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We present a probabilistic analysis on conditions of the exact recovery of block-sparse signals whose nonzero elements appear in
fixed blocks.Wemainly derive a simple lower bound on the necessary number of Gaussianmeasurements for exact recovery of such
block-sparse signals via the mixed 𝑙

2
/𝑙
𝑞
(0 < 𝑞 ≤ 1) norm minimization method. In addition, we present numerical examples to

partially support the correctness of the theoretical results.The obtained results extend those known for the standard 𝑙
𝑞
minimization

and themixed 𝑙
2
/𝑙
1
minimizationmethods to themixed 𝑙

2
/𝑙
𝑞
(0 < 𝑞 ≤ 1)minimizationmethod in the context of block-sparse signal

recovery.

1. Introduction and Main Results

The problem of block-sparse signal recovery naturally arises
in a number of genetics, image processing, and machine
learning tasks. Prominent examples include DNA microar-
rays [1], wavelet sparsity modeling [2], color imaging [3],
and wideband spectrum sensing [4]. In these contexts, we
often require to recover an unknown signal x ∈ R𝑁 from
an underdetermined system of linear equations y = Φx,
where y ∈ R𝑀 are available measurements and Φ is a 𝑀 ×

𝑁 (𝑀 < 𝑁) measurement matrix. Unlike previous works in
compressed sensing (CS) [5–7], the unknown signal x not
only is sparse but also exhibits additional structure in the
form where the nonzero coefficients appear in some fixed
blocks. We refer to such a structured sparse vector as block-
sparse signal in this paper. Following [8–11], we only consider
the nonoverlapping case in the present study. Thus, from
mathematical point, a block signal x ∈ R𝑁 can be viewed
as concatenation of x in𝑚 blocks of length 𝑑; that is,

x = [

[

𝑥
1
⋅ ⋅ ⋅ 𝑥
𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

x[1]
𝑥
𝑑+1

⋅ ⋅ ⋅ 𝑥
2𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

x[2]
⋅ ⋅ ⋅ 𝑥
𝑁−𝑑+1

⋅ ⋅ ⋅ 𝑥
𝑁⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

x[𝑚]

]

]

𝑇

, (1)

where x[𝑖]denotes the 𝑖th block of x and𝑁 = 𝑚𝑑 (𝑚, 𝑑 ∈ 𝑍
+).

In these terms, we say that x is block 𝑘-sparse if x[𝑖] has
nonzero Euclidean norm for at most 𝑘 blocks. In this paper,
we furthermore assume that each element in these 𝑘 nonzero
blocks has nonzero coefficient. Obviously, if 𝑑 = 1, the block-
sparse signal degenerates to the conventional sparse signal
well studied in compressed sensing.

Denote

‖x‖2,0 =
𝑚

∑

𝑖=1

𝐼 (‖x [𝑖]‖2 > 0) , (2)

where 𝐼(‖x[𝑖]‖
2

> 0) is an indicator function; that is,
𝐼(‖x [𝑖]‖2 > 0) = 1, if ‖x [𝑖]‖2 > 0; 𝐼(‖x [𝑖]‖2 > 0) = 0,
otherwise. Thus a block 𝑘-sparse signal x can be defined as a
signal that satisfies ‖x‖2,0 ≤ 𝑘. It is known that, under certain
conditions on measurement matrix Φ (i.e., [8]), there is a
unique block-sparse signal that obeys the observation y = Φx
and can be exactly recovered by solving the problem

minx ‖x‖2,0

s.t. y = Φx.
(3)
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Similar to the standard 𝑙
0
minimization problem, (3) is NP-

hard and computationally intractable except for very small
size. Motivated by the study of CS, one then commonly
uses the strategy to replace the 𝑙

2
/𝑙
0
norm with its closest

convex surrogate 𝑙
2
/𝑙
1
norm, thus to solve a mixed 𝑙

2
/𝑙
1
norm

minimization problem:

minx ‖x‖2,1

s.t. y = Φx,
(4)

where ‖x‖
2,1

= ∑
𝑚

𝑖=1
‖x[𝑖]‖2. This model can be treated as

a second-order cone program (SOCP) problem and many
standard software packages can be used for the solutions very
efficiently. In many practical cases, the measurements y are
corrupted by bounded noise; then we can apply the modified
SOCP or the group version of basis pursuit denoising (BPDN,
[12]) program as the following:

minx
󵄩󵄩󵄩󵄩y − Φx󵄩󵄩󵄩󵄩

2

2
+ 𝜆 ‖x‖2,1 , (5)

where 𝜆 is a tuning parameter, which controls the tol-
erance of the noise term. There are also many methods
to solve this optimization problem efficiently, such as the
block-coordinate descent technique [13] and the Landweber
iterations technique [14]. Conditions under which solving
problem (4) can successfully recover a block-sparse signal x
have been extensively studied [8, 10, 15]. For example, Eldar
and Mishali [8] generalized the conventional RIP notion to
the block-sparse setting and showed that if Φ satisfies the
block-RIP (see Definition 1) with constant 𝛿

2𝑘
< 0.414,

solving (4) can accurately get any block-sparse solution of
y = Φx.

