
Scientific Programming 20 (2012/2013) 379–391 379
DOI 10.3233/SPR-130359
IOS Press

The software architecture for performing
scientific computation with the JLAPACK
libraries in ScalaLab

Stergios Papadimitriou a,∗, Seferina Mavroudi b,c, Kostas Theofilatos b and Spiridon Likothanasis b

a Department of Information Management, Technological Educational Institute of Kavala, Kavala, Greece
E-mail: sterg@teikav.edu.gr
b Department of Computer Engineering and Informatics, University of Patras, Patras, Greece
E-mails: {theofilk, likothan, mavroudi}@ceid.upatras.gr
c Department of Social Work, School of Sciences of Health and Care, Technological Educational Institute of Patras,
Patras, Greece

Abstract. Although LAPACK is a powerful library its utilization is difficult. JLAPACK, a Java translation obtained automatically
from the Fortran LAPACK sources, retains exactly the same difficult to use interface of LAPACK routines. The MTJ library
implements an object oriented Java interface to JLAPACK that hides many complicated details. ScalaLab exploits the flexibility of
the Scala language to present an even more friendly and convenient interface to the powerful but complicated JLAPACK library.
The article describes the interfacing of the low-level JLAPACK routines within the ScalaLab environment. This is performed
rather easily by exploiting well suited features of the Scala language. Also, the paper demonstrates the convenience of using
JLAPACK routines for linear algebra operations from within ScalaLab.

Keywords: Java, Scala, functional languages, scripting, interpreters, MATLAB, scientific programming, class loaders, binding

1. Introduction

Fortran 77 was a very popular language for numer-
ical calculations due to its high-performance compil-
ers and intrinsic support for matrices and mathemati-
cal functions. However with the increasing complexity
of applications and the demand for interactivity it has
become necessary to exploit more sophisticated pro-
gramming environments in order to better manage this
complexity.

Object-oriented languages such as C++ and Java
were the first major steps to this end. Scripting scien-
tific languages such as MATLAB performed a next ma-
jor step, towards the interactivity direction. Recently,
powerful object-oriented languages like Groovy and
Scala offer elaborate scripting facilities and elaborate
IDEs. Therefore, the potential to combine both the con-
venience of scripting and IDE support and the pow-

*Corresponding author: Stergios Papadimitriou, Department of
Information Management, Technological Educational Institute of
Kavala, 65404 Kavala, Greece. E-mail: sterg@teikav.edu.gr.

erful development base of object-orientation naturally
arises in the scientific computing domain.

Recently, we introduced the Scala based ScalaLab
[14] environment for the Java Virtual Machine.
ScalaLab exploits an extended version of the pow-
erful Scala object-functional language [10]. The sci-
entific programming extensions to Scala are referred
as the ScalaSci language. It presents a MATLAB-like
style of working, and compiles the scripts for the JVM.
The Scala interpreter implements an elaborate binding
scheme that presents not only the data variables but
also function and object definitions.

ScalaLab is an open-source project and can be
obtained from http://code.google.com/p/scalalab/. The
general high-level architecture of ScalaLab is depicted
in Fig. 1 and is described in [14]. Also, [15] describes
many general aspects of interfacing scientific libraries
in ScalaLab. The present paper focuses in detail on the
JLAPACK library which has Fortran roots. Therefore it
is much more difficult to design clear, easy to use, ob-
ject oriented interfaces, compared with pure Java nu-
merical libraries. The latter usually already define well
organized class hierarchies. Moreover, the current pa-

1058-9244/12/13/$27.50 © 2012/2013 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194622289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

380 S. Papadimitriou et al. / The software architecture for performing scientific computation with the JLAPACK libraries in ScalaLab

Fig. 1. The architecture of the main software components of
ScalaLab.

per focuses on the recent design of the ScalaLab scien-
tific libraries framework, that has some improvements
related to the one described in [15], although the gen-
eral architecture is conserved.

In this article we concentrate on the important sub-
ject of interfacing the JLAPACK scientific package in
ScalaLab. These libraries are incorporated within the
core of ScalaLab. The aim is to provide an easy to use
interface to JLAPACK, without compromising its ef-
fectiveness. Convenient syntax features, like high-level
mathematical operators are implemented by exploit-
ing the rich support that Scala provides. JLAPACK
is integrated within the core of ScalaLab. Therefore
its sophisticated routines are already available to the
ScalaLab user.

The paper proceeds by presenting the general archi-
tecture with which ScalaLab exploits effectively sci-
entific libraries for the JVM in Section 2. Section 3
reviews key concepts of LAPACK and BLAS. Sec-
tion 4 summarizes the MTJ (Matrix Toolkit for Java)
library that is a Java high-level front end to some
JLAPACK functionality. Section 5 describes aspects of
the object oriented interface to JLAPACK that MTJ
provides. Section 6 explains the mechanisms of inter-
facing ScalaLab with MTJ. The implicit conversions

feature of Scala is essential and is essential and is de-
scribed in Section 7. The powerful JLAPACK routines
can be exploited directly from ScalaLab without the
MTJ agent. Section 8 describes this issue. Section 9
compares aspects of the performance and functionality
of ScalaLab with similar systems such as SciLab and
MATLAB. Finally, we present the conclusions along
with directions for future work.

2. The general architecture of interfacing Java
Scientific Libraries with Scala

The general architecture of interfacing Java libraries
is illustrated with Fig. 2. The Wrapper Scala class
(WSC) provides a simpler interface to the essential
functionality of the Java library, e.g. for matrices A
and B, we can add them simply as A + B, in-
stead of using the cumbersome Java like method call
A.plus(B). For example, some of these wrapper Scala
classes are the class Matrix for one-indexed matri-
ces based on the NUMAL library [9], class Mat a
zero-indexed matrix based on Scala implementations
that borrow functionality from the JAMA Java pack-
age [http://math.nist.gov/javanumerics/jama/] and the
MTJ.Mat class based on the MTJ (Matrix Toolkit for
Java, http://code.google.com/p/matrix-toolkits-java/)
library. Also, these wrapper classes perform the use-
ful task of transforming interfaces to a common pat-
tern, since each Java matrix library has its own style
of parameter passing (e.g. returning eigenvalues and
eigenvectors). We have to adopt a single one interface
(preferably MATLAB-like) in order not to confuse the
user.

