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The inverse scattering problem of an interior cavity with three different boundary conditions is considered. Bayesian method is used
to reconstruct the shape of the cavity from scattered fields incited by point source(s) and measured on a closed curve inside the
cavity. We prove the well-posedness in Bayesian perspective and present numerical examples to show the viability of the method.

1. Introduction

Recently, the inverse scattering problem of an interior cavity
attracts many researchers’ attention due to its useful applica-
tions in industry. For example, in nondestructive testing the
sources and receivers are sometimes placed inside the cavity
to test the structural integrity [1]. Different from the typical
inverse obstacle problem which is an exterior boundary value
problem where the wave incidence and measurements are
taken outside the obstacle, our problem is to recover the shape
of the cavity from point source(s) and measurements on a
closed curve inside the cavity. To be precise, we denote the
cavity by a bounded simply connected domain D ¢ R?
with Lipschitz boundary 0D. Our aim is to reconstruct the
boundary 0D from measurements (scattered waves) taken on
a closed curve C inside the cavity D (see Figure 1). The point
source(s) (incident waves) are also located on curve C.

Some numerical methods have been proposed for this
kind of inverse problem. The first paper related to this
interior problem with Dirichlet boundary condition is Qin
and Colton [2]. They proved the uniqueness and used a
modification of linear sampling method to reconstruct the
shape of the cavity. Then they developed this method for
impedance boundary condition [3] and Hu et al. developed
this method for mixed boundary condition [4]. In 2011,
Qin and Cakoni [5] proposed a nonlinear integral equation
method and Zeng et al. [6] developed the linear sampling

method for inverse interior electromagnetic scattering prob-
lem. A decomposition method has been presented by Zeng et
al. in [7]. Recently Liu [8] proposed a factorization method
for this inverse interior cavity problem.

Bayesian theory is the central part of statistical inversion
theory, so sometimes we just call the statistical inversion
method Bayesian method. Different from the traditional
approach which produces single estimate of the unknowns,
Bayesian method produces a distribution which describes
the behaviour of solution based on the prior information
and the random measurement. All variables in the model
are viewed as random variables and the randomness that is
the degree of information about these variables is coded in
probability distributions. Bayesian approach plays same role
as regularization methods when dealing with the ill-posed
inverse problems. Every prior distribution can be replaced by
an appropriately chosen penalty and it tells us the information
hidden in the penalty. Another advantage of Bayesian method
is that it is a good interpretation of mathematical models,
well understood, and generally accepted [9]. From numerical
perspective, Bayesian approach is easy to encode when you
already have the numerical method for direct problem. The
process of solving direct problem can be viewed as a black
box, because we are just concerned with the input and output.
Although the computational amount is large for we should
sample many points to describe the posterior distribution,
Bayesian method is already used in many application areas
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FIGURE 1: Cavity D and the measurement location C.

with the development of computational capabilities. For some
classical books and papers about Bayesian method we refer to
[9-14].

Due to the advantages stated above, we choose Bayesian
method to solve the inverse interior cavity problem. The
study of using Bayesian approach for shape reconstruction in
inverse scattering problem is a fairly new topic. It brings the
randomness into the deterministic problem and provides us
with a new perspective to view our problem. In the traditional
method, the reconstructed geometries are different when the
input of random noise varies and we do not know which
one is more reliable. But in the Bayesian method we can
directly obtain the distribution of our reconstructed result
and it will not change when the distribution of noise is
decided. From numerical simulation of the distribution we
know which reconstructed geometries are more reliable (with
high probability). Then we can use the statistic characteristics
of this distribution, for example, the mean value, to estimate
the result we wanted. Comparing to the sampling method,
Bayesian method does not need to measure scattered fields
corresponding to many point sources, respectively. Only
measuring the scattered field once is enough. Of course,
there are disadvantages of Bayesian method; for example,
the computational efficiency is not high. But it gives us
a new way to understand and cope with inverse interior
cavity problem and it can be also extended to other inverse
scattering problems, such as inverse open cavity problem and
inverse rough surface problem. In our paper, we adopt the
framework in [14] for an interior inverse scattering problem
with three different boundary conditions. We prove the well-
posedness of Bayesian method for this problem and present
some numerical results.

