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Most of the existing algorithms to estimate the direction of arrival (DOA) of signals dealwith the situation that all signals are circular.
However, it is quite often in practical engineering that circular and noncircular signals appear in the same time. To effectively detect
DOA of signals in such circumstances, we propose a novel algorithm. Firstly, using received data and its conjugate, we can detect
more signals because of the doubled array aperture. Secondly, through unitary transform and multistage Wiener filter (MSWF)
technology, we can obtain the noise subspace of array without performing eigendecomposition. Finally, by employing the improved
MUSIC algorithm,we can acquire the DOA of the mixed circular and noncircular signals through two-stage search. Simulation
results clearly demonstrate the effectiveness of the proposed algorithm.

1. Introduction

In the array signal processing, as a kernel technology, direc-
tion of arrival (DOA) estimation for narrowband plane wave
has received a significant amount of attention and it has
been extensively applied in the field of radar, mobile com-
munication, sonar, and seismology. As the typical subspace
high-resolution DOA estimation algorithms, multiple signal
classification (MUSIC) algorithm and estimation of signal
parameters via rotational invariance technique (ESPRIT)
algorithm [1] have become popular and have received sig-
nificant amount of attention due to their high-resolution
performance over the last several decades. Recently, some
novel methods for DOA estimation have been proposed
in [2–5]. In [2], based on modified covariance matching
criterion method, Si et al. proposed a novel algorithm which
has more precise estimation even with low SNR. Using pro-
jection spectrum and eigenspectrum, Huang [3] presented a
fast DOA estimation algorithm. Chen et al. [4] proposed a
new approach which can be used for direction of departure
(DOD) estimation andDOA estimation. In [5], Jančovič et al.
proposed an algorithm which is useful when there are more
sources than sensors. These algorithms above mentioned

enlarge the scope range of DOA estimation; however, all
these algorithms usually assume that the incoming signals
are circular, but there are many noncircular signals, such
as BPSK and GMSK modulated signals in the applications
of intelligent antenna systems. People often use BPSK and
GMSK signals instead of normal narrow circular signals to
conduct DOA estimation in such systems. Utilizing received
noncircular signals and their conjugate, the array aperture is
doubled and it is possible to estimate more signals than array
sensors. Noncircular signals have acquired a lot of attention
because of the noncircularity properties. More and more
researchers have shown their concerns on using the feature of
noncircular to improve the performance of parameters esti-
mation, for example, noncircular root-MUSIC [6], enhancing
unitary ESPRIT [7], and MUSIC-like algorithm [8, 9] for
noncircular signals. In [10], Abeida and Delmas analyzed
explicitly a MUSIC-like algorithm for noncircular signals. In
[11], Hassen et al. proposed a new algorithm which can be
used for spatially correlated noncircular signals. Abamovich
et al. [12] expanded noncircular to 2D space and Yang et al.
[13] proposed a low-complexity 2D noncircular algorithm.
More recently, the emerging domain of sparse representations
has given further interest to the issue of DOA estimation,
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using sparse representations; Liu et al. [14] proposed a high-
precisionDOA estimation algorithm for noncircular sources.
All these algorithms for noncircular signals abovementioned
enlarge the array aperture and can detect more signals.
Also, these algorithms have higher resolution than those
algorithms corresponding to using circular signals. However,
it is more realistic in practical engineering that circular and
noncircular signals appear together. It is a realistic problem to
estimate signals DOA under such circumstances. The author
in [15] brought forward an improved MUSIC algorithm that
has good performance when circular and noncircular signals
appear together, but it needs eigendecomposition to obtain
signal subspace. Because performing eigendecomposition
results in heavy computation load to the systems, it is not
appropriate to use the improvedMUSIC algorithm generated
in [15] in actual applications. Recently, Goldstein et al. [16]
introduced a multistage Wiener filter (MSWF), adopting
the MSWF technique; without the estimation of covariance
matrix and its eigendecomposition, the signal subspace can
be estimated. Based on MSWF theory, the authors in [17]
proposed a fast subspace algorithm for narrowband circular
signals; however, thismethod fails when there are noncircular
signals in the received data.

In this paper, we propose a fast DOA estimation algo-
rithm at the circumstance of mixed circular and noncircular
signals. The paper is organized as follows. In Section 2, we
introduce the system model that will be used throughout
the paper. In Section 3, we introduce improved MUSIC
algorithm for mixing circular and noncircular signals. In
Section 4, MSWF technique is introduced. In Section 5, we
formulate the proposed fast improved MUSIC algorithm
for mixed circular and noncircular signals. In Section 6,
simulation results confirm the good performance of our
proposed fast algorithm. Finally, our conclusion is drawn in
Section 7.