Among the latest researches in compressed sensing,many
authors [16–21] have showed that 𝑙

𝑞
minimization with 0 <

𝑞 < 1 allows the exact recovery of conventional sparse
signals from much fewer linear measurements than that by
𝑙
1
minimization. Naturally, it would be interesting to make

an ongoing effort to extend 𝑙
𝑞
(0 < 𝑞 < 1) minimization to

the setting of block-sparsity. Specifically, the following mixed
𝑙
2
/𝑙
𝑞
(0 < 𝑞 ≤ 1) norm minimization problem is proposed

(see [11])

minx ‖x‖𝑞
2,𝑞

s.t. y = Φx,
(6)

for block-sparse signal recovery, as a generalization of the
standard 𝑙

𝑞
minimization, where ‖x‖2,𝑞 = (∑

𝑚

𝑖=1
‖x[𝑖]‖𝑞

2
)
1/𝑞.

Similar to the standard 𝑙
𝑞
minimization problem, (6) is also a

nonconvex problem for any 0 < 𝑞 < 1, and finding its global
minimizer is in general computationally impossible. How-
ever, it is well known that there are several efficient heuristic
methods to compute local minimizers of the standard 𝑙

𝑞
(0 <

𝑞 ≤ 1) minimization problem; say, for example, [18, 22].
One can generalize those approaches to solve the mixed 𝑙

2
/𝑙
𝑞

minimization problem (6). In particular, we will adopt the
iteratively reweighted least squares techniques in this paper.

In [17], Chartrand and Staneva conducted a detailed
analysis of the 𝑙

𝑞
(0 < 𝑞 ≤ 1) minimization approach

for the nonblock sparse recovery problem. They derived a
lower bound of Gaussian measurement for exact recovery of
a nonblock sparse signal. Furthermore, Eldar andMishali [8]
also provided a lower bound on block-sparse signal recovery
in the Gaussian measurement ensemble for the mixed 𝑙

2
/𝑙
1

minimization. Along this line, we will provide in this paper
a lower bound of Gaussian measurements for exact recovery
of block-sparse signal through the mixed 𝑙

2
/𝑙
𝑞
(0 < 𝑞 ≤ 1)

norm minimization. The obtained results will complement
the results of [8, 17] and demonstrate particularly that the
block version of 𝑙

𝑞
(0 < 𝑞 ≤ 1) minimization can reduce the

number of Gaussian measurements necessary for the exact
recovery as 𝑞 decreases.

To introduce our results, we first state the definition of
block-RIP [8] as follows.

Definition 1 (see [8]). Let Φ : R𝑁 → R𝑀 be an 𝑀 × 𝑁

measurement matrix. One says thatΦ has the block-RIP over
I = {𝑑

1
= 𝑑, . . . , 𝑑

𝑚
= 𝑑} (then𝑁 = 𝑚𝑑) with constant 𝛿

𝑘|I

if for every block 𝑘-sparse signal x ∈ R𝑁 overI such that

(1 − 𝛿
𝑘|I) ‖x‖

2

2
≤ ‖Φx‖2

2
≤ (1 + 𝛿

𝑘|I) ‖x‖
2

2
. (7)

This newdefinition of block-RIP is crucial for our analysis
of the mixed 𝑙

2
/𝑙
𝑞
(0 < 𝑞 ≤ 1) minimization method.

For convenience, we still use 𝛿
𝑘
instead of 𝛿

𝑘|I, henceforth
to represent the block-RIP constant of order 𝑘. With this
notion, we can prove the following sufficient condition for
exact recovery of a block 𝑘-sparse signal.

Theorem 2. Let x ∈ R𝑁 be an arbitrary block 𝑘-sparse signal.
For any given 𝑞 ∈ (0, 1], if the measurementmatrixΦ ∈ R𝑀×𝑁

has the block-RIP (7) with constant

𝛿
2𝑘
<
1

2
−
𝑞

4
(
2

3
−
𝑞

3
)

2/𝑞−1

, (8)

then the mixed 𝑙
2
/𝑙
𝑞
minimization problem (6) has a unique

solution, given by the original signal x.

Condition (8) generalizes the condition of the mixed 𝑙
2
/𝑙
1

case in [8] to the mixed 𝑙
2
/𝑙
𝑞
(0 < 𝑞 ≤ 1) case. Note that

the right-hand side of (8) is monotonically decreasing with
𝑞, which shows that decreasing 𝑞 can get weaker recovery
condition.This shows further that fewermeasurementsmight
be needed to recover a block 𝑘-sparse signal whenever the
mixed 𝑙

2
/𝑙
𝑞
(0 < 𝑞 < 1) minimization methods are

used instead of the mixed 𝑙
2
/𝑙
1
minimization method. For

clarifying this issue more precisely, we can adopt a similar
probabilistic method of [17] to derive a simple lower bound
on how many random Gaussian measurements are sufficient
for (8) to hold with high probability. The result to be verified
is in Section 3.

Theorem 3. Let Φ be a 𝑀 × 𝑁 matrix with i.i.d. zero-mean
unit variance Gaussian entries and 𝑁 = 𝑚𝑑 for some integer
𝑚. For any given 𝑞 ∈ (0, 1], if

𝑀 ≥ 𝐶
1
(𝑞) 𝑘𝑑 + 𝐶

2
(𝑞) 𝑘𝑑 log 𝑚

𝑘
, (9)
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then the subsequent conclusion is true with probability exceed-
ing 1 − 1/ (

𝑚

𝑘
): Φ satisfies (8); therefore, any block 𝑘-sparse

signal x ∈ R𝑁 can be recovered exactly by the solution of the
mixed 𝑙

2
/𝑙
𝑞
minimization problem (6).