The outline of this paper is as follows. In Section 2 we
describe the problem and give the Bayesian formulation of
our problem. In Section 3, we prove two important properties
of the direct solution operator and get the well-posedness of
Bayesian method. In Section 4, some numerical examples are
presented to show the effectiveness of our method.

2. Bayesian Formulation of the Problem

In this paper we consider a TM polarized time harmonic
electric dipole located inside an infinite cylinder. Let the cross
section of the cylinder D ¢ R? be a simply connected domain
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with C*® boundary dD. We assume the point sources and the
observational points all locate on curve C inside the domain
D. Then the above scattering problem reduces to finding the
scattered field »° which satisfies

A +Ku* =0 in D, (1)

Bu' = - Bu', on D, (2)

where k > 0 is the wave number and #/' is the incident wave
given by

U (x) = © (x,d) = iHé” (klx~dl). (3)

Here, i = +/-1, d is a fixed point on C, and ®(x,d)
is the fundamental solution of two dimensional Helmholtz
equations. & is a linear operator defined by

P =1, for sound-soft boundary condition,

0 .
B = 3 for sound-hard boundary condition, (4)
B = % +iAl, for impedance boundary condition.

Here, A > 0 and v is the unit outward normal to D.

The direct problem is solving the above equation to
get scattered field u° for given D. The inverse problem is
recovering the shape D for given measurements u*. To ensure
the uniqueness of interior scattering problem, we assume that
k? is not an eigenvalue for —A corresponding to boundary
condition (2) of D. For simplification, we assume D is a
starlike domain with respect to the origin. Thus, we can
represent the boundary 0D by

oD := {r=r(0) (cos 0, sin )
(5)
=exp (q(0)) (cosH,sin6), O€[0,2r]},

where 0 < 7 < R,. We set q = Inr just for the convenience of
the proof in the next section. Then our model can be written
as

y=%(q)+9, (6)

where & := (u'(x,),...,u’(x,)) (n is the number of mea-
surements, i.e., y € R") is a finite dimensional observational
operator corresponding to (1) and vector y is the observa-
tional data with noise 8. We describe our prior information
about g € X, in terms of a probability measure y,. Here, X
is some function space to be chosen (see Section 3.1). And
we use Bayes” formula to calculate the posterior probability
measure (4, for g giveny. Let 77y and 77, denote the probability
density functions of measures ¢, and p,. By the knowledge
in statistics the noise is often a mean zero random variable
and we know little about g as prior information in the
interior inverse scattering problem. So we assume the noise
8 ~ /(0,I') with covariance matrix I' and the prior y, ~
N (my, C,y) with mean function m, and bounded covariance
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operator C,,. Of course, the prior measure y, may be various
from the different prior information of the cavity geometry
q and we will present a numerical example in Section 4.
According to Bayes’ formula, we can get

7, (@) o< exp (=5 (I (y- % (a))]
+lc 2 @-m))) =ew (-5 (-2 @k @

+la-m)l,)),

where | - |§ = (-I™") and a o b means a is proportional
to b. Then the Radon-Nikodym derivative related to the prior
measure and posterior measure is

dtuy 1 2
I, (D = e (-5 - @k). ®

In this paper, we use MCMC (Markov Chain Monte Carlo)
method to describe the posterior distribution according to
7,(q) and get the mean of q. For the details of this method
we refer to [12, 15].

3. Well-Posedness of Bayesian Method

In this section, our goal is to enable application of the
framework in [14] for our inverse interior scattering problem.
We divide this section into two subsections. In Section 3.1
we give the well-posedness of our Bayesian method and
in Section 3.2 we prove that our observational operator &
satisfies the assumption in the well-posedness theorem.

