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Using TACAN and array fundamentals, we derive an architecture for transmitting TACAN bearing information from a circular
array with time-varying weights. We evaluate performance for a simulated example array of Vivaldi elements.

1. Introduction

The Tactical Air Navigational (TACAN) system provides
distance and bearing information to aircraft from ground
stations and is widely used in military settings. Traditionally,
a ground station’s physically rotating transmit antenna creates
bearing-dependent amplitude modulation from which air-
craft can determine their bearings from that ground station.
Where space for such a dedicated, special-purpose transmit
antenna is difficult to obtain, such as onNaval vessels, sharing
a multifunction array with other systems is an option. In that
case the TACAN application would use time-varying array
weights to approximate a rotating pattern.

Replacing the rotating antenna with a circular array
would have benefits beyond facilitating the consolidation of
apertures. Certainly these would include simplified mainte-
nance [1] and the potential for elevation beam shaping and/or
operation onlywithin desired azimuth ranges [2]. In addition,
an array could be given an operational bandwidth covering
not only the current TACAN bands of 962–1024MHz and
1025–1087MHz [3] but also future TACAN bands considered
likely to result from revised spectrum allocations [4].

With those motivations, this paper derives time-varying
TACAN array weights for a uniform cylindrical array. While
TACAN specifications [5] address both the static elevation
pattern and the dynamic azimuth pattern, here we focus on
the latter.Our design example assumes an array ofVivaldi ele-
ments characterized by embedded element patterns obtained
through HFSS simulations. To evaluate the design, we use a
bearing-error metric that falls naturally out of the derivation.

The standard TACAN ground transmitter of interest
slowly amplitude-modulates a fast pulse signal with an
antenna pattern that rotates at 15Hz and that is designed to
yield sinusoidal AM components, in the pulse amplitudes
at the aircraft receiver, at 15Hz and 9 × 15Hz = 135Hz. A
reference burst transmitted as the rotating main lobe passes
north enables an aircraft to obtain a coarse bearing from the
transmitter as the phase of the 15Hz modulation component
relative to a zero time marked by burst reception.That coarse
bearing and the phase of the 135Hz component then together
yield a fine bearing measurement. Here we focus on creating
a time-varying array pattern that permits accurate bearing
estimation at the receiver using this process. The fast pulse
modulation and reference bursts are independent of the
antenna andpattern used and are not considered further here.

This paper presents the initial study into the development
of the time-harmonic weights required for transmitting the
TACAN waveform from a circular array. A discussion on the
theory is provided and validated using simulations.

2. Theory

Thenext section derives the array structure and time-varying
array weights. Performance is then derived as a function of
those weights and the complex embedded array patterns.

2.1. Deriving the Array. Time-varying weights for a circular
array of 𝑁 elements are derived below with the goal of pro-
viding accurate TACAN bearing measurement in receivers at
arbitrary bearings.
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There are several steps. Formally assuming the array to be
circularly symmetric and requiring its pattern sampled at 𝑁
equally spaced bearings to smoothly rotate in space with time
turns out—no surprise—to formally imply that the weights
must also rotate so that only one weight requires explicit
design. That design follows from the desired temporal mod-
ulation of the array-pattern amplitude along a single direc-
tion. The pattern modulation between the 𝑁 bearings thus
addressed explicitly takes the desired general form automat-
ically, with only pattern magnitude and signal modulation
indices free to vary modestly (given reasonable assumptions)
with bearing.

2.1.1. The Array. Center the 𝑁-element array on the origin
with symmetry about the vertical axis and with element indi-
ces increasing with bearing. Align element 0 with bearing
0
∘ (any bearing can be made the new zero by changing the
reference-burst timing) and interpret element indices mod-
ulo𝑁 so that the elements adjacent to element 0, for example,
can be indexed with ±1 or {1,𝑁 − 1}. In the development
below, each summation ∑ over index 𝑛 should be read as
a sum over element indices 𝑛 = 0, . . . , 𝑁 − 1, and each
summation ∑ over index ℓ should be read as the doubly
infinite sum over ℓ = −∞, . . . ,∞.