Theorem 3 shows that a block 𝑘-sparse signal x can be
recovered exactly with high probability by solving the mixed
𝑙
2
/𝑙
𝑞
minimization (6) provided the number of Gaussian

measurements𝑀 satisfies

𝑀 ≈ 𝐶
2
(𝑞) 𝑘 log 𝑚

𝑘
. (10)

More detailed remarks on this bound will be presented in
Section 3.

The rest of the paper is organized as follows. In Section 2,
we present several key lemmas needed for the proofs of
our main results. All these lemmas can be regarded as
generalizations of the standard non-block-sparse case to the
block-sparse case.Theproofs ofTheorems 2 and 3 are given in
Section 3. Numerical experiments are provided in Section 4
to demonstrate the correctness of the theoretical results.
We conclude the paper then in Section 5 with some useful
remarks.

2. Fundamental Lemmas

In this section, we establish several lemmas necessary for the
proofs of the main results.

Lemma 4 (see [8]). Consider
󵄨󵄨󵄨󵄨󵄨
⟨Φx, Φx󸀠⟩󵄨󵄨󵄨󵄨󵄨 ≤ 𝛿

𝑘+𝑘
󸀠 ‖x‖2

󵄩󵄩󵄩󵄩󵄩
x󸀠󵄩󵄩󵄩󵄩󵄩2 , (11)

for all x, x󸀠 supported on disjoint subsets 𝑇, 𝑇󸀠 ⊆ {1, 2, . . . , 𝑁}

with |𝑇| < 𝑘, |𝑇󸀠| < 𝑘
󸀠.

In the next lemma,we show that the probability that block
restricted isometry constant 𝛿

𝑘
exceeds a certain scope decays

exponentially in certain length of x.

Lemma 5 (see [8]). Suppose Φ is an 𝑀 × 𝑁 matrix from the
Gaussian ensemble; namely, Φ

𝑖𝑗
∼ 𝑁(0, 1/𝑀). Let 𝛿

𝑘|I be the
smallest value satisfying the block-RIP of Φ over 𝐼 = {𝑑

1
=

𝑑, 𝑑
2
= 𝑑, . . . , 𝑑

𝑚
= 𝑑} and 𝑁 = 𝑚𝑑 for some integer 𝑚.

Then, for every 𝜖 > 0, the block restricted isometry constant
𝛿
𝑘|I satisfies the following inequality:

√1 + 𝛿
𝑘|I > 1 + (1 + 𝜖)√

𝑁

𝑀
(√

𝑘𝑑

𝑁
+ √

2

𝑑
𝐻(

𝑘𝑑

𝑁
))

(12)

which holds with high probability 2𝑒−𝑚𝐻(𝑘𝑑/𝑁)𝜖, where𝐻(𝑝) =

−𝑝 log(𝑝) − (1 − 𝑝) log(1 − 𝑝) (0 < 𝑝 < 1).

Lemma 6. SupposeΦ is an𝑀×𝑁matrix from the Gaussian
ensemble; namely, Φ

𝑖𝑗
∼ 𝑁(0, 1/𝑀). For any 0 < 𝛿 < 1, the

following estimation

(1 − 𝛿) ‖x‖2
2
≤ ‖Φx‖2

2
≤ (1 + 𝛿) ‖x‖2

2
(13)

holds uniformly for x ∈ R𝐿 with probability exceeding 1 −

2(12/𝛿)
𝐿
𝑒
−𝑀(1+𝛿/2)𝑚𝐻(𝑘/𝑚)/𝑘.

Proof. Note that [23] has verified the subsequent conclusion:
if Φ is a random matrix of size 𝑀 × 𝑁 drawn according
to a distribution that satisfies the concentration inequality
𝑃(
󵄨󵄨󵄨󵄨󵄨
‖Φx‖2
2
− ‖x‖2
2

󵄨󵄨󵄨󵄨󵄨
≥ 𝛽 ‖x‖2

2
) ≤ 2𝑒

−𝑀𝑐
0
(𝛽), where 𝑐

0
(𝛽) is a

constant dependent only on 𝛽 such that 𝑐
0
(𝛽) > 0 for 0 <

𝛽 < 1, then, for any set 𝑇 with |𝑇| = 𝑘 < 𝑛 and any 0 < 𝛿 < 1,
there holds the estimation

(1 − 𝛿) ‖x‖2 ≤ ‖Φ‖2 ≤ (1 + 𝛿) ‖x‖2 (x ∈ 𝑇) (14)

with probability exceeding 1 − 2(12/𝛿)
𝑘
𝑒
−𝑀𝑐
0
(𝛿/2). By

Lemma 5, the concentration inequality is clearly true for
Gaussian measurement matrix. Thus Lemma 6 follows.

We also need the following inequality.