3.1. Well-Posedness Theorem. According to Section 4 (com-
mon structure) of [14], we should choose a space X and a
prior measure g, such that y,(X) = 1 and Assumption 2.7 in
[14] holds on X. Then we can get the well-posedness results
of Bayesian method. So first we give the specific definition of
prior measure on q. Assume A = —d*/d6” with the definition
domain:

D(A) = {ueH2 [0,27] ; Iznu(e)dezo}. 9)
0

Because in the representation of starlike domain r(0) is 27
periodic, here and in the remaining part of the paper we use
the square bracket in the definition of the domain [0, 27] to
signify the periodicity. So H>[0, 27t] is the usual Sobolev space
with periodic condition u(0) = u(27); that is,

10, 271] {Zce :Z(1+n2)2|cn|2<oo}. (10)

nez nez

Now we assume a prior Gaussian measure on g such
that ¢"(0) ~ (0,A™"). Through simple calculation,
we can get that the eigenvalues of A™' are 1/n* and the
corresponding eigenfunctions are ¢, = cos(nf)/+/m and

¢ = sin(nB)/+/m. According to Karhunen-Loéve expan-
sion, we have

" (o) b .
4" ©) - Z[a cos(n@) sin (n9) a

] n o m I
where a, and b, are iid. (independent and identically
distributed) sequences with a; ~ #(0,1) and b, ~ A4(0,1).
Clearly, this is in fact the Fourier expansion. Integrating q'' (9)
we can get g(0). q(0) is also a Gaussian measure because the
integral operator is linear and continuous [16]. Using Lemma
6.251in [14], we know that q” (0) is almost surely in C% for any
« < 1/2.In order to get g(0), we integrate g’ (6). The function
q(6) is not unique when its second derivative q"' () is given.
Here, we just use periodic form of g(0) in (13) the same as in
[10]. More specifically, we define

Z(]\/—J

0 ct
+ J j q" (s)dsdt,
0 Jo

q(0) =

(12)

where g, ~ 4 (4, 0”) is a Gaussian random variable. Then we
can integrate the Fourier expansion of '’ (6) term by term to
obtain

b, sin (n9)
n3 \T

q(0) =

i [a cos (nB) 13)

Here, we define the Gaussian measure on g based on its
second derivative g"'. There is also an alternative way to define
the Gaussian measure on g; see [10].

Now we define X
the following:

= C**[0, 27] with norm | - || given in

Il = Wleo + ']+ ¥

v o -v" ()| (14)
+ sup —————————>
x,y€[0,27] |x = y|
xty

where || - |

supxe[O,Zﬂ] W/(x)l
Then we obtain the following theorem.

is defined as usual; that is, |yl =

Theorem 1. Assume q ~ p, defined by (13); then py(X) = 1
for0 <« < 1/2.

Proof. From the analysis above, we know q" () is almost
surely in C™ for any a < 1/2. So q(6) is almost surely in
C>*[0, 27]; that is, py(X) = 1. O

From Theorem 4.1, Theorem 4.2, Theorem 6.31, and
Lemma 2.8 in [14], in order to get the well-posedness
theorem, we need to prove that the observational operator &
satisfies the following assumption.



Assumption 2 (Assumption 2.7 in [14]). (i) For every ¢ > 0,
there isan M = M(¢e) € R such that, for all g € X,

2
1% (q)]; < exp (e]alx +M). (15)
(ii) For every t > 0, there is a K = K(t) > 0 such that, for

all q,, g, € X with max{llq, [l x, Ig.1lx} < t,

lg(‘h)_g(‘b”r <K”‘h“]z”x- (16)

We will prove that &(qg) satisfies Assumption 2 in the next
subsection. Now we give the main theorem in our paper.

Theorem 3 (well-posedness). Let the observational operator
G satisfy Assumption 2 and q ~ y, with uy(X) = 1. Then one
has the following.

(i) The posterior measure y,, is absolutely continuous with

respect to y, and has Radon-Nikodym derivative given
by

dy 1 2

(@) <P (—5 y-%@f)- 17)

(ii) The posterior measure y,, is a well-defined probability
measure on L*[0, 27].

(iii) The posterior measure y,, is Lipschitz in the datay, with
respect to the Hellinger distance; that is, there exists a
constant C(t) > 0 such that

Ayt (1 11) <CO |y -y (18)

for all y, y' with max{||lyl Iy'ly < t}. Here, the Hellinger
distance is defined as

p— —— 2
1 d d
A el (Hlu“z) = \jz J <\jd_Z1 - \]d_ﬁz> Ay, (19)
0 0

provided p, and p, are both absolutely continuous with .

The proof of Theorem 3 is just a result of application of
Theorem 4.1, Theorem 4.2, Theorem 6.31, and Lemma 2.8 in
[14]. In fact, from Theorem 4.2 in [14] we know the mean
of y, is also continuous in y. So if we use the mean of
posterior distribution to approximate the solution g(6) of
inverse interior scattering problem, it is continuous with the
observational data y.