Let k designate the real wavenumber vector of a trans-
mitted signal, and let complex vector-valued function ⃗

𝑓
𝑛
(k)

be the origin-referenced embedded far-field complex pattern
of element 𝑛. We assume elements are identical in the sense
that

⃗
𝑓
𝑛
(k) = R𝑛 ⃗

𝑓
0
(R−𝑛k) (1)

for all k of interest, where linear operation k 󳨃→ Rk rotates
real vector k about the vertical by 2𝜋/𝑁 to increase bearing.
Identity R𝑁 = R will be used freely.

In practice imperfect array construction will result in
nonidentical embedded element patterns, so the transmitted
TACANwaveformwill vary somewhat from the ideal derived
here. We have yet to study such errors but hope to eventually.

2.1.2. One Weight Implies the Others. Write the time-varying
far-field complex array pattern as

⃗
𝑓 (k, 𝑡) = ∑

𝑛

𝑤
𝑛
(𝑡)

⃗
𝑓
𝑛
(k) = ∑

𝑛

𝑤
𝑛
(𝑡)R𝑛 ⃗

𝑓
0
(R−𝑛k) (2)

using array symmetry (1) on the right. A classic TACAN
system’s pattern rotates spatially at frequency 1/𝑇 = 15Hz,
but here we require that behavior only at 𝑁 equally spaced
bearings. Period 𝑇 rotation over 2𝜋/𝑁 in angle is given by

⃗
𝑓 (Rk, 𝑡) = R ⃗

𝑓 (k, 𝑡 − 𝑇

𝑁

) . (3)

Substituting Rk for k in (2) and a change of index yield

⃗
𝑓 (Rk, 𝑡) = ∑

𝑛

𝑤
𝑛
(𝑡)R𝑛 ⃗

𝑓
0
(R1−𝑛k) , (4)

⃗
𝑓 (Rk, 𝑡) = ∑

𝑛

𝑤
𝑛+1

(𝑡)R𝑛+1 ⃗
𝑓
0
(R−𝑛k) . (5)

Likewise, applying (2) to the right side of (3) yields

R ⃗
𝑓 (k, 𝑡 − 𝑇

𝑁

) = ∑

𝑛

𝑤
𝑛
(𝑡 −

𝑇

𝑁

)R𝑛+1 ⃗
𝑓
0
(R−𝑛k) . (6)

Substituting (5) and (6) into (3) and comparing terms then
formally show that 𝑤

𝑛+1
(𝑡) = 𝑤

𝑛
(𝑡 − 𝑇/𝑁) for all 𝑛, so

𝑤
𝑛
(𝑡) = 𝑤

0
(𝑡 −

𝑛𝑇

𝑁

) . (7)

A rotating bearing-sampled pattern thus implies weight
periodicity 𝑤

0
(𝑡) = 𝑤

𝑁
(𝑡) = 𝑤

0
(𝑡 − 𝑇). This will not produce

rotation for all bearings, but we will preserve property (7) for
simplicity of structure and in order to obtain nearly rotating
behavior.

2.1.3. DesiredModulation. Thedesired complex array pattern
is an arbitrary constant complex amplitude modulated by

𝑚(𝑡, 𝜙) = 1 + 2𝑎 cos(2𝜋𝑡
𝑇

− 𝜙)

+ 2𝑏 cos(2𝜋9𝑡
𝑇

− 9𝜙) ,

(8)

where 𝜙 is bearing. Positive real modulation indices 2𝑎 and
2𝑏 are kept small enough that |𝑚(𝑡, 𝜙)| = 𝑚(𝑡, 𝜙), for simple
receiver demodulation.The terms at frequencies 1/𝑇 and 9/𝑇
are, respectively, used for coarse and fine bearing measure-
ment.