At this point we should note that although we have a
single one-indexed matrix class implementation (cou-
pled with the NUMAL library) we have many possi-
ble zero-indexed ones (e.g. for EJML, MTJ, Apache
Commons etc.). Overloaded routines such as sin(B),
can be resolved by the compiler based on the type of
B. For example, if B is a one-indexed matrix of type
Matrix (based on the NUMAL library), the method
scalaSci.Matrix.sin(B) is called, if B is an MTJ matrix
then the scalaSci.MTJ.Mat.sin(B) is called.

By convention important utility routines that re-
turn Matrix objects, and end with 1, as rand1(n,m),
ones1(n,m) etc. operate on the one-indexed matrix
class. Similarly, those ending with 0, i.e. rand0(n,m),
ones0(n,m) are based on a zero-indexed matrix li-
brary. Since we have only a single one-indexed ma-
trix class, the compiler can unambiguously identify
the return type, e.g. rand1(n,m) returns an n × m
scalaSci.Matrix (i.e. one indexed) type. However, this

S. Papadimitriou et al. / The software architecture for performing scientific computation with the JLAPACK libraries in ScalaLab 381

Fig. 2. The general architecture of interfacing Java libraries.

is not the case for the many possible types of zero
indexed Mat types. For example, an ambiguity arises
from the statement:

var x = rand0(n,m)

since all the libraries have a rand0 method each one
returning a different matrix object.

Therefore, it is not correct to have multiple zero-
indexed matrices imported at the same time since these
utility routines should cope with a particular matrix
type, i.e. with the appropriate matrix type represen-
tation of the currently utilized library. For example,
rand0(n,m) returns an MTJ matrix filled with random
values when the Scala interpreter is initialized from the
MTJ library.

The interpreter needs to switch between different
choices for the zero-indexed matrix class. A ScalaSci
script that uses only methods of the scalaSciMatrix
trait (i.e. does not use library specific functions) can
be executed by exploiting different libraries, presenting
different performances also. Technically, the ScalaSci-
Matrix trait factors out the common functionality that
all the ScalaSci matrix types are enforced to imple-
ment.

The Scala Object for Static Math Operations
(SOSMO) aims to provide short overloaded versions of
the basic routines for each relevant type. For example,
it allows one to use sin(B), where B can be an ob-
ject of our scalaSci.MTJ.Mat Scala class, instead of the
longer scalaSci.MTJ.Mat.sin(B).

Each such object implements a large set of coherent
mathematical operations. The rationale behind these
objects is to facilitate the switching of the Scala in-
terpreter to a different set of libraries. The interpreter
simply needs to import the corresponding SOSMOs in
order to switch functionality.

Also, a matrix object denoted e.g. Mat can refer
to different matrices depending on the library. The
“switching” of libraries is performed by creating a dif-
ferent fresh Scala interpreter that imports the corre-
sponding libraries with the aid of specially designed
SOSMOs. For example, there exists an SOSMO ob-
ject StaticMathsJAMA that performs important initial-
izations for the JAMA library and a StaticMathsMTJ
for the Matrix Toolkits for Java Library one. The uti-
lization of the JAMA library is accomplished by cre-
ating a Scala Interpreter that imports the StaticMaths-
JAMA object while for the MTJ the StaticMathsMTJ is
imported. The ScalaLab user can easily switch differ-
ent underlying Java libraries. The integrated libraries
have strengths in some aspects and weaknesses in
others. For example EJML [http://code.google.com/p/
efficient-java-matrix-library/] is a fast and elegantly
designed library for linear algebra, but it lacks the rich
set of functionality provided by the Fortran subroutines
styled JLAPACK. Although the particular characteris-
tics and potentialities of each Matrix library differ, for
the basic functionality ScalaLab enforces a uniform in-
terface by means of the aforementioned ScalaSciMa-
trix trait (traits in Scala extend the Java interfaces func-
tionality).

The Java library module in Fig. 2 corresponds to the
Java code of the library. This code performs the main
numerical chores. We should note that the Scala inter-
preter can also use the native Java interface of each li-
brary. This is particularly useful for the JLAPACK li-
brary. The MTJ library wraps only a small but essential
part of LAPACK’s functionality. The ScalaLab class
scalaSci.MTJ.Mat explores more conveniently a part
of the MTJ functionality. Therefore, the lower level
JLAPACK is much more richer. It can be used from
ScalaLab, although with its cumbersome function call
interface.

3. LAPACK and BLAS

One of the most significant developments in numer-
ical linear algebra software has been the Basic Linear
Algebra Subroutines (BLAS) and the Linear Algebra
Package (LAPACK) which builds on BLAS, both writ-
ten in traditional Fortran 77. The BLAS contain funda-
mental operations for working with matrices and vec-
tors, such as addition, multiplication, rank-updates and
triangular solvers, and this functionality is available
for several types of matrices, including general dense,
banded, symmetric and others.

382 S. Papadimitriou et al. / The software architecture for performing scientific computation with the JLAPACK libraries in ScalaLab

Since BLAS has become an important part of many
numerical libraries, vendors have created highly tuned
versions which can exploit hardware specific details.
Such optimized BLAS can achieve theoretical opti-
mal performance, especially for demanding operations
such as matrix/matrix multiplications. The BLAS are
designed to exploit block algorithms and special ma-
trix types (e.g. tridiagonal, symmetric) [4]. Thus, al-
though with automatically produced Java implemen-
tations, these algorithms usually perform significantly
better than hand-crafted implementations that do not
exploit block algorithms and the properties of special
matrices.