3.2. Properties of Observational Operator . In this sub-
section, our task is to prove Assumption2 when Z(s) is
defined by integral equation method in [17, 18]. We use
the classical layer potential approach to formulate integral
equations for direct interior scattering problem with three
different boundary conditions. First, let us introduce the
single- and double-layer operators S and K, given by

So (x) =2 LD<D (x.y)@(y)ds(y), xeoD,

(20)

Ko (x) = 2J 00 (x, y)

—_— € oD,
oo 0v(y) x

¢(y)ds(y),
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and the normal derivative operator K', given by

0P (x, y)

() x eoD, (21)

K'o(x)=2 LD ¢ (y)ds(y),

where O(x, y) is the fundamental solution of Helmholtz
equation and v(x) is the unit outward normal.
Then we look for a solution ¢° in the form of

— 00 (x,
w9 =Reto= [ DTNy,
oo 0v(y) (22)
x € R*\ D,
for the Dirichlet boundary condition, or
W ()=S0 = [ 0 (xy)e()ds(y),
oD (23)

xE[R{Z\BD,

for the Neumann boundary condition or impedance bound-
ary condition. From the jump relations, we see that u° is the
solution of scattering problem (1)-(2), provided the density ¢
is a solution of the following integral equation:

¢ (x)-Ko(x) = 20 (x), xe€oD, (24)

for the Dirichlet boundary condition, or

ou' (x)

K'¢(x)=-2 , oD, 25
¢ (x)+Kg(x) ) € (25)
for the Neumann boundary condition, or
: o (x) .
(x)+K'¢(x)+iASe (x) = —2 —2iMd (x),
y y y 9 (x) (26)
x € 0D,

for the impedance boundary condition.

From [19] we known that the operators S and K are
compact operators on C>*(dD), and K’ is a compact operator
on C"*(dD). If k* is not an eigenvalue of —A for all possible
domain D when g changes, we can get the injectivity of I - K,
I+ K',and I + K' + iAS. For details we refer to [17]. In
practice, the cavity is always bounded, so (6) is also bounded.
We can choose positive constants r,,;, small enough and r,,,
big enough such that r;, < r < 7, Then by Riesz-
Fredholm theory [17], from the injectivity of the operators
I-K,I+K',and I + K’ +iAS, we know that they are bijective,
their inverse operators are bounded on domain D, and the
bounds of the operators are only related to the constants
Fmin and 7. From the analytic property of ' on oD, we
obtain ¢(x) € C>*(dD) for Dirichlet boundary condition
and ¢(x) € C"*(0D) for Neumann or impedance boundary
condition. S maps C*(0D) continuously into C>*(D). As a
result, u°(x) € C>*(D) and the trace u*(x)|,, € C**(0D) for
all the three boundary conditions [19].
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Remark 4. Here, for the impedance boundary condition,
when k > 0 is a real number, k* is not an eigenvalue
for —A because of the uniqueness of interior Helmholtz
problem with impedance boundary condition. So the case
of impedance boundary condition does not suffer from the
existence of eigenfrequencies [5, 20].

For the Dirichlet boundary condition, we can find a
k small enough to avoid all Dirichlet eigenvalues. More
specifically, for r < r,,,,, the ball B, contains all possible
domain D. From the Rayleigh-Faber-Krahn inequality the
smallest Dirichlet eigenvalue A,(>0) of —A for domain D is
no less than the smallest eigenvalue A’ (>0) of B, . Then
when k* < Al it is not an eigenvalue of —A for all possible
domain D. This method of avoiding eigenvalues is often used
in inverse interior scattering problem [5].

For the Neumann boundary condition, we cannot give
a similar method to avoid all the eigenvalues as Dirichlet
boundary condition. The distribution of Neumann eigenval-
ues of interior scattering problem is still under investigation.
So for Neumann boundary condition we just assume that
k* is not an eigenvalue of —A for all possible domain D. In
fact, if the cavity is filled with some special material such that
Imk > 0, then the interior Dirichlet and Neumann problems
have at most one solution [17]. We will consider this situation
in the future investigation.

