) =
∑V∈𝑃∗ 𝑑(V, 𝐴)/|𝑃∗|, where 𝑃∗ is the Pareto optimal front
or the reference Pareto front and 𝑑(V, 𝐴) is the minimum
Euclidean distance (in objective space) between point V and

the points in 𝐴. Based on the definition, it can be seen that
the IGDmetric can measure both the convergence of𝐴 to 𝑃∗

and the distribution diversity of points in 𝐴. Therefore, it is
more favorable for 𝐴 to have a small value of IGD.

It should be noted that it is impossible to obtain the
true Pareto optimal set and the corresponding Pareto optimal
front for the instances because the problem is NP-hard. So
for each instance, we tested all the testing algorithms with
a maximum available CPU time of 5 × 𝑛 × 𝑀 seconds
and combine all the obtained external archives. Then, the
nondominated solutions selected from the union of these
external archives are used as the reference Pareto optimal
set and the corresponding Pareto front is adopted as the
reference Pareto front 𝑃∗. In addition, since the objectives in
the biobjective HFS problem have different dimensions, we
prefer to normalize the objective values of the nondominated
solutions obtained by different testing algorithms into [0, 1]
so that the comparison results can be clear.

5.3. Computational Results. In this section, we first carried
out preliminary experiments to illustrate the efficiency of
the proposed improvement strategies, that is, the adaptive
selection strategy of neighborhoods and the two-phase mul-
tiobjective local search. Then, we compared the PABOVNS
algorithm to some other algorithms in the literature.

5.3.1. Efficiency of the Adaptive Selection Strategy of Neigh-
borhoods. To analyze the impact of the adaptive selection
strategy of neighborhoods on the performance of PABOVNS,
we compared the proposed PABOVNS to another version of
it in which the adaptive selection strategy is not adopted. In
this experiment, the version without the adaptive selection
strategy is denoted as PBOVNS, and the selection sequence
of each neighborhood is 𝑛1, 𝑛2, 𝑛3, and 𝑛4. That is, in the
two-phase multiobjective local search process of PBOVNS,
neighborhood 𝑛1 is firstly used. If the obtained 𝑁𝑆1 and
𝑁𝑆2 cannot update the external archive 𝐴, it turns to adopt
the next neighborhood. But whenever the external archive
𝐴 is updated, the algorithm turns back to adopt the first
neighborhood 𝑛1.

The comparison results of IGD metric between the two
algorithms are given in Table 1, in which 𝑛 is the number of
jobs and 𝑀 is the number of stages and Sig is the statistical

8 Mathematical Problems in Engineering

Table 2: Comparison results of the IGD metric between different algorithms.

𝑀 𝑛
Algorithms Improvement Sig

PABOVNSI PABOVNSII PABOVNS Versus PABOVNSI Versus PABOVNSII Versus PABOVNSI Versus PABOVNSII

3
30 0.0014 0.0017 0.0014 0.00% 17.65% − −

80 0.0037 0.0039 0.0034 8.11% 12.82% − +
100 0.0053 0.0057 0.0048 9.43% 15.79% + +

5
30 0.0035 0.0044 0.0037 −5.71% 15.91% − +
80 0.0079 0.0086 0.0078 1.27% 9.30% − +
100 0.0124 0.0135 0.0117 5.65% 13.33% + +

8
30 0.0130 0.0137 0.0119 8.46% 13.14% + +
80 0.0403 0.0412 0.0387 3.97% 6.07% + +
100 0.0580 0.0609 0.0560 3.45% 8.05% + +

Table 3: Comparison results of the IGD metric between different algorithms.