The 𝜙 = 0 array pattern should be, using arbitrary scaling,

𝑚(𝑡, 0) = 1 + 2𝑎 cos(2𝜋𝑡
𝑇

) + 2𝑏 cos(2𝜋9𝑡
𝑇

) . (9)

2.1.4. Determining Weight 𝑤
0
(𝑡). Let wavenumber vector

kimp and complex polarization unit vector ⃗𝑐 govern co-pol
propagation at 𝜙 = 0 at the most important elevation. Using
superscripts to index coefficients, the Fourier series of asso-
ciated pattern sample ⟨ ⃗

𝑓(kimp, 𝑡), ⃗𝑐⟩ and weight 𝑤
0
(𝑡) take

forms

⟨
⃗

𝑓 (kimp, 𝑡) , ⃗𝑐⟩ = ∑
ℓ

𝑐
ℓe𝑗2𝜋ℓ𝑡/𝑇, (10)

𝑤
0
(𝑡) = ∑

ℓ

𝑤
ℓe𝑗2𝜋ℓ𝑡/𝑇. (11)

The co-pol array pattern at k = kimp is, by (2) and (7),

⟨
⃗

𝑓 (kimp, 𝑡) , ⃗𝑐⟩ = ∑
𝑛

⟨
⃗

𝑓
𝑛
(kimp) , ⃗𝑐⟩𝑤0 (𝑡 −

𝑛𝑇

𝑁

) . (12)

Fourier-series forms (10) and (11) and simple algebra then
yield

∑

ℓ

𝑐
ℓe𝑗2𝜋ℓ𝑡/𝑇 = ∑

ℓ

𝑤
ℓ

ℎ
ℓe𝑗2𝜋ℓ𝑡/𝑇 (13)

after defining DFT sum (periodically extended in ℓ)

ℎ
ℓ

= ∑

𝑛

⟨
⃗

𝑓
𝑛
(kimp) , ⃗𝑐⟩ e

−𝑗2𝜋ℓ𝑛/𝑁

, (14)



International Journal of Antennas and Propagation 3

which allows ℎℓ to be computed from the embedded complex
element patterns. The 𝜙 = 0 pattern (9)

⟨
⃗

𝑓 (kimp, 𝑡) , ⃗𝑐⟩ = 𝑚 (𝑡, 0)

= 1 + 𝑎e𝑗2𝜋𝑡/𝑇 + 𝑎e−𝑗2𝜋𝑡/𝑇 + 𝑏e𝑗2𝜋9𝑡/𝑇

+ 𝑏e−𝑗2𝜋9𝑡/𝑇

(15)

yields coefficients 𝑐ℓ. From these ℎℓ and 𝑐ℓ we can obtain 𝑤ℓ
using the uniqueness of Fourier series and (13), which imply

𝑐
ℓ

= 𝑤
ℓ

ℎ
ℓ (16)

for integer ℓ. Thus Fourier series (11) can be written as

𝑤
0
(𝑡) =

1

ℎ
0

+

𝑎

ℎ
1

e𝑗2𝜋𝑡/𝑇 + 𝑎

ℎ
−1

e−𝑗2𝜋𝑡/𝑇 + 𝑏

ℎ
9

e𝑗2𝜋9𝑡/𝑇

+

𝑏

ℎ
−9

e−𝑗2𝜋9𝑡/𝑇.
(17)

This and (7) specify weights that fix the co-pol array pattern
for the𝑁wavenumber vectors of formR𝑛kimp to ideal values.
The pattern in other directions/polarizations cannot be inde-
pendently specified and depends on the element patterns.