Now we show that ©(q) satisfies the property (i) in
Assumption 2.

Theorem 5. For every € > 0, there is an M = M(e) € R such
that, for all q € X,

19 (@)l < exp (e ally + M), (27)
where | - I% = (-, T7h).
Proof. From the definition of &, we just need to prove

w (x;)| < exp(ellalx + M), j=12....,n  (28)
By (22) and (23), it is sufficient to show

ILD (x5 5) 9 (y)ds (7)

< exp (s ||q||§( + M) , o (29)

or

(y)ds(y)| < exp (s ||q||§(+M) (30)

J 00 (x, y)

o ov(y) ©

Now we give the proof of (29); then the proof of (30) is similar.
It is known that

[ oG )e0)as)

(31
1+(q)* |

<27 @ (x5 p)| Il e (lallo) -

Here taking Neumann boundary condition as an example,

because

-1 0u' (%)
ov(x)’

@ (x) = —2(I+K') (32)

the upper bounds of |||, depend only on the bounds of (I +
K" and 04/ (x)/9v(x). From the analysis above Theorem 5,
(I+K")"" and 04/ (x)/dv(x) are bounded when the domain D
is bounded. So we have ||l¢|,, < C.

Because @(x;, y) is analytic on y € oD,

“aD (x)7) @ (v)ds (y)|

< CHW Hooexp(llqlloo)~

Now our goal is to bound the two factors in right hand of
the above inequality.

When [lq'[l, < L, 31+ (¢")?]l < C.
When [|q'[lo, > 1, according to Young’s inequality,

i@y

(33)

< \/E"q’"oo < \/zexp(”qux)

2
< \/Eexp<2i+—8“qllx>.
£

‘OO

(34)
2

On the other hand,

! e||q||2>
—+——%X ). (35)
2¢ 2

exp (Jal..) < exp (lal) < exp(

Then we obtain the final result:

1% (@), < exp (e[l + M) (36)

The next step is to prove

|?(‘11) -y (%)lr <K() “‘h _qZHX’

with maX{”‘h"x’ "‘12")(} <t

That is, ©(q) satisfies property (ii) in Assumption 2.

In order to get this Lipschitz continuity, we use the
definition of domain derivative in [21]. There are also other
ways to define and get the domain derivative, such as [22-
24], but the results are similar. Assume D is a bounded
open domain in R? with C* smooth boundary dD. u(D) is
a function defined on D satisfying

A (D))= f
Bu(D))=g on oD,

in D,
(38)

where A and B are some partial differential operators. Given 0
aregular (in our agplication regular means C* smooth) vector
field defined in R”, one denotes

I+60)(D)={x+0(x)| xeD}. (39)

For 6 small enough, (I + 8)(D) is an open set close to D with
regular boundary. (I + 0)(D) can be viewed as a variation of
D. Then we define u(0) = u((I + 6)(D)) and we call the local



derivative (0u(6)/00)(0) the domain derivative with D. Let
u' = (0u(0)/00)(0)7 be the local derivative of u in a direction
T; that is,

u = &iino % (u (ht) - u (0)), (40)

where 7 is a regular vector field.

From [21] we know that, with some suitable smoothness
hypotheses (e.g., C* smooth), the derivative ' satisfies the
following equation and boundary condition:

0A ,
4 =0
au”

B, 0
=TT (B(uy)—g) on oD,

in D,
(41)

where v is the normal derivative of 0D, 0A/ou =
(0A(v)/ov)(uy), and u, = u(0).

In our problem, the smoothness of D and 0D and the
regularity of u satisfy the hypotheses (3.1) to (3.9) and (3.12)
in [21]. The operator A = A + K’I, B = @&, f = 0, and
g = —Bu'. Clearly, A and B are linear bounded operators,
so the derivatives are themselves; that is,

a” (42)
B

gy}

ou

Then we obtain the derivative ' in our problem satisfies

A +Ku' =0 in D, (43)

Bu =-1-V (%‘ (us +ui)) on oD. (44)

Here, because of the boundary condition (2), the tangential
part of V(B(u’ + u')) is 0; that is,

V(% (v +u')) = v% (B (u)-g). (45)

In our problem, D is a starlike domain. The variation
of D is in fact the variation of q. So we can denote 7 =
exp(q)(cos0, sinf)g, where g is the direction of variation of
gq. Then the boundary condition (44) changes to

o= s i
Bu' = - w exp (q) G, (46)

r

where e, = (cos0, sinf).
Now we show that €(q) satisfies property (ii) in
Assumption 2.