𝑀 𝑛
Algorithms Improvement Sig

MOPGA NSGA-II PABOVNS Versus MOPGA Versus NSGA-II Versus MOPGA Versus NSGA-II

3
30 0.0014 0.0015 0.0014 0.00% 6.67% − −

80 0.0035 0.0036 0.0034 2.86% 5.56% − −

100 0.0050 0.0053 0.0048 4.00% 9.43% − +

5
30 0.0037 0.0040 0.0037 0.00% 7.50% − +
80 0.0080 0.0083 0.0078 2.50% 6.02% − +
100 0.0126 0.0122 0.0117 7.14% 4.10% + +

8
30 0.0124 0.0128 0.0119 4.03% 7.03% + +
80 0.0409 0.0415 0.0387 5.38% 6.75% + +
100 0.0584 0.0596 0.0560 4.11% 6.04% + +

𝑡-test result to show whether the two algorithms have signifi-
cant performance difference. In Tables 1, 2, and 3, please note
that the result is the average value of the ten instances for each
problem size and the better results are shown in bold type.
From the results, it can be seen that the PBOVNS can obtain
the best results for only two groups of small size problems,
namely, 3 × 30 and 5 × 30, while the PABOVNS succeeds
in achieving the best results for 8 out of the 9 problem
groups. The average improvement of PABOVSN over the
PBOVNS is about 5.66%, which illustrates the efficiency of
the proposed adaptive selection strategy of neighborhoods.
In addition, the 𝑡-test with 95% confidence level show that the
PABOVSN obtains significantly better results over PBOVNS
for 5 problem groups (“+” means the performance differ-
ence is significant, while “−” means that the performance
difference is insignificant). These experimental results show
that the adaptive selection strategy of neighborhoods can
help to improve the performance of PBOVNS. The major
reason behind this phenomenon is that the adaptive selection
strategy of neighborhoods can adaptively select the most
promising neighborhood for current problem, which in turn
improves the search efficiency.

5.3.2. Efficiency of the Two-Phase Multiobjective Local Search.
As described in Section 4.3.4, themotivation of designing the
two-phase multiobjective local search is to achieve a local
searchwith a good balance of exploitation and exploration. So
in this section, we further tested two variants of PABOVNS:

the first variant only adopts Phase I as the local search and the
second variant only adopts Phase II as the local search.

The comparison results between the three algorithms
are given in Table 2, in which the first variant is denoted
as PABOVNSI and the second variant is denoted as
PABOVNSII. Since the three algorithms have similar CPU
times as is shown in Table 1, in this table the CPU time of each
algorithm is not provided. When comparing PABOVNSI
and PABOVNSII, it appears that the PABOVNSI algorithm
is superior to the PABOVNSII for all the testing problem
groups. In addition, the PABOVNSI algorithm can obtain
the best results for 2 problem groups, namely, 3 × 30 and 5
× 30, among all the three testing algorithms. The proposed
PABOVNS can succeed to obtain the best results for 8
problem groups. More specifically, the proposed PABOVNS
algorithm obtains better results over PABOVNSI for 7 prob-
lem groups, among which the performance difference is
significant for 5 problem groups. In addition, the PABOVNS
algorithm obtains better results over PABOVNSII for all the
problem groups, among which the performance difference
is significant for 8 problem groups. The reason is that the
local search of Phase II (path relinking) has a better search
diversity and it can help to enhance the exploration ability
when combined with the local search of Phase I.

5.3.3. Comparison with Other Algorithms. In this section, we
further compared our algorithm to the other two powerful
algorithms in the literature. Since the biobjective HFS in [37]

Mathematical Problems in Engineering 9

0.2 0.4 0.6 0.8 1.00.0

Total setup times

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l w
ei

gh
te

d
ta

rd
in

es
s

NSGA-II
MOPGA
PABOVNS

Figure 3: Pareto fronts obtained by three algorithms for a problem
of 3 × 100 size.