Lemma 7 (see [24]). For any fixed 𝑞 ∈ (0, 1) and x ∈ R𝑁,

‖x‖2 ≤
‖x‖𝑞

𝑁1/𝑞−1/2
+ √𝑁(max

1≤𝑖≤𝑁

󵄨󵄨󵄨󵄨x𝑖
󵄨󵄨󵄨󵄨 − min
1≤𝑖≤𝑁

󵄨󵄨󵄨󵄨x𝑖
󵄨󵄨󵄨󵄨) .

(15)

3. Proofs of Theorems

With the preparations made in the last section, we now prove
the main results of the paper. Henceforth, we let Φ denote
an𝑀×𝑁matrix whose elements are i.i.d. random variables;
specifically, Φ

𝑖𝑗
∼ 𝑁(0, 1/𝑀). We prove Theorem 2 by using

the block-RIP and Lemmas 4 and 7.

Proof of Theorem 2. First notice that assumption (8) implies
𝛿
2𝑘

< 1 and further implies the uniqueness of x satisfying
the observation y = Φx. Let x∗ = x + h be a solution of (6).
Our goal is then to show that h = 0. For this purpose, we
let x
𝑇
be the signal that is identical to x on the index set 𝑇

and to zero elsewhere. Let 𝑇
0
be the block index set over the

𝑘 nonzero blocks of x, and we decompose h into a series of
vectors h

𝑇
0

, h
𝑇
1

, h
𝑇
2

, . . . , h
𝑇
𝐽

such that

h =

𝐽

∑

𝑖

h
𝑇
𝑖

. (16)

Here h
𝑇
𝑖

is the restriction of h onto the set 𝑇
𝑖
and each 𝑇

𝑖

consists of 𝑘 blocks (except possibly 𝑇
𝐽
). Rearrange the block

indices such that
󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

[1]
󵄩󵄩󵄩󵄩󵄩󵄩2

≥
󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

[2]
󵄩󵄩󵄩󵄩󵄩󵄩2

≥ ⋅ ⋅ ⋅ ≥
󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

[𝑘]
󵄩󵄩󵄩󵄩󵄩󵄩2

≥

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗+1

[1]
󵄩󵄩󵄩󵄩󵄩󵄩2

≥
󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗+1

[2]
󵄩󵄩󵄩󵄩󵄩󵄩2

≥ ⋅ ⋅ ⋅ , for any 𝑗 ≥ 1.
From [9], x∗ is the unique sparse solution of (6) being

equal to x if and only if

󵄩󵄩󵄩󵄩󵄩
h
𝑇
0

󵄩󵄩󵄩󵄩󵄩2,𝑞
<
󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑐

0

󵄩󵄩󵄩󵄩󵄩2,𝑞
(17)

for all nonzero signal h in the null space of Φ. This is the so-
called the null space property (NSP). In order to characterize
the NSPmore precisely, we consider the following equivalent
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form: there exists a constant 𝛾(h, 𝑞) satisfying 0 < 𝛾(h, 𝑞) < 1

such that
󵄩󵄩󵄩󵄩󵄩
h
𝑇
0

󵄩󵄩󵄩󵄩󵄩2,𝑞
= 𝛾 (h, 𝑞) 󵄩󵄩󵄩󵄩󵄩h𝑇𝑐0

󵄩󵄩󵄩󵄩󵄩2,𝑞
. (18)

We proceed by showing that 𝛾(h, 𝑞) < 1 under the assump-
tion of Theorem 2.

In effect, we observe that

‖h‖2 =
󵄩󵄩󵄩󵄩󵄩
h
𝑇
0
⋃𝑇
1

+ h
(𝑇
0
⋃𝑇
1
)
𝑐

󵄩󵄩󵄩󵄩󵄩2

≤
󵄩󵄩󵄩󵄩󵄩
h
𝑇
0
⋃𝑇
1

󵄩󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩󵄩
h
(𝑇
0
⋃𝑇
1
)
𝑐

󵄩󵄩󵄩󵄩󵄩2
.

(19)

For any 𝑗 ≥ 2, if we denote d
𝑗
= (

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

[1]
󵄩󵄩󵄩󵄩󵄩󵄩2
,
󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

[2]
󵄩󵄩󵄩󵄩󵄩󵄩2
, . . .,

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

[𝑘]
󵄩󵄩󵄩󵄩󵄩󵄩2
), then we have

󵄩󵄩󵄩󵄩󵄩
d
𝑗

󵄩󵄩󵄩󵄩󵄩2
= (

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

[𝑖]
󵄩󵄩󵄩󵄩󵄩󵄩

2

2

)

1/2

=
󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩2
,

󵄩󵄩󵄩󵄩󵄩
d
𝑗

󵄩󵄩󵄩󵄩󵄩𝑞
= (

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

[𝑖]
󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

2

)

1/𝑞

=
󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩2,𝑞
,

max
1≤𝑖≤𝑘

󵄨󵄨󵄨󵄨󵄨
d
𝑗
(𝑖)
󵄨󵄨󵄨󵄨󵄨
= max
1≤𝑖≤𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

[𝑖]
󵄩󵄩󵄩󵄩󵄩󵄩2

=
󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩∞,𝑇
,

min
1≤𝑖≤𝑘

󵄨󵄨󵄨󵄨󵄨
d
𝑗
(𝑖)
󵄨󵄨󵄨󵄨󵄨
= min
1≤𝑖≤𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

[𝑖]
󵄩󵄩󵄩󵄩󵄩󵄩2
.