Theorem 6. For every t > 0, there is a K = K(t) > 0 such
that, for all q;,q, € X with max{|lq,|x 14, x} < £,

lg(‘h)_?(‘bﬂr <K”Ql‘%”x- (47)
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Proof. From the above analysis of derivative ', it is easy to
get that

0 (%’ (us + ui))

!
|+/].., <
oo Oe,

lexp ()]0 I3l - (48)

(o)

By mean value theorem [25] and the regularity of ° and u/,

e (91) = 4" (42) oo
< '], la: ~ a2l (49)

< Cexp (max {9, 0> 192]lc0}) 41 — 221l -

Then from the definition of &, we obtain

||g (@1)-9 (%)"r

< Cexp (max {|q |, »

12200 D) |1 = @2l (50)
< Cexp (max {l|q; | x> |2l 1) 91 — a2l x -

4. Numerical Examples

We have already demonstrated the well-posedness of the pos-
terior distribution. Now we give some numerical examples to
show the effectiveness of our method. In order to describe the
posterior distribution, we consider to adopt MCMC method
to generate samples distributed according to (7). Then the
average of these samples can be used to approximate the
expectations with respect to the posterior distribution and
hence to make predictions about the shape parameters [12].
Recently, a DRAM (Delayed Rejection Adaptive MCMC)
algorithm is proposed to improve the efficiency of the stan-
dard MH (Metropolis-Hasting) algorithm. DRAM algorithm
combines two powerful ideas in MCMC: adaptive Metropolis
samplers and delayed rejection [15]. So in this paper, we use
DRAM algorithm to generate samples.

We consider a peanut cavity which is the radial function

parameterized by r(f) = 0.4V4cos*t + sin’t. The interior
curve C is a circle defined by C = {p(t) | p(t) =
0.3(cost, sint), t € [0,27]}. We take the source points d, =
(0,0.3) and d, = (0,-0.3) on C. The wave number k = 1. In
order to avoid the inverse crime we solve the direct problem
by MES (method of fundamental solution) to obtain the
synthetic data (observational data €(g)) on curve C. Three
different boundary conditions are considered, respectively, in
Examples 1, 2, and 3. All the numerical experiments followed
were performed using MATLAB software.

Example 1 (the sound-soft boundary condition). We truncate
6 terms of the series in (13) and assume the corresponding 13
coeflicients obey Gaussian distribution .#(0, 1). We take the
measurement error & ~ A4(0,0%), ¢ = 0.005 (the relative
error is about 0.3%), and generate 100000 samples of the
posterior distribution. The posterior distribution histograms
of coefficients g, and a, are presented in Figure 2 and the
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FIGURE 2: Posterior distributions of g, and a,.
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FIGURE 3: Markov chains of g, and a,.

Markov Chains of them are presented in Figure 3. From
Figure 2 we can see the general shape of the posterior
distributions of g, and a,. We omit the histograms for the
other coefficients due to the space constraints. The trace plots
of the Markov Chains in Figure 3 look like “fuzzy worms,” so
as arule of thumb the step size in our algorithm is appropriate
[12].

Because the beginning draws of the chain represent
poorly the distribution to be explored [12], we remove the
first 20000 draws from the chain and take the mean value of
the other draws. The reconstruction of the cavity is shown
in Figure 4. The reconstruction of the radial function r(t)
and the scattered field u® are displayed in Figure 5, where the
x-axis represents the angle value varying from 0 to 27. In
Figure 4 and left one in Figure 5 the red line is the exact cavity
shape and the blue line is the reconstruction. For the right

0.6 |

-08 -06 -04 -02 0 0.2 0.4 0.6 0.8

FIGURE 4: Reconstruction of the cavity (o = 0.005).
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FIGURE 5: Reconstruction of the radial function (a) and scattered field (b) (¢ = 0.005).
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FIGURE 6: Reconstruction of the cavity (o = 0.01).

figure of Figure 5 the solid line is the exact value and the “+”
line is the reconstruction value. We use the same notations in
the following experiments without extra illustrations. From
these three reconstruction figures we can see our method is
effective.