LAPACK [2] builds on the BLAS by adding many
common matrix solvers and factorizations, including
LU and Cholesky solvers, least squares methods and
eigenvalue and singular value decompositions. The al-
gorithms used by the LAPACK subroutines are typi-
cally the state of the art, and most other matrix soft-
ware uses portions of it. LAPACKs performance de-
pends on a tuned BLAS; using a standard BLAS can
often reduce performance by an order of magnitude.

In order to benefit from the speed and reliability of
BLAS, we need a means to call such codes from the
Java environment. The Java Native Interface [7] (JNI)
provides a portable mechanism to accomplish this,
whereby one creates a Java method signature with-
out implementation, then provide an implementation of
that method in a separate C source file. As both BLAS
and LAPACK are large bodies of code (about 800,000
lines of code in hundreds of interdependent functions),
it is impractical to create a replacement in Java, with-
out the assistance of an automated tool.

JLAPACK is a machine translation of the whole set
of BLAS and LAPACK into Java using the tool f2j
(Fortran to Java) [5]. As JLAPACK cannot take advan-
tage of an optimized BLAS (it uses the reference Netlib
BLAS), it is typically slower than the native LAPACK.

However, both the advances in JIT compilation and
the increase of computing speed make pure Java code
suitable for practical numerical number crunching. Ad-
ditionally, we can obtain some performance advan-
tages by hand crafting some critical Java code, instead
of relying only on the automatically translating code of
the JLAPACK. Currently in ScalaLab we rely on the
pure Java implementation of JLAPACK (i.e. the JNI
is not utilized) for portability and simplicity. However,
we have an option of using some fast operations using
the JBLAS library (http://jblas.org/) that offers conve-
niently precompiled native BLAS code. Even though
JBLAS is easy to use and works transparently, platform

dependent problems are always possible in the process
of linking calls of Java to native code. For example,
while for Win32 platforms all the JBLAS based rou-
tines execute perfectly, but for Win64 there are prob-
lems. Therefore, we keep JBLAS routines as an option
and not in the mainstream.

The Netlib API obtained from the open-source
project netlib-java (http://code.google.com/p/netlib-
java/) provides a Java interface to the JLAPACK func-
tionality. In turn, the Matrix Toolkits for Java (MTJ)
project provides a higher level API and is suitable for
programmers who do not specifically require a low
level Netlib API.

LAPACK on which much of the functionality of
MTJ builds upon has three levels of routines [2]

• driver routines, each of which solves a complete
problem, for example solving a system of linear
equations, or computing the eigenvalues of a real
symmetric matrix,

• computational routines, each of which performs
a distinct computational task, for example an LU
factorization, or the reduction of a real symmet-
ric matrix to tridiagonal form. Each driver routine
calls a sequence of computational routines,

• auxiliary routines, which in turn can be classified
as follows:

(a) routines that perform subtasks of block algo-
rithms, in particular, routines that implement
unblocked versions of the algorithms,

(b) routines that perform some commonly re-
quired low-level computations, for example
scaling a matrix, computing a matrix-norm,

(c) a few extensions to the BLAS, such as rou-
tines for applying complex plane rotations or
matrix-vector operations involving complex
symmetric matrices.

From the software engineering point of view this
organization of LAPACK facilitates the work with
a complicated routine-based (i.e. function-based) li-
brary. However, as will become evident from the dis-
cussion that follows, wrapping an object-oriented layer
to the most common numerical tasks, adds significant
benefits in terms of usability without compromising
notably the speed.

4. The Matrix Toolkit for Java (MTJ) library

The Matrix Toolkit for Java (MTJ) is an open source
Java matrix library (http://code.google.com/p/matrix-

S. Papadimitriou et al. / The software architecture for performing scientific computation with the JLAPACK libraries in ScalaLab 383

toolkits-java/) that provides extensive numerical pro-
cedures for general dense matrices, for various matrix
categories (e.g. various band forms), for block matrices
and for sparse matrices. Most of the functionality of
MTJ is built upon the powerful Java JLAPACK pack-
age which is a Java translation of the famous LAPACK
package [2].

MTJ uses an object-oriented design for its Ma-
trix classes. For example, the AbstractMatrix is one
of its basic base classes. Some methods of the Ab-
stractMatrix such as get(int, int), set(int, int, double),
copy(), through an UnsupportedOperationException
and should be overridden by a subclass. Clearly, such
operations should perform according to the specific
storage format of each AbstractMatrix subclass. For
the rest of the methods, the library provides simple de-
fault implementations using a matrix iterator. Also, all
the direct solution methods should be overridden to
compute the solution using an algorithm optimized for
the particular matrix format. We note that JLAPACK
offers algorithms with significant performance benefits
when a specific matrix type is used. MTJ can easily use
a different library or a customized implementation of
a numerical algorithm if the need arises. For example,
we can easily use another library instead of JLAPACK,
to compute the eigendecomposition.

Operations such as the eigenvalue decomposition
are kept with an object-oriented wrapping. The class
EVD for example is used to compute eigenvalue de-
compositions of MTJ Dense Matrices. The EVD class
performs an appropriate call to the powerful and re-
liable routines of the JLAPACK library. After per-
forming the eigendecomposition the user can con-
veniently acquire the results from the EVD object
by calling the relevant methods, e.g. getLeftEigenvec-
tors(), getRightEigenvectors(), getRealEigenvalues(),
getImaginaryEigenvalues() etc.