2. Array and Data Model

Consider unifrom linear array (ULA) composed of 𝑀 sen-
sors, regarding first array sonser as the reference; array inter-
space is 𝑑 which is equal to 𝜆/2 and 𝜆 is signal wavelength.
Suppose that there are 𝐿 signals including 𝐿

𝑟
noncircular

signals with direction 𝜃
𝑖
(𝑖 = 1, 2, . . . , 𝐿

𝑟
) and 𝐿

𝑐
circular

signals with direction 𝜃
𝑖
(𝑖 = 1, 2, . . . , 𝐿

𝑐
) impinging on the

array, where 𝐿 = 𝐿
𝑟
+𝐿
𝑐
. The vector of received signal at time

𝑡 can be modeled as follows:

X (𝑡) = A (𝜃) S (𝑡) + N (𝑡) , (1)

where X(𝑡) is array output vector. A(𝜃) = [a(𝜃
1
), a(𝜃
2
), . . . ,

a(𝜃
𝐿
)] is the 𝑀 × 𝐿 array manifold matrix and a(𝜃

𝑖
) =

[1, 𝑒
𝑗𝜋 sin(𝜃𝑖), . . . , 𝑒𝑗𝜋(𝑀−1) sin(𝜃𝑖)]𝑇 is steering vector; the opera-

tors (⋅)𝑇 denote transpose. Consider S(𝑡) = [S𝑇
𝑐
(𝑡) S𝑇
𝑛𝑐
(𝑡)]
𝑇

,
where S

𝑐
(𝑡) = [s

𝑐1
(𝑡), s
𝑐2
(𝑡), . . . , s

𝑐𝐿𝑐

(𝑡)]
𝑇 is circular signal

vector and S
𝑛𝑐
(𝑡) = [s

𝑛𝑐1
(𝑡), s
𝑛𝑐2

(𝑡), . . . , s
𝑛𝑐𝐿𝑟

(𝑡)]
𝑇 is noncir-

cular signal vector. Using the nature of noncircular signals,
s
𝑛𝑐𝑖
(𝑡) can be expressed as s

𝑛𝑐𝑖
(𝑡) = 𝑒

𝑗𝜙𝑖s
𝑛𝑐𝑖
(𝑡), in which s

𝑛𝑐𝑖
(𝑡)

refer to the real of noncircular signal, 𝜙
𝑖
is initial phase of

noncircular signal, and we can get S
𝑛𝑐
(𝑡) = ΓS

𝑛𝑐
(𝑡), where

Γ = diag{𝑒𝑗𝜙𝑖}, S
𝑛𝑐
(𝑡) = [s

𝑛𝑐1
(𝑡), s
𝑛𝑐2

(𝑡), . . . , s
𝑛𝑐𝐿𝑟

(𝑡)]
𝑇. Define

S
0
(𝑡) = [S𝑇

𝑛𝑐
(𝑡), S𝑇
𝑐
(𝑡)]
𝑇, and signal vector S(𝑡) can be denoted

as

S (𝑡) = BS
0
(𝑡) (2)

with B = [
Γ 0
0 I ], and I is L

𝑐
× L
𝑐
identity matrix. Substituting

formula (2) into formula (1), we can get

X (𝑡) = A (𝜃)BS
0
(𝑡) + N (𝑡) (3)

in which N(𝑡) = [n
1
(𝑡), . . . ,n

𝑀
(𝑡)]
𝑇 is noise vector; here

additional noise is Gaussian white noise.

3. Improved MUSIC Algorithm

The key technique of MUSIC algorithm is the orthogonal
between with signal subspace and noise subspace, and the
steering vector a(𝜃) belongs to signal subspace which is
orthogonal to noise subspace. Using the orthogonal feature,
through angle search from 0∘∼180∘, we can obtain the DOA
estimation of signals. MUSIC algorithm has good perfor-
mance when all the signals are circular sources, but it is more
realistic that some users transmit circular signals while others
send out noncircular signals in practical engineering; in this
circumstance, MUSIC algorithm cannot work well. In order
to correctly estimate the signalsDOA,Gao et al. [15] proposed
the improved MUSIC algorithm to cope with a more general
scenario where both circular and noncircular signals coexist.