is similar to our problem (only the objectives are different),
the first algorithm for comparison is the multiobjective
parallel genetic algorithm (MOPGA) proposed by Rashidi
et al. [39] (in this experiment, we reimplemented this algo-
rithm using suggested parameter settings in [39]). Besides
the MOPGA, we developed another comparison algorithm
based on the NSGA-II (Deb et al. [51]) which is the most
famous multiobjective algorithm in the literature. To make
the NSGA-II able to solve our problem, the following mod-
ifications are made. In the modified NSGA-II, the solution
representation is the same one used in our PABOVNS, and
the two-phase multiobjective local search is applied on a
randomly selected solution from the first Pareto front (the
NSGA-II ranks solutions in different Pareto front according
to the objectives of solutions and the first Pareto front is
the nondominated solutions obtained by NSGA-II). The
crossover operator used in NSGA-II is the traditional two-
cutting crossover operator and the mutation operator is a
random insertion move performed on a given solution. The
size of the population in NSGA-II is set to 500 and the
mutation probability is set to 1/𝑛. At each iteration of NSGA-
II, the new solutions generated by the local search and the
new solutions generated by crossover and mutation are used
to update the population. In this experiment, both of the two
comparison algorithms adopt the same stopping criterion of
our PABOVNS, that is, the maximum available CPU time of
0.5 × 𝑛 × 𝑀 seconds.

The comparison results for the three algorithms are
presented in Table 3. Based on the results shown in Table 3,
the following observations can be obtained.

(1) Both the MOPGA and our PABOVNS algorithms
are superior to the modified NSGA-II algorithm.The
MOPGA algorithm obtains better results than the
NSGA-II for 8 out of the 9 problem groups.

(2) With the increase of problem size, the IGD values of
the three algorithms tend to deteriorate due to the fact
that large size problems are more difficult to solve.

0.2 0.4 0.6 0.8 1.00.0

Total setup times

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l w
ei

gh
te

d
ta

rd
in

es
s

NSGA-II
MOPGA
PABOVNS

Figure 4: Pareto fronts obtained by three algorithms for a problem
of 5 × 100 size.

(3) Our PABOVNS succeeds to achieve the best results
for all the 9 problem groups. The average improve-
ment achieved by the PABOVNS is 3.34% over the
MOPGA and 6.57% over the modified NSGA-II,
respectively.

(4) The PABOVNS can obtain significantly better results
overMOPGA for 4 large size problemgroups, namely,
5 × 100, 8 × 30, 8 × 80, and 8 × 100. With comparison
to the modified NSGA-II algorithm, the PABOVNS
achieves significantly better result for 7 problem
groups.

To give a better understanding of the performance dif-
ference among the three algorithms, we further give the
graphical illustration of the results obtained by the three
algorithms for problem groups of 3 × 100, 5 × 100, and 8 ×
100 in Figures 3, 4, and 5, respectively. From these figures, it
can also be seen that our PABOVNS algorithm obtains the
best Pareto front for the three problems.More specifically, the
Pareto fronts obtained by the PABOVNS algorithm are closer
to the referenced Pareto optimal front, and their distribution
is also much better with comparison to the Pareto fronts
obtained by the MOPGA and the NSGA-II.

6. Conclusions

In this paper, we investigate the biobjective HFS to mini-
mize the total setup times and the total weighted tardiness.
To efficiently solve this problem, we developed a Pareto-
based adaptive biobjective variable neighborhood search
algorithm with four major features: job sequence based
coding and decoding method, adaptive selection strategy of
neighborhood, two-phase multiobjective local search, and
external archive with diversity maintenance. Computational
experiments based on a set of randomly generated problems
were carried out and the obtained results demonstrated
that the proposed algorithm is effective and efficient for
the biobjective HFS problem. In addition, the comparison

10 Mathematical Problems in Engineering

0.2 0.4 0.6 0.8 1.00.0

Total setup times

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l w
ei

gh
te

d
ta

rd
in

es
s

NSGA-II
MOPGA
PABOVNS

Figure 5: Pareto fronts obtained by three algorithms for a problem
of 8 × 100 size.

results of the proposed algorithm to the other powerful
metaheuristics in the literature also showed the proposed
algorithm’s efficiency and superiority.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grants 61403277 and 71602143).

References

[1] I. Ribas, R. Leisten, and J. M. Framiñan, “Review and clas-
sification of hybrid flow shop scheduling problems from a
production system and a solutions procedure perspective,”
Computers and Operations Research, vol. 37, no. 8, pp. 1439–
1454, 2010.