ScalaLab implements an additional layer in order
to provide even more user friendly operations than
MTJ. For example the routine eig(m: Mat) performs
the eigendecomposition of the MTJ Mat class m. The
eigendecomposition is performed by factorizing the
MTJ matrix representation of the data (routine factor-
ize). Then the results are prepared with a convenient
Scala tuple for output:

// compute the eigenvalue decomposition of a gen-
eral matrix Mat:

def eig(m: Mat) = {

/∗ compute the eigenvalue decomposition by call-
ing a convenience method for computing the complete
eigenvalue decomposition of the given matrix ∗/

/∗ allocate an EVD object. This EVD object in turn
allocates all the necessary space to perform the eigen-
decomposition, and to keep the results, i.e. the real and
imaginary parts of the eigenvalues and the left and
right eigenvectors ∗/

var evdObj
= no.uib.cipr.matrix.EVD.factorize(m.getDM)

(evdObj.getRealEigenvalues(),
evdObj.getImaginaryEigenvalues(),
new Mat(evdObj.getLeftEigenvectors()),
new Mat(evdObj.getRightEigenvectors()))

}

5. MTJ interfacing to LAPACK

The conventional dense storage format of MTJ is
based on the matrix construct of the Fortran language.
Fortran matrices are laid out column major, that is,
columns follow each other sequentially in memory. In
contrast, Java’s multidimensional arrays are very dif-
ferent: in essence they are arrays of arrays stored row
wise. Successive rows of Java arrays are allocated in-
dependently and therefore are stored in non-contiguous
memory chunks. This is a major obstacle for the op-
timization algorithms that compilers attempt to apply.
The MTJ library uses a one dimensional Java array of
doubles to simulate Fortran two dimensional matrices.
This array is accessed with column major constructs,
i.e., for N rows, the i, j element is stored at the i+ jN
position of the 1D array, i.e.:

Aij = A[i+ jN].

Also, MTJ explores the properties of special cate-
gories of matrices such as packed matrices and banded
matrices in order to represent them more effectively.
In turn, JLAPACK offers much more effective algo-
rithms concerning numerical tasks on special matri-
ces from the general case. For example, on some tests
with symmetric banded matrices of sizes 800 × 800,
the eigendecomposition yielded execution times more
than 30 times faster than the eigendecomposition of the
same matrix treated as a general dense matrix.

JLAPACK is a powerful package but relatively dif-
ficult to use. The JLAPACK translation, although it
is performed automatically is relatively fast. We have
tested for example, a pure Java implementation of the

384 S. Papadimitriou et al. / The software architecture for performing scientific computation with the JLAPACK libraries in ScalaLab

BLAS level 3 matrix multiply operation and it is only
about 30% faster than the automatically translated one.
At this point, we should stress that JLAPACK operates
generally well in comparison with pure hand-crafted
Java libraries, especially for large matrix sizes. For
example, although the JAMA based pure Java eigen-
value decomposition outperformed JLAPACK for ma-
trix sizes smaller than about 50 × 50, the opposite
happens for larger matrix sizes. The rationale of this
rather unexpected observation, is of course the quality
of the algorithms implemented in the LAPACK pack-
age. However, the Java automatically translated code is
not at all readable (even worse than the Fortran code!).
Also, since Fortran 77 goto statements cannot be im-
plemented always with control constructs in Java, a
special class bytecode level tool is required to process
the incorrect bytecode in order to implement the goto
functionality [5].

The MTJ library implements an object oriented
framework around the JLAPACK library. The main
classes of this library are illustrated in Fig. 3. Specifi-
cally, at the top is the generic Matrix interface. It spec-
ifies methods which retrieve entries, sets entries, per-
form matrix addition, multiplication etc.

The abstract class AbstractMatrix implements the
Matrix interface, but does not specify how the ma-
trix is stored. Instead, it provides implementations of
most of the methods specified with the Matrix inter-

face by means of elemental access operations and iter-
ators. Therefore, subclasses can only implement those
methods which they can perform efficiently, and can
delegate the rest to AbstractMatrix.

Extending from AbstractMatrix are a set of matri-
ces which specify an effective storage layout as well
as the corresponding elementary access operations, but
not the algorithms themselves. Those provide get and
set methods for working with the entries of the matrix.
So whether the matrix is banded, packed or dense,

double Matrix.get(int i, int j)

always retrieves Aij , thereby hiding any perhaps com-
plicated underlying details. Although, special types of
matrices can optimize storage, the interface remains
the same with the get(), set() routines.

The proper LAPACK and BLAS algorithms are cho-
sen by specific matrices such as DenseMatrix (a gen-
eral matrix) and TriangPackMatrix (a triangular matrix
stored in packed format). For instance, direct solvers
are different for these formats, the former must use a
general LU with partial pivoting while the latter can be
solved without factorizing. A remarkable achievement
of the MTJ library, is that it masks such differences
away, and one can solve Ax = b by calling

Vector Matrix.solve(Vector b, Vector x);

Fig. 3. The main parts of the matrix hierarchy of the MTJ library.

S. Papadimitriou et al. / The software architecture for performing scientific computation with the JLAPACK libraries in ScalaLab 385

The corresponding LAPACK calls are much more in-
volved, and are different for each matrix type.

A significant characteristic of the MTJ library is the
matrix iterators. A matrix iterator passes over all the
stored matrix entries, returning one entry at a time. The
details of this traversal are matrix specific. Iterators are
of fundamental importance in processing sparse matri-
ces. They exploit sparsity naturally, since they traverse
only the relevant parts of the matrix.

6. Interfacing the MTJ library in ScalaLab

This section describes some features of the Scala
language that facilitate significantly the utilization of
Java Scientific Libraries. It concentrates specifically on
the JLAPACK library.

Below we elaborate on the approach of wrapping
the MTJ library with a Scala class. This class is the
MTJ.Mat class.

In Scala operations on objects are implemented as
method calls, even for primitive objects like Integers.
However the compiler is intelligent enough to gener-
ate fast code for mathematical expressions with speed
similar to Java.

Therefore, in ScalaLab infix operators are imple-
mented as method calls, e.g. var b = a ∗ 5 corresponds
to var b = a. ∗ (5). Scala makes it easy to imple-
ment prefix operators for the identifiers +, −, !, ∼ with
the unary_ prepended to the operator character. Also,
postfix operators are methods that take no arguments,
when they are invoked without a dot or parenthesis.
Thus, for example, we can declare a method ∼ at the
Matrix class that performs Matrix transposition. Doing
that we can write the transpose of A as A∼.