Using observed signal vector and its complex conjugate
counterpart, get a new vector

y
0
(𝑡) = [

X
X∗]

= [
A (𝜃)BS

0
(𝑡)

(A (𝜃)BS
0
(𝑡))
∗] + [

N (𝑡)

N(𝑡)
∗]

= ÂŜ (𝑡) + N̂ (𝑡)

(4)

from which

Â = [
A
𝑛𝑐
Γ A

𝑐
0

(A
𝑛𝑐
Γ)
∗ 0 A

𝑐

∗] , (5)

where A
𝑛𝑐

= [a(𝜃
𝑛𝑐1

), a(𝜃
𝑛𝑐2

), . . . , a(𝜃
𝑛𝑐𝐿𝑟

)] is manifold matrix
about noncircular signals, and A

𝑐
= [a(𝜃

𝑐1
), a(𝜃
𝑐2
), . . . ,

a(𝜃
𝑐𝐿𝑐

)] is manifold matrix for circular signals. Consider

Ŝ(𝑡) = [S𝑇
𝑛𝑐
(𝑡) S𝑇
𝑐
(𝑡) S𝐻
𝑐
(𝑡)]
𝑇

; 0 represents the 𝑀 × 𝐿
𝑐
zeros

matrix.When 𝐿
𝑟
+2𝐿
𝑐
≤ 2𝑀, Â is full column rank for any 𝜃.

Supposing that 𝑁 snapshots are collected, utilizing y
0
(𝑡), we

can acquire the array autocovariance matrix. Consider

R
𝑥
= 𝐸 [y

0
(𝑡) y
0
(𝑡)
𝐻

] = ÂR̂
𝑠
Â𝐻 + 𝜎

2

𝑛
I
2𝑀

. (6)

The operators 𝐸{⋅} and (⋅)
𝐻 denote expectation and

conjugate transpose, respectively; R̂
𝑠
= 𝐸{Ŝ(𝑡)Ŝ𝐻(𝑡)}. R̂

𝑠
is
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signal autocovariancematrixwhich is full rankwhen received
signals are not correlated.

The eigendecomposition of the positive definite Hermi-
tian matrix R

𝑥
can be written as

R
𝑥
= U
𝑠
ΛU𝐻
𝑠
+ 𝜎
2U
𝑛
U𝐻
𝑛
, (7)

whereΛ is (𝐿
𝑟
+2𝐿
𝑐
)×(𝐿
𝑟
+2𝐿
𝑐
) diagonal matrix. According

to the knowledge of space spectrum, we know that R
𝑥
has

(𝐿
𝑟
+ 2𝐿
𝑐
) larger eigenvalues and (2𝑀 − 𝐿

𝑟
− 2𝐿
𝑐
) smaller

eigenvalues if the received signals are uncorrelated. U
𝑠

=

[u
1
, u
2
, . . . , u

𝐿𝑟+2𝐿𝑐
], U
𝑛
= [u
𝐿𝑟+2𝐿𝑐+1

, . . . , u
2𝑀

], the columns
of U
𝑠
contain the signal subspace eigenvectors of R

𝑥
, and the

columns of U
𝑛
contain the noise subspace eigenvectors f R

𝑥
.

Since Â andU
𝑠
span the signal subspace, both of them are

orthogonal to the noise subspace spanned by the matrix U
𝑛
.

We derive DOA estimation by the criteria as follows.
For noncircular signals, let us define

G (𝜃) = Z𝐻 (𝜃)U
𝑛
U𝐻
𝑛
Z (𝜃) , (8)

where Z(𝜃) = [
a(𝜃) 0
0 a∗(𝜃) ]. When received signals come from

the direction of 𝜃
𝑛𝑐𝑖

and G(𝜃) is rank deficient, so we can use
the following formula to estimate noncircular sources DOA:

P
𝑛𝑐
(𝜃) =

1

det {G (𝜃)}
=

1

det {Z𝐻 (𝜃)U
𝑛
U𝐻
𝑛
Z (𝜃)}

. (9)

The prerequisite for using formula (9) is that the number
of columns of U

𝑛
should be no less than 2; otherwise, G(𝜃)

is rank deficient whatever the 𝜃 is. Therefore, correctly using
formula (9) is 2𝑀 − 𝐿

𝑟
− 2𝐿
𝑐
≥ 2.