(20)

By Lemma 7, we thus have

∑

𝑗≥2

󵄩󵄩󵄩󵄩󵄩
d
𝑗

󵄩󵄩󵄩󵄩󵄩2
≤
𝑞
1/2

(2 − 𝑞)
1/𝑞−1/2

21/𝑞−1𝑘1/𝑞−1/2
∑

𝑗≥1

󵄩󵄩󵄩󵄩󵄩
d
𝑗

󵄩󵄩󵄩󵄩󵄩𝑞
; (21)

that is,

∑

𝑗≥2

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩2
≤
𝑞
1/2

(2 − 𝑞)
1/𝑞−1/2

21/𝑞−1𝑘1/𝑞−1/2
∑

𝑗≥1

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩2,𝑞

≤
𝑞
1/2

(2 − 𝑞)
1/𝑞−1/2

21/𝑞−1𝑘1/𝑞−1/2
(∑

𝑗≥1

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞

)

1/𝑞

.

(22)

On the other hand, let
󵄩󵄩󵄩󵄩󵄩
h
𝑇
0

󵄩󵄩󵄩󵄩󵄩2,𝑞
= 𝛾 (h, 𝑞) 󵄩󵄩󵄩󵄩󵄩h𝑇𝑐0

󵄩󵄩󵄩󵄩󵄩2,𝑞
,

󵄩󵄩󵄩󵄩󵄩
h
𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞
= 𝑡∑

𝑖≥1

󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑖

󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞
.

(23)

It is easy to see that

∑

𝑖≥2

󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑖

󵄩󵄩󵄩󵄩󵄩

2

2

≤
󵄩󵄩󵄩󵄩󵄩
h
𝑇
2

[1]
󵄩󵄩󵄩󵄩󵄩

2−𝑞

2,𝑞
∑

𝑗≥2

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞

≤(
(
󵄩󵄩󵄩󵄩󵄩
h
𝑇
1

[1]
󵄩󵄩󵄩󵄩󵄩

𝑞

2
+
󵄩󵄩󵄩󵄩󵄩
h
𝑇
1

[2]
󵄩󵄩󵄩󵄩󵄩

𝑞

2
+ ⋅ ⋅ ⋅ +

󵄩󵄩󵄩󵄩󵄩
h
𝑇
1

[𝑘]
󵄩󵄩󵄩󵄩󵄩

𝑞

2
)

𝑘
)
(2−𝑞)/𝑞

× ∑

𝑗≥2

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞

= (

󵄩󵄩󵄩󵄩󵄩
h
𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞

𝑘
)
(2−𝑞)/𝑞

∑

𝑗≥2

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞

= (

󵄩󵄩󵄩󵄩󵄩
h
𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞

𝑘
)
(2−𝑞)/𝑞

(∑

𝑗≥1

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞

−
󵄩󵄩󵄩󵄩󵄩
h
𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞
)

= (

󵄩󵄩󵄩󵄩󵄩
h
𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞

𝑘
)
(2−𝑞)/𝑞

(
1

𝑡

󵄩󵄩󵄩󵄩󵄩
h
𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞
−
󵄩󵄩󵄩󵄩󵄩
h
𝑇
1

󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞
)

=
1 − 𝑡

𝑡𝑘
(2−𝑞)/𝑞

󵄩󵄩󵄩󵄩󵄩
h
𝑇
1

󵄩󵄩󵄩󵄩󵄩

2

2,𝑞

=
1 − 𝑡

𝑡1−2/𝑞𝑘(2−𝑞)/𝑞
(∑

𝑗≥1

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞

)
2/𝑞

.

(24)

Since Φx = Φx∗, we have Φh = 0, which means
Φ(h
𝑇
0

+ h
𝑇
1

) = −Φ(∑
𝑗≥2

h
𝑇
𝑗

). By the definition of block-RIP,
Lemma 4, (22), and (24), it then follows that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Φ(∑

𝑗≥2

h
𝑇
𝑗

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

= ∑

𝑖,𝑗≥2

⟨Φ(h
𝑇
𝑖

) , Φ (h
𝑇
𝑗

)⟩

= ∑

𝑗≥2

⟨Φ(h
𝑇
𝑗

) ,Φ (h
𝑇
𝑗

)⟩

+ 2 ∑

𝑖,𝑗≥2,𝑖<𝑗

⟨Φ(h
𝑇
𝑖

) , Φ (h
𝑇
𝑗

)⟩

≤ (1 + 𝛿
𝑘
)∑

𝑗≥2

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2

2

+ 2𝛿
2𝑘

∑

𝑖>𝑗≥2

󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑖

󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩2

≤ ∑

𝑗≥2

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝛿
2𝑘
(∑

𝑖≥2

󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑖

󵄩󵄩󵄩󵄩󵄩2
)

2

≤ (
1 − 𝑡

𝑡1−2/𝑞𝑘(2−𝑞)/𝑞
+ 𝛿
2𝑘

𝑞 (2 − 𝑞)
2/𝑞−1

22/𝑞−2𝑘2/𝑞−1
)(∑

𝑗≥1

󵄩󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞

)

2/𝑞

.