[2] Z. H. Jin, K. Ohno, T. Ito, and S. E. Elmaghraby, “Scheduling
hybrid flowshops in printed circuit board assembly lines,”
Production and Operations Management, vol. 11, no. 2, pp. 216–
230, 2002.

[3] D. E. Deal, T. Yang, and S. Hallquist, “Job scheduling in
petrochemical production: two-stage processing with finite
intermediate storage,” Computers and Chemical Engineering,
vol. 18, no. 4, pp. 333–344, 1994.

[4] X. W. Chen, J. G. Zhang, and Y. J. Liu, “Research on the
intelligent control and simulation of automobile cruise system
based on fuzzy system,”Mathematical Problems in Engineering,
vol. 2016, Article ID 420308, 12 pages, 2016.

[5] C. L. P. Chen, Y.-J. Liu, and G.-X. Wen, “Fuzzy neural network-
based adaptive control for a class of uncertain nonlinear
stochastic systems,” IEEE Transactions on Cybernetics, vol. 44,
no. 5, pp. 583–593, 2014.

[6] Y.-J. Liu, J. Li, S. Tong, andC. L. Chen, “Neural network control-
based adaptive learning design for nonlinear systems with full-
state constraints,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 27, no. 7, pp. 1562–1571, 2016.

[7] Y.-J. Liu, Y. Gao, S. Tong, andY. Li, “Fuzzy approximation-based
adaptive backstepping optimal control for a class of nonlinear
discrete-time systems with dead-zone,” IEEE Transactions on
Fuzzy Systems, vol. 24, no. 1, pp. 16–28, 2016.

[8] Y. J. Liu, S. C. Tong, D. J. Li, and Y. Gao, “Fuzzy adaptive control
with state observer for a class of nonlinear discrete-time systems
with input constraint,” IEEE Transactions on Fuzzy Systems, vol.
24, no. 5, pp. 1147–1158, 2016.

[9] G. Y. Lai, Z. Liu, Y. Zhang, C. L. P. Chen, S. L. Xie, and Y. J. Liu,
“Fuzzy adaptive inverse compensation method to tracking con-
trol of uncertain nonlinear systems with generalized actuator
dead zone,” IEEE Transactions on Fuzzy Systems, 2016.

[10] L. X. Tang and X. P.Wang, “A hybrid multi-objective evolution-
ary algorithm for multi-objective optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 17, no. 1, pp. 20–
45, 2013.

[11] X. P. Wang and L. X. Tang, “An adaptive multi-population
differential evolution algorithm for continuous multi-objective
optimization,” Information Sciences, vol. 348, pp. 124–141, 2016.

[12] F. Glover, “Tabu search and adaptive memory programming—
advances, applications and challenges,” in Interfaces in Com-
puter Science and Operations Research, R. S. Barr, R. V.
Helgason, and J. L. Kennington, Eds., vol. 7 of Operations
Research/Computer Science Interfaces Series, pp. 1–75, Kluwer
Academic, 1997.

[13] R. Linn andW. Zhang, “Hybrid flow shop scheduling: a survey,”
Computers and Industrial Engineering, vol. 37, no. 1, pp. 57–61,
1999.

[14] R. Ruiz and J. A. Vazquez-Rodriguez, “The hybrid flow shop
scheduling problem,” European Journal of Operational Research,
vol. 205, no. 1, pp. 1–18, 2010.

[15] M. M. Dessouky, M. I. Dessouky, and S. K. Verma, “Flowshop
scheduling with identical jobs and uniform parallel machines,”
European Journal of Operational Research, vol. 109, no. 3, pp.
620–631, 1998.

[16] S. A. Brah and J. L. Hunsucker, “Branch and bound algorithm
for the flow shop with multiple processors,” European Journal of
Operational Research, vol. 51, no. 1, pp. 88–99, 1991.

[17] O. Moursli and Y. Pochet, “Branch-and-bound algorithm for
the hybrid flowshop,” International Journal of Production Eco-
nomics, vol. 64, no. 1, pp. 113–125, 2000.