For any direction coming from {𝜃
𝑐1
, 𝜃
𝑐2
, . . . , 𝜃

𝑐𝐿𝑐
}, the U

𝑛

and Â are orthogonal, and we can get formula as follows:

U𝐻
𝑛
[
a (𝜃
𝑐𝑖
)

0 ] = 0, U𝐻
𝑛
[

0
a∗ (𝜃
𝑐𝑖
)
] = 0. (10)

Consequently, we can apply the following estimator to
estimate DOA for circular signals:

P
𝑐
(𝜃) =

1

a𝐻 (𝜃)U
𝑛1
U𝐻
𝑛1
a (𝜃)

, (11)

where U
𝑛1

= U
𝑛
(1 : 𝑀, :).

4. Subspace Estimation by
Multistage Wiener Filter

TheMSWF technology presented by Goldstein et al. is to find
an approximate solution to the Wiener-Hopf equation which
does not need the inverse of array covariance matrix. Using
multiple decomposition of MSWF, we can obtain estimated
signal subspace fast. Figure 1 shows the structure of two-stage
MSWF.

Using the operator T
1

= [h
1
,B
1
], we can decompose

y
0
(𝑡) into two subspaces through orthogonal projection. One

subspace is parallel to h
1
, and the other subspace named B

1

d

d

d

d
d

d

+

+

+

−

−

−

1

2

0

h2

h1

B1

B2
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2

Figure 1: Two-stage orthogonal projection decomposition based on
MSWF technique.

is orthogonal to h
1
. The definition of h

1
can be expressed as

follows:

h
1
=

ry0d0

√(ry0d0)
𝐻

ry0d0

,
(12)

where ry0d0 = 𝐸[y
0
(𝑡)d𝐻
0
(𝑡)] is cross-correlation function and

B
1
is block matrix and it is the null space of ry0d0 . Using

T
2
= [h
2
,B
2
], we can deal with y

1
(𝑡) by the samemethod, and

then new MSWF has appeared. If the stage of MWSF is big
enough, the dimesion of the cross-correlation vector and the
row of input data could be declined, untill droping to 1 finally.
Using MSWF forward decline, we can attain signal subspace
of R
𝑥
fast. Through 𝐿

𝑟
+ 2𝐿
𝑐
stage recursive decomposition,

signal subspace U
𝑠
could be achieved, which avoid 2𝑀 stage

recursive decomposition of the noise subspace, and the whole
algorithm computational complexity is decreased.

5. Fast Improved MUSIC Algorithm Based on
Unitary Transform and MSWF

5.1. Unitary Transform for Received Data. Compared with
real multiplication, the computational complexity of the
complex multiplication is about fourfold. Usually, the array
autocovariance matrix R

𝑥
is a complex matrix, and the

operand of complex matrix is bigger than that of real
matrix. If R

𝑥
is complex centro-Hermitian, through unitary

transform, we can change it into a real matrix.
For a given arbitrarily matrixQ, we denote Õ

𝑃
as a 𝑃 × 𝑃

dimension exchangematrix with ones on its antidiagonal and
zeros in other places. We say Q is a left-Π-real matrix if it
satisfies ÕpQ∗ = Q. Here we define a unitary matrix

Q
2𝑛+1

=
1

√2

[
[
[

[

I
𝑛

0 𝑗I
𝑛

0𝑇 √2 0𝑇

Õ
𝑛

0 −𝑗Õ
𝑛

]
]
]

]

, (13)

where Q
2𝑛+1

is a left-Π-real matrix when the dimension of
matrix is odd. If it is even, we can get a unitary left-Π-real
matrix by dropping its center row and center column.



4 Journal of Electrical and Computer Engineering

Suppose T
𝑝
and U

𝑞
are 𝑝 × 𝑝 and 𝑞 × 𝑞 dimension left-

Π-real matrices. Considering the transformation of 𝜙, we can
obtain

𝜙 (M) : M → T−1
𝑝
MU
𝑞
. (14)

For an arbitrarily complex centro-Hermitian matrix M,
under the condition that the dimensions are kept the same,
we can transform it into a real matrix by (14).

In order to exploit the feature of the noncircular signal
completely, we construct a novel data vector

Z = [y
0
Õ
2𝑀

y∗
0
Õ
𝑁
] . (15)

Using 𝜙(Z) = Q
2𝑀

ZQ
2𝑁
, we can obtain the correspond-

ing real matrix of Z.