(25)
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By the definition of block-RIP 𝛿
2𝑘

and by using Hölder’s
equality, we then get

󵄩󵄩󵄩󵄩󵄩
Φ (h
𝑇
0

+ h
𝑇
1

)
󵄩󵄩󵄩󵄩󵄩

2

2

≥ (1 − 𝛿
2𝑘
)
󵄩󵄩󵄩󵄩󵄩
h
𝑇
0

+ h
𝑇
1

󵄩󵄩󵄩󵄩󵄩

2

2

= (1 − 𝛿
2𝑘
) (

󵄩󵄩󵄩󵄩󵄩
h
𝑇
0

󵄩󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩󵄩
h
𝑇
1

󵄩󵄩󵄩󵄩󵄩

2

2
)

≥ (1 − 𝛿
2𝑘
) (𝑘
1−2/𝑞 󵄩󵄩󵄩󵄩󵄩

h
𝑇
0

󵄩󵄩󵄩󵄩󵄩

2

2,𝑞
+ 𝑘
1−2/𝑞 󵄩󵄩󵄩󵄩󵄩

h
𝑇
1

󵄩󵄩󵄩󵄩󵄩

2

2,𝑞
)

= (1 − 𝛿
2𝑘
) 𝑘
1−2/𝑞

× (𝛾 (h, 𝑞)2 󵄩󵄩󵄩󵄩󵄩h𝑇𝑐0
󵄩󵄩󵄩󵄩󵄩

2/𝑞

2,𝑞
+ 𝑡
2/𝑞

(∑

𝑖≥1

󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑖

󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞
)

2/𝑞

)

= (1 − 𝛿
2𝑘
) 𝑘
1−2/𝑞

(𝛾 (h, 𝑞)2 + 𝑡
2/𝑞

)(∑

𝑖≥1

󵄩󵄩󵄩󵄩󵄩
h
𝑇
𝑖

󵄩󵄩󵄩󵄩󵄩

𝑞

2,𝑞
)

2/𝑞

.

(26)

This together with (24) and (25) implies

𝛾 (h, 𝑞)2

≤

(((1 − 𝑡) /𝑡
1−2/𝑞

) + (𝑞 (2 − 𝑞)
2/𝑞−1

/2
2/𝑞−2

) 𝛿
2𝑘
)

(1 − 𝛿
2𝑘
)

− 𝑡
2/𝑞

≐ 𝑓 (𝑡) .

(27)

Through a straightforward calculation, one can check that the
maximum of 𝑓(𝑡) occurs at 𝑡

0
= (1 − 𝑞/2)/(2 − 𝛿

2𝑘
) and

𝑓 (𝑡
0
) =

(1 − 𝑞/2)
2/𝑞−1

1 − 𝛿
2𝑘

{
𝑞

2 (2 − 𝛿
2𝑘
)
2/𝑞−1

+ 2𝑞𝛿
2𝑘
} . (28)

If 𝑓(𝑡
0
) < 1, then we clearly have 𝛾(h, 𝑞) < 1 and finish the

proof. However, 𝑓(𝑡
0
) < 1 gives that

𝛿
2𝑘

2 − 𝑞

2 − 𝛿
2𝑘

+ 𝑞(
1 − 𝑞/2

2 − 𝛿
2𝑘

)

2/𝑞

<
2 − 𝑞

2 − 𝛿
2𝑘

(1 − 𝛿
2𝑘
) (29)

or, equivalently,

(2𝛿
2𝑘
− 1) (2 − 𝛿

2𝑘
)
2/𝑞−1

+ (
1

2
)

2/𝑞

𝑞 (2 − 𝑞)
2/𝑞−1

< 0. (30)

Note that (30) implies 0 < 𝛿
2𝑘
< 1/2 and

(2𝛿
2𝑘
− 1) (2 − 𝛿

2𝑘
)
2/𝑞−1

+ (
1

2
)

2/𝑞

𝑞 (2 − 𝑞)
2/𝑞−1

< (2𝛿
2𝑘
− 1) (

3

2
)

2/𝑞−1

+ (
1

2
)

2/𝑞

𝑞 (2 − 𝑞)
2/𝑞−1

.

(31)

By simple calculations, we can check that, for any given 𝑞 ∈

(0, 1], inequality (30) is true as long as

𝛿
2𝑘
<
1

2
−
𝑞

4
(
2

3
−
𝑞

3
)

2/𝑞−1

; (32)

that is, condition (8) is satisfied. With this, the proof of
Theorem 2 is completed.

Now we adopt the probabilistic methods to analyze
how condition (8) can be satisfied; particularly, how many
measurements are needed for exact recovery of a block 𝑘-
sparse signal.