We implement in Scala syntactically elegant index-
ing on any objects with the apply method and assign-
ment of values with the update method. For the Mat
class, obviously we want if M is a Mat to access its
(i, j)th element as M (i, j). Thus we implement the ap-
ply method with the following code pattern:

def apply(row: Int, col: Int)= {
dm.get(row, col)

}

We note that the apply method calls the correspond-
ing routine get of the MTJ library. The Scala com-
piler supports flexible syntax for the apply and up-
date methods, e.g. we can call M (i, j) instead of

M .apply(i, j) and write: M (i, j) = 9.8 instead of
M .update(i, j, 9.8).

The corresponding update operation implements as-
signment of elements and can be implemented as:

def update(row: Int, col: Int, value: Double): Unit = {
dm.set(row, col, value)

}

The apply method can be easily overloaded in order to
extract a Mat subrange by implementing the method
apply as:

def apply(rowStart: Int, rowInc: Int, rowEnd: Int,
colStart: Int, colInc: Int, colEnd: Int) = {

// the routine extracts and returns a Mat subrange
with a new Mat object

. . .
}

The end result of this design is that the user can per-
form convenient operations on matrices, e.g. M (2, k,
m, 4, 2,N) to extract a range denoted in MATLAB as
M (2:k:m, 4:2:N).

Scientific programming environments demand for a
global namespace of functions. Scala has no globally
visible methods; every method must be contained in an
object or a class. However, a global function names-
pace in Java Virtual Machine programming can be im-
plemented easily with static imports. In Scala, we im-
port objects since these encapsulate the static imports.
Therefore by creating global objects we have the same
convenience as if global methods existed. For example
the plot() method is available since we import it from
object scalaSci.plot.plot. Also, Scala offers the possi-
bility to define apply() methods for the companion ob-
jects of classes. These apply() methods offer the con-
venience to call them directly with the object name. In
this case, we need to import into the global environ-
ment only the object and not the particular method.

7. Implicit conversions: An important feature of
Scala for convenient syntax

Returning to our matrix Mat class example, when
the compiler detects an operator ‘+’ on a Double ob-
ject d that adds a Mat object M , i.e. d + M , it has
a problem since this constitutes a type error. There is
no method defined on the predefined Double type that
adds to it a Mat object (and there cannot be one since
Mat is a user library defined type). Similar is the situ-

386 S. Papadimitriou et al. / The software architecture for performing scientific computation with the JLAPACK libraries in ScalaLab

ation when a Mat is added to a double array. Dynamic
languages as Groovy [8], can easily overcome this ob-
stacle by appending methods to the MetaClass of the
Double or Double[] type. But, when we do not want
to sacrifice the merits of static typing, other solutions
should be searched.

Implicit conversions [10,17,18] provide efficient so-
lutions in such cases in Scala. When an operation is not
defined for some types, the compiler instead of abort-
ing, tries any available implicit conversions that can be
applied in order to transform an invalid operation to a
valid one. The goal is to transform the objects to types
for which the operation is valid.

The mechanism of implicit conversions is of funda-
mental importance for the construction of high-level
mathematical operators in ScalaLab. Here, we describe
the design of the implicit conversions in ScalaLab
around the RichNumber, RichDouble2DArray and
RichDouble2DArray classes.

Initially, we have implemented implicit conversions
that transformed the receiver object according to the
type of the arguments in order for the operation to pro-
ceed, e.g. for the code below:

var a = rand(200, 300) // create a 200 by 300 Matrix
var a2 = 2 + a // performs the addition by implicitly

converting 2

The 2 at the initial design was transformed to a 200 ×
300 Matrix filled with 2, and the addition operation
is performed as Matrix addition. However, this design
was not very elegant and also not as efficient in terms
of speed and memory usage as it can be.

Therefore, we updated the design of the implicit
conversions around the RichNumber class. This class
models an extended Number capable of accepting op-
erations with all the relevant classes of ScalaLab, e.g.,
with Mat, Matrix, EJML.Mat, MTJ.Mat and generally
whatever class we need to process.

At the example above, the 2 is transformed by the
Scala compiler to a RichNumber object, that defines
an operation to add a Matrix. Therefore, the operation
proceeds effectively without allocating any new space
(at the initial design a Matrix object was created and
filled with 2 s).

This design is more effective (about 20–30% speed
increase) and (perhaps more important) simpler and
more extendable.

We present a small part of the RichNumber class for
illustration (Listing 1).

Listing 1. Part of the RichNumber class to which matrix ob-
jects from library classes are implicitly converted
// e.g. 2 + Mat
package scalaSci
class RichNumber(v: Double) {
private val value = v // the RichNumber includes a
Double field that corresponds to its value

// follow many methods here
//. . .

// addition of RichNumber and Vec
def + (that: Vec): Vec = {
var N = that.length
var result = new Vec(N)
var r = 0
while (r < N) {
result(r) = that(r) + value
r+ = 1
}
result
}

// also follow many methods here
// . . .
}

Similarly, the classes RichDouble1DArray and Rich-
Double2DArray wrap the Array[Double] and Array
[Array[Double]] Scala classes in order to allow conve-
nient operations as e.g addition and multiplication of
Array[Array[Double]] types.

As RichNumber enriches simple numeric types,
RichDouble1DArray enhances the Array[Double] type
and RichDouble2DArray the Array[Array[Double]]
type. Therefore, for example, the following code be-
comes valid:

var a = Ones(9, 10)
// an Array[Array[Double]] filled with 1 s
var b = a+ 10
// add the value 10 to all the elements returning b as

an Array[Array[Double]]
var c = b+ a ∗ 89.7
// similarly using implicit conversions this

computation proceeds normally.