5.2. Fast Improved MUSIC Algorithm. Although we can uti-
lize improvedMUSIC algorithm to conduct DOA estimation
in the circumstance that circular and noncircular signals
coexist, it is difficult to use it in practical engineering because
of the heavy computational burden of the algorithm. The
improved MUSIC algorithm can get the noise subspace
through eigendecomposition, while it is time-consuming to
compute the eigendecomposition, so the improved MUSIC
algorithm is not suitable. If we want to use it in practice, we
must reduce the computational load of the algorithm. Using
unitary transform and MSWF, we can get a fast improved
MUSIC algorithm. Here we suppose that the stage decline
number of signal subspace is 𝐿

𝑟
+ 2𝐿
𝑐
, the stage decline

number of noise subspace is 2𝑀, and 𝐿
𝑟
+ 2𝐿
𝑐
is far less than

2𝑀. The detailed procedures of the proposed fast improved
MUSIC algorithm are given as follows.

(1) Choose initial reference signal d
0
(𝑘) = e∗Q

2𝑀
ZQ
2𝑁
,

and x
0
= Q
2𝑀

ZQ
2𝑁

is the input data ofMSWF, where
e = [1, 0, . . . , 0].

(2) Using forward decline for any 𝑖, compute cross-
correlation h

𝑖
(𝑖 = 1, 2, . . . , 𝐿

𝑟
+ 2𝐿
𝑐
). Consider

h
𝑖
=

𝐸 [x
𝑖−1

(𝑡) d𝐻
𝑖−1

(𝑡)]

𝐸 [x
𝑖−1

(𝑡) d𝐻
𝑖−1

(𝑡)]
2

,

d
𝑖
(𝑡) = h𝐻

𝑖
x
𝑖−1

(𝑡) ,

B
𝑖
= null {h

𝑖
} = I − h

𝑖
h𝐻
𝑖
,

x
𝑖
(𝑡) = B𝐻

𝑖
x
𝑖−1

(𝑡) .

(16)

(3) Using estimated signal number 𝐿
𝑟
+ 2𝐿
𝑐
to estimate

signal subspace

U
𝑠
= [h
1
, h
2
, . . . , h

𝐿𝑟+2𝐿𝑐
] . (17)

(4) Using formula (18),we can get noncircular signals and
circular signals DOA

P
𝑛𝑐
(𝜃) =

1

det {K (𝜃)}

=
1

det {(Q
2𝑀

Z (𝜃))
𝐻

(I
2𝑀

− U
𝑠
U𝐻
𝑠
) (Q
2𝑀

Z (𝜃))}

,

P
𝑐
(𝜃) =

1

[Q
𝑀
a (𝜃)]𝐻U

𝑛1
U𝐻
𝑛1
Q
𝑀
a (𝜃)

,

(18)

whereU
𝑛1
U𝐻
𝑛1
is a blockmatrix which is equal toV(1 :

𝑀, 1 : 𝑀), and V = I − U
𝑠
U𝐻
𝑠
.

5.3. Fast Improved MUSIC Algorithm Computational Com-
plexity Analysis. We know that the columns of K(𝜃) should
be greater than or equal to 2, and K(𝜃) does not decrease
rank only at the condition of 2𝑀 − 𝐿

𝑟
− 2𝐿
𝑐

≥ 2. So
the maximum estimated signal number of our fast improved
MUSIC algorithm is 2𝑀 − 2.

Computational complexity of subspace estimation for
MUSIC algorithm mainly consists of two parts: one is
correlation matrix operand which is equal to 𝑂(𝑁𝑀

2

) and
the other is eigendecomposition which is equal to 𝑂(𝑀

3

).
The sum of the computational complexity is 𝑂(𝑁𝑀

2

+ 𝑀
3

).
For NC-MUSIC algorithm, the computational complexity is
𝑂(4𝑁𝑀

2

+ 8𝑀
3

). Using forward decline of MSWF based
on correlation subtraction construction, if the number of
mixed signals is known in advance, the computational load
of estimation subspace is only𝑂(2𝑀𝑁𝐿

𝑟
+4𝑀𝑁𝐿

𝑐
). Because

we utilize the uniform transform before using MSWF tech-
nique, the computational load for acquiring estimated signal
subspace of our fast improved MUSIC algorithm is only
𝑂(𝑀𝑁𝐿

𝑟
/2 +𝑀𝑁𝐿

𝑐
). Normally, source number 𝐿 = 𝐿

𝑟
+ 𝐿
𝑐

is less than𝑀; therefore, the computational complexity of our
fast algorithm is decreased fast.