In the next experiment, we consider the effect of different
levels of noise. In Figures 6 and 7, the noise 8 ~ /4/(0, 02), o=
0.01 (the relative error is about 0.6%). In Figures 8 and 9, the
noise 8 ~ A(0,6%), ¢ = 0.05 (the relative error is about
3.3%). In the right one of Figure 9, the green line denotes
the measurement data y (the exact scattered field added with
noise). From the reconstruction of scattered field, we know
that, in the interior cavity scattering problems, the scattered
field varies little (the difference between the maximum
and minimum is about 0.25) from different measurement
locations; that is, the scattered field is almost a constant.
So the noise we add is small. If the additive noise is big

0.9
0.85
0.8
0.75
0.7
0.65

0.45

0.4

24

2351

23+

225}

221

2151

2.1¢

2.05

FIGURE 7: Reconstruction of the radial function (a) and scattered
field (b) (o = 0.01).
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FIGURE 8: Reconstruction of the cavity (¢ = 0.05).
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FIGURE 9: Reconstruction of the radial function (a) and scattered field (b) (o = 0.05).

corresponding to the variation, the reconstruction effect will
be poor (see Figure 9). That is also why we choose two point
sources illuminating together. The variation of scattered field
is bigger than only one point source’s situation.

In the last experiment of sound-soft boundary condition
part, we exglore a different prior measure. Assume the noise
& ~ #(0,0%), 0 = 0.01, and the prior density

7, (q) o< exp (-BH (q)) »

where H(q) can be chosen as different functions, such as
L, norm function, L, norm function, or TV norm function
corresponding to different prior measures, in fact different
regularization strategies. Here, we choose the L; norm
function H(q) = lgll L, and 3 = 7. This prior called impulse
prior is corresponding to the L, regularization. We also
generate 100000 samples for simulation. The reconstruction
of the cavity (Figure 10), the radial function, and the scattered
field (Figure 11) are as follows. This experiment shows that
Gaussian prior measure is not the only choice. The other
priors may be also effective in numerical simulations. We

(51)

adopt Gaussian prior measure because we know little about
radial function r in advance, and the theoretical system of
Gaussian prior measure is easy to build under the framework
of [14]. The theoretical results of other prior measures are also
under consideration.

Example 2 (the sound-hard boundary condition). We trun-
cate 6 terms of the series in (13) and assume the correspond-
ing 13 coeflicients obey Gaussian distribution .4/(0,1). We
take the measurement error & ~ #/(0,0%), ¢ = 0.01, and
generate 100000 samples of the posterior distribution. For
the constraints of space, we only present the figures of recon-
structed cavity, radial function, and scattered field (Figures 12
and 13). From Example 2 we can see that the Bayesian method
is also effective for inverse interior scattering problem with
sound-hard boundary condition.

Example 3 (the impedance boundary condition). We choose
A = 11in this example and other parameters are the same as in
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FIGURE 10: Reconstruction of the cavity (L, prior, o = 0.01).
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FIGURE 11: Reconstruction of the radial function (a) and scattered

field (b) (L, prior, o = 0.01).
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FIGURE 12: Reconstruction of the cavity (sound-hard boundary
condition, o = 0.01).
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FIGURE 13: Reconstruction of the radial function (a) and scattered
field (b) (sound-hard boundary condition, o = 0.01).
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FIGURE 14: Reconstruction of the cavity (impedance boundary
condition, ¢ = 0.01).
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FIGURE 15: Reconstruction of the radial function (a) and scattered
field (b) (impedance boundary condition, o = 0.01).

1

Example 2. The reconstructions of cavity, radial function, and
scattered field are in Figures 14 and 15. This example shows
that our method is effective in the situation of impedance
boundary condition.

5. Conclusions

In this paper, we study the inverse interior scattering problem.
Bayesian method is used to reconstruct the shape of the cavity
from interior measurement. We prove the well-posedness
and present some numerical examples to illustrate that our
method is effective. In the future, we will consider Bayesian
method for more complicated inverse scattering problem, for
example, the open cavity embedded in the infinite ground
plane.
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