The implementation of the RichDouble1DArray. scala
and RichDouble2DArray.scala classes can be obtained
from the sources of ScalaLab. We next describe some
aspects of extending the functionality of these basic
classes using JLAPACK.

S. Papadimitriou et al. / The software architecture for performing scientific computation with the JLAPACK libraries in ScalaLab 387

8. Extending the functionality of the
RichDouble2DArray object with JLAPACK

Although MTJ presents much of the functionality of
JLAPACK in a much easier to use object-oriented way,
the user has to perform some MTJ specific chores (e.g.
to create and initialize properly an MTJ DenseMatrix)
and to study the architecture design of the MTJ and
its API before using it effectively. Also, much of the
JLAPACK’s potentiality is not wrapped by MTJ.

These facts motivated the creation of an alternative
interface to JLAPACK that acts directly on the stan-
dard Array[Array[Double]] type and injects a lot of
linear algebra manipulation routines into this standard
Java/Scala type. Note also that the implicit conver-

sion of Array[Array[Double]] to RichDouble2DArray
allows the MATLAB-like matrix handling of Java’s 2D
double arrays within ScalaLab.

For example, consider the implementation of the
eig(a) routine that provides the real and imaginary
eigenvalues and the corresponding right-eigenvectors
of an Array[Array[Double]]. We can observe that al-
though the routine is complicated and its understand-
ing requires knowledge of the LAPACK internals, the
interface of the routine to the ScalaLab user is very
simple and MATLAB like. The routine simply accepts
a Java square 2D array of doubles (i.e. the matrix), and
returns a tuple consisting of: (a) the real parts of the
eigenvalues of the matrix, (b) the corresponding imag-
inary parts and (c) the eigenvectors of the matrix.

// computes eigenvalues and right eigenvectors
def eig(inM: Array[Array[Double]]) = {
val n = inM.length
// Allocate space for the decomposition
var Wr = new DenseVector(n)
var Wi = new DenseVector(n)
var Vr = new DenseMatrix(n,n)
// Find the needed workspace
val worksize = Array.ofDim[Double](1);
val info = new intW(0)
LAPACK.getInstance.dgeev(

“N”, // left eigenvectors of A are not computed
“V ”, // right eigenvectors of A are computed
n, // the order of the matrix, number of rows
Array.empty[Double],
Math.max(1,n), // leading dimension of the array
Array.empty[Double], // Wr: real parts of the computed eigenvalues
Array.empty[Double], // Wi: imaginary parts of the computed eigenvalues
Array.empty[Double], // if JOBVL = ‘V ’ the left eigenvectors u(j) are stored one after

// another in the columns of VL, in the same order as their eigenvalues
// if JOBVL = ‘N ’m VL is not referenced’

Math.max(1,n), // the leading dimension of the array VL
Array.empty[Double],
Math.max(1,n),
worksize,
−1, // a workspace query is assumed
info)

// Allocate the workspace
val lwork: Int =

if (info.‘val’! = 0)
Math.max(1, 4 ∗ n);

else
Math.max(1, worksize(0).toInt);

val work = Array.ofDim[Double](lwork);

388 S. Papadimitriou et al. / The software architecture for performing scientific computation with the JLAPACK libraries in ScalaLab

// Factor it!
val A = new DenseMatrix(inM)
LAPACK.getInstance.dgeev(

“N ,” // left eigenvectors of A are not computed
“V ,” // right eigenvectors of A are computed
n, // the order of the matrix, number of rows
A.getData, // (input/output) array, on entry the n× n matrix A, on exit A is overwritten
Math.max(1,n), // leading dimension of the array
Wr.getData, // Wr: real parts of the computed eigenvalues
Wi.getData, // Wi: imaginary parts of the computed eigenvalues
Array.empty[Double],
Math.max(1,n),
Vr.getData,
Math.max(1,n),
work,
work.length, info);

if (info.‘val’ > 0)
throw new

NotConvergedException(NotConvergedException.Reason.Iterations)
else if (info.‘val’ < 0)

throw new IllegalArgumentException()

// prepare the results
var rWr = new RichDouble2DArray(scalaSci.JILapack.denseVectorToDoubleArray(Wr))
var rWi = new RichDouble2DArray(scalaSci.JILapack.denseVectorToDoubleArray(Wi))
var rVr = new RichDouble2DArray(scalaSci.JILapack.denseMatrixToDoubleArray(Vr))

(rWr, rWi, rVr)

}

In a similar spirit we extend ScalaLab with similar
powerful routines based on JLAPACK that are easy to
use but rather difficult to implement.

9. Accuracy and performance of the ScalaLab
libraries

Java conforms fully to IEEE standard [2] that estab-
lishes a precise interface for floating point computa-
tions. The double type performs sufficiently accurate
for most applications and in today’s JVMs is not slower
than the float type. Also, both Java and Scala support
BigDecimal arithmetic at the library level. These types
however are much slower. ScalaLab also supports the
reliable computation framework of [3]. That frame-
work can produce confidence intervals for many types
of computations. Although the “SmartFloat” arith-
metic runs much slower than pure double arithmetic, it
can also be very useful at the development stage, since
we can gain valuable insight about the accuracy of our
algorithms.

JBLAS [http://www.jblas.org/] is similar in many
aspects with MTJ in that it provides a higher level in-
terface to BLAS and LAPACK functions. The Native
BLAS class of JBLAS contains the native BLAS and
LAPACK functions. Each Fortran function is mapped
to a static method of this class. For each array ar-
gument, an additional parameter is introduced which
gives the offset from the beginning of the passed array.
In C, we can pass a different reference, from the be-
ginning of an array, but in Java, we can only pass the
reference to the start of the array.

Due to the way the JNI (Java Native Interface) is
implemented, the arrays are first copied outside of the
JVM before the function is called. This means that
functions whose runtime is linear in the amount of
memory usually not run faster just because we are us-
ing a native implementation. This holds true for most
Level 1 BLAS routines (like vector addition) but also
for most Level 2 BLAS routines (matrix–vector multi-
plications).