[18] E. Néron, P. Baptiste, and J. N. D. Gupta, “Solving hybrid flow
shop problem using energetic reasoning and global operations,”
Omega, vol. 29, no. 6, pp. 501–511, 2001.

[19] S. A. Brah, “A comparative analysis of due date based job se-
quencing rules in a flow shop with multiple processors,” Pro-
duction Planning and Control, vol. 7, no. 4, pp. 362–373, 1996.

[20] A. G. P. Guinet and M. M. Solomon, “Scheduling hybrid flow-
shops to minimize maximum tardiness or maximum comple-
tion time,” International Journal of Production Research, vol. 34,
no. 6, pp. 1643–1654, 1996.

[21] S. V. Sevastianov, “Geometrical heuristics for multiprocessor
flowshop scheduling with uniform machines at each stage,”
Journal of Scheduling, vol. 5, no. 3, pp. 205–225, 2002.

[22] G. J. Kyparisis and C. Koulamas, “Flexible flow shop scheduling
with uniform parallel machines,” European Journal of Opera-
tional Research, vol. 168, no. 3, pp. 985–997, 2006.

Mathematical Problems in Engineering 11

[23] V. Botta-Genoulaz, “Hybrid flow shop scheduling with prece-
dence constraints and time lags to minimize maximum late-
ness,” International Journal of Production Economics, vol. 64, no.
1, pp. 101–111, 2000.

[24] Y. Yang, S. Kreipl, and M. Pinedo, “Heuristics for minimizing
total weighted tardiness in flexible flow shops,” Journal of
Scheduling, vol. 3, no. 2, pp. 89–108, 2000.

[25] G.-C. Lee, J. M. Hong, and S.-H. Choi, “Efficient heuristic algo-
rithm for scheduling two-stage hybrid flowshop with sequence-
dependent setup times,”Mathematical Problems in Engineering,
vol. 2015, Article ID 420308, 10 pages, 2015.

[26] J. Grabowski and J. Pempera, “Sequencing of jobs in some
production system,” European Journal of Operational Research,
vol. 125, no. 3, pp. 535–550, 2000.

[27] T. J. Sawik, “Scheduling algorithm for flexible flow lines with
limited intermediate buffers,” Applied Stochastic Models and
Data Analysis, vol. 9, no. 2, pp. 127–138, 1993.

[28] B.Wardono andY. Fathi, “A tabu search algorithm for themulti-
stage parallel machine problem with limited buffer capacities,”
European Journal of Operational Research, vol. 155, no. 2, pp.
380–401, 2004.

[29] X. P. Wang and L. X. Tang, “A tabu search heuristic for the
hybrid flowshop scheduling with finite intermediate buffers,”
Computers & Operations Research, vol. 36, no. 3, pp. 907–918,
2009.

[30] Z. Cui and X. Gu, “A discrete group search optimizer for hybrid
flowshop scheduling problem with random breakdown,”Math-
ematical Problems in Engineering, vol. 2014, Article ID 621393,
11 pages, 2014.

[31] W. Xiao, P. Hao, S. Zhang, and X. Xu, “Hybrid flow shop
scheduling using genetic algorithms,” in Proceedings of the 3th
World Congress on Intelligent Control and Automation, pp. 537–
541, IEEE Press, July 2000.

[32] M. E. Kurz and R. G. Askin, “Scheduling flexible flow lines
with sequence-dependent setup times,” European Journal of
Operational Research, vol. 159, no. 1, pp. 66–82, 2004.

[33] R. Ruiz and C. Maroto, “A genetic algorithm for hybrid flow-
shops with sequence dependent setup times and machine eligi-
bility,” European Journal of Operational Research, vol. 169, no. 3,
pp. 781–800, 2006.

[34] Y. Zhang, S. Liu, and S. Sun, “Clustering and genetic algorithm
based hybrid flowshop scheduling with multiple operations,”
Mathematical Problems in Engineering, vol. 2014, Article ID
167073, 8 pages, 2014.