2.2. Performance

2.2.1. The Received Signal’s Overall Amplitude Modulation.
Much of the above can be generalized to arbitrary polariza-
tion unit vector 𝑝⃗ and wavenumber vector k. Generalizing
Fourier series (10) along with (13) and (14),

⟨
⃗

𝑓 (k, 𝑡) , 𝑝⃗⟩ = ∑
ℓ

𝑝
ℓe𝑗2𝜋ℓ𝑡/𝑇, (18)

𝑝
ℓ

= 𝑤
ℓ

∑

𝑛

⟨
⃗

𝑓
𝑛
(k) , 𝑝⃗⟩ e−𝑗2𝜋ℓ𝑛/𝑁. (19)

Using (17) for 𝑤ℓ, the nonzero Fourier coefficients are

𝑝
0

=

1

ℎ
0

∑

𝑛

⟨
⃗

𝑓
𝑛
(k) , 𝑝⃗⟩ ,

𝑝
±1

=

𝑎

ℎ
±1

∑

𝑛

⟨
⃗

𝑓
𝑛
(k) , 𝑝⃗⟩ e∓𝑗2𝜋𝑛/𝑁,

𝑝
±9

=

𝑏

ℎ
±9

∑

𝑛

⟨
⃗

𝑓
𝑛
(k) , 𝑝⃗⟩ e∓𝑗2𝜋9𝑛/𝑁.

(20)

Fourier sum (18) is a complex constant times a real modula-
tion function if each of 𝑝±1/𝑝0 and 𝑝±9/𝑝0 is a conjugate pair.
To distinguish desired and undesired pair behaviors, we can
define sum and difference coefficients. For each 𝑘 ∈ {1, 9}, let

𝑝
𝑘Σ
=

𝑝
𝑘

𝑝
0

+ (

𝑝
−𝑘

𝑝
0

)

∗

,

𝑝
𝑘Δ
=

𝑝
𝑘

𝑝
0

− (

𝑝
−𝑘

𝑝
0

)

∗

(21)

so that

𝑝
𝑘

𝑝
0

=

𝑝
𝑘Σ
+ 𝑝
𝑘Δ

2

,

𝑝
−𝑘

𝑝
0

=

(𝑝
𝑘Σ
− 𝑝
𝑘Δ
)
∗

2

.

(22)

Fourier sum (18) then becomes

⟨
⃗

𝑓 (k, 𝑡) , 𝑝⃗⟩ = 𝑝0 (1 + 1

2

(𝑝
1Σ
e𝑗2𝜋𝑡/𝑇 + 𝑝∗

1Σ

e−𝑗2𝜋𝑡/𝑇

+ 𝑝
1Δ
e𝑗2𝜋𝑡/𝑇 − 𝑝∗

1Δ

e−𝑗2𝜋𝑡/𝑇 + 𝑝
9Σ
e𝑗2𝜋9𝑡/𝑇

+ 𝑝
∗

9Σ

e−𝑗2𝜋9𝑡/𝑇 + 𝑝
9Δ
e𝑗2𝜋9𝑡/𝑇 − 𝑝∗

9Δ

e−𝑗2𝜋9𝑡/𝑇)) .

(23)

Combining sums and differences of conjugate pairs yields

⟨
⃗

𝑓 (k, 𝑡) , 𝑝⃗⟩ = 𝑝0 (1 + Re {𝑝
1Σ
e𝑗2𝜋𝑡/𝑇}

+ Re {𝑝
9Σ
e𝑗2𝜋9𝑡/𝑇} + 𝑗 Im {𝑝

1Δ
e𝑗2𝜋𝑡/𝑇}

+ 𝑗 Im {𝑝
9Δ
e𝑗2𝜋9𝑡/𝑇})

(24)

or

⟨
⃗

𝑓 (k, 𝑡) , 𝑝⃗⟩ = 𝑝0 (1 + 󵄨󵄨󵄨
󵄨
𝑝
1Σ

󵄨
󵄨
󵄨
󵄨
cos(2𝜋𝑡

𝑇

+ ∠𝑝
1Σ
)

+
󵄨
󵄨
󵄨
󵄨
𝑝
9Σ

󵄨
󵄨
󵄨
󵄨
cos(2𝜋9𝑡

𝑇

+ ∠𝑝
9Σ
)

+ 𝑗
󵄨
󵄨
󵄨
󵄨
𝑝
1Δ

󵄨
󵄨
󵄨
󵄨
sin(2𝜋𝑡

𝑇

+ ∠𝑝
1Δ
)

+ 𝑗
󵄨
󵄨
󵄨
󵄨
𝑝
9Δ

󵄨
󵄨
󵄨
󵄨
sin(2𝜋9𝑡

𝑇

+ ∠𝑝
9Δ
)) .