Proof of Theorem 3. From Theorem 2, we only need to show
that, under condition (9), (8) holds with high probability.
In particular, we will proceed to determine how random
Gaussian measurements are sufficient for exact recovery of
block 𝑘-sparse signals with a failure probability at most
1/ (
𝑚

𝑘
). To this end, we let 𝐿 = 2𝑘𝑑. Then by Lemma 6, an

upper bound for the probability that any𝑀× 𝐿 submatrix of
Φ fails to satisfy the block-RIP (30) is

(
𝑚

2𝑘
) 2(

12

𝛿
2𝑘

)

𝐿

𝑒
−𝑀(1+𝛿

2𝑘
/2)𝑚𝐻(𝑘/𝑚)/𝑘

. (33)

By inequality 1/ (𝑚
𝑘
) ≥ 𝑘

𝑘
/𝑚
𝑘
𝑒
𝑘, it suffices to show that we

can have the following estimation:

(
12

𝛿
2𝑘

)

𝐿

𝑒
−𝑀(1+𝛿

2𝑘
/2)𝑚𝐻(𝑘/𝑚)/𝑘

≤
𝑘
𝑘

2𝑚𝑘𝑒𝑘

(2𝑘)
2𝑘

𝑚2𝑘𝑒2𝑘
. (34)

So by a simple calculation,

𝑀 ≥
1

(1 + 𝛿
2𝑘
/2) (𝑚/𝑘)𝐻 (𝑘/𝑚)

× {𝐿 log( 12

𝛿
2𝑘

) + 3𝑘 log(𝑚
𝑘
) + (3 − 2 ln 2) 𝑘 + ln 2}

≥ 𝐶
1
(𝑞) 𝑘𝑑 + 𝐶

2
(𝑞) 𝑘 log 𝑚

𝑘
,

(35)

where 𝐶
1
(𝑞) = (3 − log 2 + 𝑑 log(12/(1/2 − (𝑞/4)(2/3

− 𝑞/3)
2/𝑞−1

)))/(1 + 1/4 − (𝑞/8) (2/3 − 𝑞/3)
2/𝑞−1

)

(𝑚/𝑘)𝐻 (𝑘/𝑚), 𝐶
2
(𝑞) = 3/(1 + 1/4 − (𝑞/8)(2/3 − 𝑞/3)

2/𝑞−1
)

(𝑚/𝑘)𝐻 (𝑘/𝑚). That is, (35) is satisfied as long as (9) is met.
This justifies Theorem 3.

Remark 8. From the right-hand side of (35), we can further
see that, except the first term related to 𝑚/𝑘, other terms
in the numerator are only related to 𝑘 and 𝑑, that is, to the
numbers of nonzero blocks and the block size. Obviously,
those terms have a smaller contribution to the number of
measurements. Basically, Theorem 3 shows that the signal x
with block-sparsity ‖x‖2,0 ≤ 𝑘 can be recovered exactly by
the solution of the mixed 𝑙

2
/𝑙
𝑞
minimization (6) with high

probability provided roughly

𝑀 ≈ 𝐶
2
(𝑞) 𝑘 log 𝑚

𝑘
. (36)

Obviously, this result generalizes the well-known result in [8]
on the Gaussian ensemble for the mixed 𝑙

2
/𝑙
1
minimization.

We can further see from Theorem 3 that, when specified
to 𝑞 = 1, the bound (36) has the same order as Eldar’s
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result (𝑂(𝑘 log(𝑚/𝑘)), see [8]). It is also obvious that 𝐶(𝑞)
is monotonically increasing with respect to 𝑞 ∈ (0, 1],
which then implies that decreasing 𝑞 allows fewer necessary
measurements for exact recovery of block-sparse signals by
the mixed 𝑙

2
/𝑙
𝑞
minimization method. Since, when block size

𝑑 = 1, the mixed 𝑙
2
/𝑙
𝑞
minimization method degenerates to

the standard 𝑙
𝑞
minimization method, the presented result

then provides a theoretical support to such experimental
observation reported in the following section.

4. Numerical Experiments

In this section, we conduct two numerical experiments to
support the correctness of the obtained theoretical results.
Iteratively reweighted least squares (IRLS) method has been
proved to be very efficient for the standard 𝑙

𝑞
minimization.

Thus, in the experiments, we adopted IRLS method to solve
the following unconstrained smoothed version of (6):

minx ‖x‖𝜖,𝑞
2,𝑞

+
1

2𝜏

󵄩󵄩󵄩󵄩y − Φx󵄩󵄩󵄩󵄩
2

2
, (37)

where 𝜏 is a regularization parameter and ‖x‖𝜖,𝑞
2,𝑞

=

∑
𝑚

𝑖=1
(‖x[𝑖]‖2

2
+ 𝜖
2
)
𝑞/2. Note that, through defining a diagonal

weighting matrix 𝑊 as 𝑊
𝑖
= diag(𝑞1/2(𝜖2 + ‖x[𝑖]‖2

2
)
𝑞/4−1/2

),
(37) can be transformed to the following weighted least
squares minimization problem:

1

2𝜏

󵄩󵄩󵄩󵄩y − Φx󵄩󵄩󵄩󵄩
2

2
+
1

2
‖𝑊x‖2

2
. (38)

With this, the IRLS algorithm we used can be summarized as
follows (more details can be found in [11]).

Step 1. Set the iteration count 𝑡 to zero and 𝜖
0
= 1. Initialize

x(0) = min 󵄩󵄩󵄩󵄩y − Φx󵄩󵄩󵄩󵄩
2

2
.