[35] O. Engin and A. Döyen, “A new approach to solve hybrid flow
shop scheduling problems by artificial immune system,” Future
Generation Computer Systems, vol. 20, no. 6, pp. 1083–1095,
2004.

[36] L. Tang and X. Wang, “An improved particle swarm optimiza-
tion algorithm for the hybrid flowshop scheduling to minimize
total weighted completion time in process industry,” IEEE
Transactions on Control Systems Technology, vol. 18, no. 6, pp.
1303–1314, 2010.

[37] K.-C. Ying and S.-W. Lin, “Multiprocessor task scheduling in
multistage hybrid flow-shops: an ant colony system approach,”
International Journal of Production Research, vol. 44, no. 16, pp.
3161–3177, 2006.

[38] J. Behnamian, S. M. T. Fatemi Ghomi, and M. Zandieh, “A
multi-phase covering Pareto-optimal front method to multi-
objective scheduling in a realistic hybrid flowshop using a
hybridmetaheuristic,” Expert Systems with Applications, vol. 36,
no. 8, pp. 11057–11069, 2009.

[39] E. Rashidi, M. Jahandar, and M. Zandieh, “An improved hybrid
multi-objective parallel genetic algorithm for hybrid flow shop
scheduling with unrelated parallel machines,” International
Journal of Advanced Manufacturing Technology, vol. 49, no. 9-
12, pp. 1129–1139, 2010.

[40] S. H. Abyaneh and M. Zandieh, “Bi-objective hybrid flow shop
scheduling with sequence-dependent setup times and limited
buffers,” International Journal of AdvancedManufacturing Tech-
nology, vol. 58, no. 1–4, pp. 309–325, 2012.

[41] S. M. Mousavi, M. Mousakhani, and M. Zandieh, “Bi-objective
hybrid flow shop scheduling: a new local search,” International
Journal of AdvancedManufacturing Technology, vol. 64, no. 5–8,
pp. 933–950, 2013.

[42] M. K. Marichelvam, T. Prabaharan, and X. S. Yang, “A dis-
crete firefly algorithm for the multi-objective hybrid flowshop
scheduling problems,” IEEE Transactions on Evolutionary Com-
putation, vol. 18, no. 2, pp. 301–305, 2014.

[43] N. Mladenović and P. Hansen, “Variable neighborhood search,”
Computers < Operations Research, vol. 24, no. 11, pp. 1097–1100,
1997.

[44] P. Hansen, N. Mladenović, and J. A. Moreno Pérez, “Variable
neighbourhood search: methods and applications,” Annals of
Operations Research, vol. 175, no. 1, pp. 367–407, 2010.

[45] W.M. Cheng, P. Guo, Z. Q. Zhang,M. Zeng, and J. Liang, “Vari-
able neighborhood search for parallel machines scheduling
problem with step deteriorating jobs,” Mathematical Problems
in Engineering, vol. 2012, Article ID 928312, 20 pages, 2012.

[46] X. Wang and L. Tang, “A population-based variable neighbor-
hood search for the single machine total weighted tardiness
problem,”Computers andOperations Research, vol. 36, no. 6, pp.
2105–2110, 2009.

[47] M. Nawaz, E. E. Enscore Jr., and I. Ham, “A heuristic algorithm
for the m-machine, n-job flow-shop sequencing problem,”
Omega, vol. 11, no. 1, pp. 91–95, 1983.

[48] X. P.Wang and L. X. Tang, “Amachine-learning based memetic
algorithm for the multi-objective permutation flowshop
scheduling problem,” Computers & Operations Research, vol.
79, pp. 60–77, 2017.

[49] M. Ciavotta, G.Minella, and R. Ruiz, “Multi-objective sequence
dependent setup times permutation flowshop: a new algorithm
and a comprehensive study,” European Journal of Operational
Research, vol. 227, no. 2, pp. 301–313, 2013.

[50] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q.
Zhangd, “Multiobjective evolutionary algorithms: a survey of
the state of the art,” Swarm and Evolutionary Computation, vol.
1, no. 1, pp. 32–49, 2011.

[51] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans-
actions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197,
2002.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