6. Simulation Results

In this section, we will restrict our discussion to 1-D ULA
consisting of 6 sensors with interelement space 𝑑 = 𝜆/2

and noncircular and circular signals come from far field at
the same time. Consider the application in communication;
here noncircular signals are binary phase shift keying (BPSK)
signals. We use 𝑁 = 600 snapshots to estimate the array
covariance matrix, and the additional noise is ideal Gaussian
white noise. Independent Monte-Carlo research number is
100, and the root mean square error (RMSE) for circular and
noncircular signals is defined as

RMSE
1
= √

1

𝐿
𝑐
𝑁

𝐿𝑐

∑

𝑖=1

𝑁

∑

𝑘=1

(𝜃
𝑖
− 𝜃
𝑖
)
2

,

RMSE
2
= √

1

𝐿
𝑟
𝑁

𝐿𝑟

∑

𝑖=1

𝑁

∑

𝑘=1

(𝜃
𝑖
− 𝜃
𝑖
)
2

.

(19)
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Figure 2: Improved MUSIC spectrum with 10 SNR.
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Experiment 1. Three BPSK noncircular signals and two circu-
lar signals are impinging on the array; the incidence angles are
−30∘,−15∘, 5∘ and 20∘, and 35∘, respectively. Simulation results
of the improved MUSIC algorithm and the fast improved
MUSIC algorithm are shown in Figures 2 and 3, respectively.
From the simulation results, we know that both algorithms
can estimate five signals DOA correctly and estimated effec-
tion are perfect. It is noticed that although the peak of the
improvedMUSIC algorithm is sharper than the fast improved
MUSIC algorithm, the difference is not obvious, especially
when the SNR is high. The computational load for signal
subspace of the fast improvedMUSIC algorithm is𝑂(12600),
while the improvedMUSIC algorithm computational burden

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

SNR (dB)

RM
SE

 (d
eg

)

One noncircular
Two noncircular
Three noncircular

Figure 4: RMSE versus SNR.

is 𝑂(88128). The former computational load is far less than
the latter. Because of the low computational complexity,
the fast improved MUSIC algorithm has more wonderful
prospect than the improved MUSIC algorithm in practical
engineering.

Experiment 2.The number of noncircular and circular signals
is seven; the incidence angles are −40∘, −30∘, −15∘, −5∘,
10∘, 20∘, and 35∘. Consider three cases where there are one,
two, and three noncircular sources. The first case with one
noncircular signal is coming from angle −40∘; the angles of
the second case with two noncircular signals are −40∘ and
−30∘; the third case with three noncircular signals is coming
from −40∘, −30∘, and −15∘, respectively. From simulation
results shown in Figures 4 and 5, we know that the fast
improved MUSIC algorithm can estimate 7-signal DOA, and
the estimated number is larger than the number of array
sensors. It is clear that the performance of the fast improved
MUSIC algorithm becomes better with the increasement of
noncircular signals due to the increasement in the dimension
of noise subspace.

Experiment 3. The maximum detected number for the fast
improvedMUSIC algorithm is 2𝑀−2under the circumstance
of mixed noncircular and circular signals. For 6-sensor ULA,
we know the largest detected number is 10 which is equal to
𝐿
𝑟
+ 2𝐿
𝑐
, so the maximum detected number for noncircular

signals is 8 (eight noncircular signals and one circular signal
are impinging at the same time) and the maximum detected
number for circular signals is 4 (two noncircular signals
and four circular signals are impinging at the same time).
The simulation results (see Figures 6 and 7) confirm the
effectiveness of theoretical analysis.
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7. Conclusion

In this paper, we presented a fast DOA estimation algorithm
for the situation where circular and noncircular signals coex-
ist.The proposed algorithmhas high estimation accuracy and
can estimate both circular and noncircular signals for ULA.
It has two important advantages: firstly, because the number
of sources resolved by our method can be greater than the
number of array sensors, it is very suitable when there are
multiple signals needing to be detected with small array.
Secondly, it has low computational complexity compared to
the improved MUSIC algorithm, so it has a wider range of
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Figure 7: Spectrum with four circular signals under 15 SNR.

prospective application in real-time DOA estimation. The
computer simulations validate the effectiveness of our new
method.
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