Step 2. Let

𝑊
(𝑡)

= diag(𝑞1/2 (𝜖2
𝑡
+
󵄩󵄩󵄩󵄩󵄩
x(𝑡) [𝑖]󵄩󵄩󵄩󵄩󵄩

2

2
)

1/2−𝑞/4

) , 𝑖 = 1, . . . , 𝑚,

(39)

and update

x(𝑡+1) = (𝑊
(𝑡)
)
−1

(Φ (𝑊
(𝑡)
)
−1

)

𝑇

× (Φ (𝑊
(𝑡)
)
−1

+ 𝜏I)
−1

(Φ (𝑊
(𝑡)
)
−1

)

𝑇

y,

𝜖
𝑡+1

=
𝜖
𝑡

10
.

(40)

Step 3. Terminate the iteration on convergence or when 𝑡

attains a specified maximum number 𝑡max.

Otherwise, set 𝑡 = 𝑡 + 1 and go to Step 2.
The above algorithm can be seen as a natural generaliza-

tion of general sparse signal recovery algorithm to the block-
sparse setting, which alternates between estimating x and
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Figure 1: Plots of the exact recovery frequency versus the number
of measurements, for the use of the mixed 𝑙

2
/𝑙
𝑞
and the standard 𝑙

𝑞

minimization methods with different values of 𝑞.

redefining the weighting matrix 𝑊. Though this algorithm
is for the unconstrained penalized problem (37), it can still
give a good estimation on the minimum of the constrained
problem (6) when we choose a sufficient small 𝜏 (such as
𝜏 = 10

−6). In the following experiments, we set 𝜏 = 10
−6 and

terminate the algorithm if 𝜖 < 10
−7 or 󵄩󵄩󵄩󵄩󵄩𝑥

(𝑡+1)
− 𝑥
(𝑡)󵄩󵄩󵄩󵄩󵄩2

< 10
−8.

In our first experiment, we took the signal length 𝑁 =

128, the block size 𝑑 = 4, and the block-sparsity 𝑘 = 6. For
independent 100 trails, we first randomly generated the block-
sparse signal x with values from a Gaussian distribution of
mean 0 and standard deviation 1, and then we randomly
drew a measurement matrix Φ from Gaussian ensemble. We
also took the number of measurements varying from 24 to
124. The purpose of the experiment was then to check the
correctness ofTheorem 3.We considered four different values
of 𝑞 = 0.1, 0.5, 0.7, 1 for both the mixed 𝑙

2
/𝑙
𝑞
minimization

method and the standard 𝑙
𝑞
minimization method.

The experiment result is shown in Figure 1. It is seen
from Figure 1 that, for all the experiment runs, the smaller
𝑞 requires the smaller number of measurements for exact
recovery of block sparse signals. This observation is con-
sistent with Theorem 3. On the other hand, for a fixed 𝑞,
the mixed 𝑙

2
/𝑙
𝑞
method is clearly superior to the standard

𝑙
𝑞
method in this block-sparse setting. For instance, the

mixed 𝑙
2
/𝑙
𝑞
method with 𝑞 = 0.1 only uses 50 Gaussian

measurements for the exact recovery, while the number of
measurements needed for 𝑙

𝑞
method is around 90. This

observation also partially supports the theoretical assertion
of Theorem 3, namely, that incorporating the block structure
into recovery method requires fewer measurements for exact
recovery.

In our second experiment, we further studied the effect
of block size 𝑑 for block-sparse signal recovery. We set 𝑁 =

256 and drew a measurement matrix of size 128 × 256
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Figure 2: Plots of average RMSE (log-scale) versus block size, for
the use of the mixed 𝑙

2
/𝑙
𝑞
and the standard 𝑙

𝑞
minimizationmethods

with different values of 𝑞.

from Gaussian ensemble. In this experiment, the block size
𝑑 was changed while keeping the total sparsity 𝑘𝑑 = 64

fixed. Figure 2 shows the average root mean squares error
(RMSE). Here RMSR is defined as √∑

𝑁

𝑖=1
(𝑥
𝑖
− 𝑥
𝑖
)
2
/𝑁 in the

logarithmic scale over 100 independent random runs. One
can easily see from Figure 2 that the recovery performance
for the standard 𝑙

𝑞
method is independent of the active block

number 𝑘, while the recovery errors for the mixed 𝑙
2
/𝑙
𝑞

method are significantly better than the standard 𝑙
𝑞
method

when the active block number 𝑘 is far smaller than the total
signal sparsity 𝑘𝑑. Since the total sparsity 𝑘𝑑 is fixed and
larger 𝑑 leads to smaller 𝑘, as predicted by Theorem 3, the
necessarymeasurement number needed for exact recovery of
a block 𝑘-sparse signal by the mixed method is also reduced.
This also demonstrates the advantage of the mixed 𝑙

2
/𝑙
𝑞

method over the standard 𝑙
𝑞
method.

5. Conclusion

In this paper, the number of Gaussian measurements nec-
essary for the exact recovery of a block-sparse signal by the
mixed 𝑙

2
/𝑙
𝑞
(0 < 𝑞 ≤ 1) normminimization has been studied.

The main contribution is the derivation of a lower bound
on the necessary number of Gaussian measurements for the
exact recovery based on a probabilistic analysis with block-
RIP. The obtained results are helpful for understanding the
recovery capability and algorithm development of the mixed
𝑙
2
/𝑙
𝑞
norm minimization approach for sparse recovery and,

particularly, facilitate the applications in the development of
block-sparse information processing.
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