JBLAS routines that use the Native BLAS are the
fastest routines in ScalaLab, with nearly the same

S. Papadimitriou et al. / The software architecture for performing scientific computation with the JLAPACK libraries in ScalaLab 389

speed as corresponding MATLAB built-in operations
(e.g. for matrix multiplications).

We performed several benchmarking tests compar-
ing ScalaLab with SciLab and MATLAB. All the tests
were performed on a Pentium Dual Core machine
clocked at 1.5 GHz, running Windows Vista. Also, we
compare with GroovyLab (http://code.google.com/p/
jlabgroovy/) a similar system based on the Groovy
dynamically typed language for the JVM. A gen-
eral conclusion is that ScalaLab is significantly (i.e.
about 2–5 times about) faster than SciLab but not
fast as MATLAB for the operations that the lat-
ter implements with optimized built-in code. How-
ever, ScalaLab scripts run also significantly faster than
M-file scripts.

It is interesting to observe that MATLAB’s perfor-
mance in some built-in operations (e.g. matrix multi-
plication) is similar to the performance we obtained
from ScalaLab using Native BLAS (using the JBLAS
library, http://www.jblas.org/). We can assume that
MATLAB also uses these fast native routines.

In order to access the efficiency of accessing the ma-
trix structure we have used the following simple script,
for which we list the code in MATLAB.

Array access benchmark in MATLAB.

N = 2000; M = 2000
tic
a = rand(N ,M);
sm = 0.0;
for r = 1:N ,

sm = 0.0;
for c = 1:M ,
a(r, c) = 1.0/(r + c+ 1);
sm = sm + a(r, c) − 7.8 ∗ a(r, c);

end
end
tm = toc

For that script ScalaLab clearly outperforms both
MATLAB and SciLab. GroovyLab has similar speed
when the option of static compilation is used. With
the implementation of optimized primitive operations
(i.e. later versions of Groovy produce fast code for
arithmetic operations since they avoid the overhead
of the meta-object protocol) and with the later invoke
dynamic implementation, Groovy generally is slightly
slower than Scala. The reason for the superiority of
ScalaLab in terms of scripting speed, is clearly the stat-
ically typed design of the Scala language that permits
the emission of efficient bytecodes.

The FFT benchmark is performed in ScalaLab using
implementations of FFT from various libraries.

Of these libraries the Oregon DSP library obtains the
fastest speed. The second and close in performance is
the JTransforms (https://sites.google.com/site/
piotrwendykier/software/jtransforms). Since JTrans-
forms is multithreaded, it can logically gain superior-
ity with better machines (e.g. having 8 or 32 cores, in-
stead of only 4). Also, as can be seen, the rather tutorial
FFT implementation of the classic Numerical Recipes
book [16] obtains adequate performance. Surprising
enough is that the Oregon DSP and JTransforms FFT
routines are nearly as fast as the optimized built-in FFT
of MATLAB.

We tested also other types of problems such as
the eigenvalue decomposition, singular value decom-
position, solution of overdetermined systems etc. The
general conclusion is that ScalaLab is faster than
SciLab 5.21 by about 3 to 5 times but slower than
MATLAB 7.1 by about 2 to 3 times. It is evident also
that routines of JLAPACK for special matrix categories
run orders of magnitude faster than routines for gen-
eral matrices, e.g. for a 1500 × 1500 band matrix with
2 bands above and 3 bands below the main diagonal,
the JLAPACK’s SVD routines runs about 250 times
faster than for a general 1500 × 1500 matrix.

Also, another interesting point is the storage for-
mat used by each library for matrix access. Some li-
braries use row-major format (e.g. EJML), others col-
umn major (e.g. JLAPACK) and others a 2D Java array.
Generally, the column major format seems to be more
efficient, but the difference is not significant. The fol-
lowing table (Table 2) presents the basic Java libraries
that ScalaLab exploits and their main properties.

10. Conclusions and future work

This paper has presented some ways by which we
can work more effectively with the MTJ Java scien-
tific library and the JLAPACK numerical analysis sys-
tem. We demonstrated that ScalaLab can integrate el-
egantly these Java numerical analysis libraries for ba-
sic tasks. These libraries are wrapped by Scala objects
and their basic operations are presented to the user with
a uniform MATLAB-like interface. Also, any special-
ized Java scientific library can be explored from within
ScalaLab much more effectively and conveniently.

JLAPACK although it is obtained by automatic
translation with f2j presents performance that com-
petes with hand crafted Java libraries and for diffi-
cult numerical tasks, usually outperforms them. Com-

390 S. Papadimitriou et al. / The software architecture for performing scientific computation with the JLAPACK libraries in ScalaLab

Table 1

Results of some basic benchmarks

ScalaLab SciLab 5.21 MATLAB 7.1 GroovyLab

(s) (s) (s) (s)

Matrix multiplication 1500 × 1500: 1500 × 1500: 1500 × 1500: The same as ScalaLab

6.64 with Java, 10.9 2.96

3.06 with Native BLAS 2500 × 2500: 2500 × 2500:

2500 × 2500: 40.48 12.8

30.02 with Java,

13.74 with Native BLAS

2500 30.02 13.74 13.55

LU

1000 0.67 3.13 0.36 0.7

1500 2.41 3.82 1.18 2.58

2000 5.6 6.42 2.72 5.8

inv

1000 2.7 12.97 1.3 3.1

1500 7.8 13.14 4.5 8.2

2000 9.31 19.07 5.9 10.1

QR

1000 2.5 4.3 1.2 2.7

1500 11.3 9.96 4.26 12.4

2000 29.09 19.69 9.89 30.2

Matrix access scripting benchmark 0.03 32.16 10.58 0.031 static compilation,

0.156 with primitive ops,

0.211 with invoke dynamic

FFT Oregon DSP: Real case: 2.32 Real case: 0.05 The Java libraries for FFT

100 ffts of real case: 0.05, Complex case: 4.2 Complex case: 0.08 are the same as ScalaLab’s

16,384 sized signal complex case: 0.095

JTransforms:

real case: 0.07

complex case: 0.11,

Apache common maths:

complex case: 0.5

Numerical recipes:

real case: 0.09

complex case: 0.12

bined with the state of the art algorithms used in
LAPACK and the familiarity of a significant part of the
scientific community with LAPACK from Fortran, it
makes JLAPACK a strong computation vehicle within
ScalaLab. Moreover, by exploiting the JBLAS library,
some basic LAPACK operations can be used by the
ScalaLab user in their native optimized implementa-
tions, in which they are about 2 to 5 times faster, with-
out making anything different from pure Java/Scala
programming.

Scala is ideal for our purpose: the ability to handle
functions as first-class objects, the customizable syn-

tax, the ability to overload operators, the speed of the
language, the full Java interoperability, are some of its
strengths. An extension of Scala with MATLAB-like
constructs, called ScalaSci is the language of ScalaLab.
ScalaSci is effective both for writing small scripts and
for developing large production level applications.

The ScalaLab environment combines the solid and
extensible basis of object orientation, the ease-of-use
of scripting, the rich Swing graphical environment and
the expressiveness of the Scala language. The object-
oriented framework built on top of the JLAPACK li-
brary, that the article described, is only one possibility

S. Papadimitriou et al. / The software architecture for performing scientific computation with the JLAPACK libraries in ScalaLab 391

Table 2

The basic libraries used in ScalaLab and their main properties

Linear algebra Extensive coverage Support for special Efficiently Storage format

only of algorithms matrices

JAMA Yes Only the basic operations No Implements the basic algorithms,
is the slowest library tested

Java 2D array

JLAPACK Yes Very extensive coverage Many special ma-
trices block, trian-
gular, banded

Although automatically produced,
is very efficient, especially for
large matrices and special matrix
types

Java 1D array
in column ma-
jor order

EJML Yes Relative many operations Support for block
matrices

For the common problems, is gen-
erally the fastest library tested,
usually a little faster than JLA-
PACK

Java 1A array
in either row
or column ma-
jor order

Apache No, covers
many numerical
analysis tasks

The basic operations Block algorithms
supported

Is a fast library but not for all prob-
lems

Java 2D array

NUMAL No Very extensive coverage Banded, triangu-
lar, symmetric

Generally, is an efficient library Java 2D array

of strengthening ScalaLab as a scientific programming
environment. A lot of work remains in extending and
improving ScalaSci using the philosophy of develop-
ment that the article has presented.

References

[1] A. Aho, M.S. Lam, R. Sethi and J.D. Ullman, Compilers, Prin-
ciples, Techniques, & Tools, 2nd edn, Addison-Wesley, 2007.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney and D. Sorensen, LAPACK Users’ Guide, 3rd
edn, Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 1999, available at: http://www.netlib.org/lapack/lug/.

[3] E. Darulova and V. Kuncak, Trustworthy numerical computa-
tion in Scala, in: ACM OOPSLA’11, October 22–27, Portland,
OR, USA, 2011.

[4] J.J. Dongarra, J. Du Croz, S. Hamarling and I. Duff, A set of
level 3 basic linear algebra subprograms, ACM Transactions
on Mathematical Software 16(1) (1990), 1–17.

[5] D.M. Doolin, J. Dongarra and K. Seymour, JLAPACK-
Compiling LAPACK FORTRAN to Java.

[6] B.-O. Heimsund, High performance numerical libraries in
Java.

[7] C. Horstmann and G. Cornell, Core Java 2, Vol. I – Fundamen-
tals, Vol. II – Advanced Techniques, 8th edn, Sun Microsystems
Press, 2008.

[8] D. Konig, A. Glover, P. King, G. Laforge and J. Skeet, Groovy
in Action, Manning Publications, 2007.

[9] H.T. Lau, A Numerical Library in Java for Scientists and En-
gineers, Chapman & Hall/CRC, 2003.

[10] M. Odersky, L. Spoon and B. Venners, Programming in Scala,
Artima, 2008.

[11] S. Papadimitriou, Scientific programming with Java classes
supported with a scripting interpreter, IET Software 1(2)
(2007), 48–56.

[12] S. Papadimitriou and K. Terzidis, jLab: Integrating a scripting
interpreter with Java technology for flexible and efficient scien-
tific computation, Computer Languages, Systems & Structures
35 (2009), 217–240.

[13] S. Papadimitriou, K. Terzidis, S. Mavroudi and S. Likothana-
sis, Scientific scripting for the Java platform with jLab, IEEE
Computing in Science and Engineering (CISE) 11(4) (2009),
50–60.

[14] S. Papadimitriou, K. Terzidis, S. Mavroudi and S. Likothana-
sis, ScalaLab: an effective scientific programming environment
for the Java Platform based on the Scala object-functional lan-
guage, IEEE Computing in Science and Engineering (CISE)
13(5) (2011), 43–55.

[15] S. Papadimitriou, K. Terzidis, S. Mavroudi and S. Likothanas-
sis, Exploiting Java scientific libraries with the Scala language
within the ScalaLab environment, IET Software 5(6) (2011),
543–551.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery,
Numerical Recipes in C++, The Art of Scientific Computing,
2nd edn, Cambridge Univ. Press, 2002.

[17] V. Subramaniam, Programming Scala – Tackle Multicore
Complexity on the Java Virtual Machine, Pragmatic Bookshelf,
2009.

[18] D. Wampler and A. Payne, Programming Scala, O’Reily, 2009.
[19] T. Wurthinger, C. Wimmer and H. Mossenblock, Array bounds

check elimination for the Java HotSpot client compiler, in:
PPPJ 2007, September 5–7, Lisboa Portugal, ACM, 2007.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