(25)

Ideally |𝑝
1Δ
| and |𝑝

9Δ
| are negligibly small so that

󵄨
󵄨
󵄨
󵄨
󵄨
⟨

⃗
𝑓 (k, 𝑡) , 𝑝⃗⟩󵄨󵄨󵄨󵄨

󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
0
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 +
󵄨
󵄨
󵄨
󵄨
𝑝
1Σ

󵄨
󵄨
󵄨
󵄨
cos(2𝜋𝑡

𝑇

+ ∠𝑝
1Σ
)

+
󵄨
󵄨
󵄨
󵄨
𝑝
9Σ

󵄨
󵄨
󵄨
󵄨
cos(2𝜋9𝑡

𝑇

+ ∠𝑝
9Σ
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(26)

In analogy to (8), magnitudes |𝑝
1Σ
| and |𝑝

9Σ
| are the

modulation indices, and angles

∠𝑝
1Σ

mod 2𝜋
= −𝜙coarse, (27)

∠𝑝
9Σ

mod 2𝜋
= −9𝜙fine (28)

relate to coarse and fine bearing estimates 𝜙coarse and 𝜙fine.

2.2.2. The Fine Bearing Measurement. The receiver can com-
pute 𝜙coarse from (27) directly, but computing 𝜙fine requires
resolving the ninefold ambiguity in (28). The key is to let

𝜙diff
mod 2𝜋
= 𝜙fine − 𝜙coarse (29)
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and assume that since 𝜙coarse and 𝜙fine are close as angles,
𝜙diff ∈ [−𝜋/9, 𝜋/9). Scaling (29) by 9/2𝜋 and using (27) and
(28),

9𝜙diff
2𝜋

+ 𝑚 =

9∠𝑝
1Σ
− ∠𝑝
9Σ

2𝜋

(30)

for some integer 𝑚. Since 9𝜙diff/2𝜋 ∈ [−1/2, 1/2), rounding
yields the first of the three needed computational steps, and
(30) and (29) yield the other two:

𝑚 = round(
9∠𝑝
1Σ
− ∠𝑝
9Σ

2𝜋

) ,

𝜙diff = ∠𝑝1Σ −
∠𝑝
9Σ
+ 2𝜋𝑚

9

,

𝜙fine = (𝜙coarse + 𝜙diff) mod 2𝜋.

(31)

2.2.3. Intrinsic Bearing Measurement Error. The measured
bearing generally contains some error even when 𝑝

1Δ
=

𝑝
9Δ

= 0 and when the receiver measures angles ∠𝑝
1Σ

and
∠𝑝
9Σ

perfectly. To derive the intrinsic residual fine bearing
error relative to actual bearing 𝜙, add 9𝜙 to each side of (28)
and apply angle-folding map 𝑥 󳨃→ ((𝑥+𝜋) mod 2𝜋)−𝜋. This
yields ((∠𝑝

9Σ
+9𝜙+𝜋) mod 2𝜋)−𝜋 = −9(𝜙fine−𝜙), where the

right side is unchanged because the map is an identity when
−𝜋 ≤ 𝑥 < 𝜋. The intrinsic fine bearing error is therefore

𝜙fine − 𝜙 =
(𝜋 − ((∠𝑝

9Σ
+ 9𝜙 + 𝜋) mod 2𝜋))

9

. (32)

Replace 9 by unity to derive intrinsic coarse bearing error

𝜙coarse − 𝜙 = (𝜋 − ((∠𝑝1Σ + 𝜙 + 𝜋) mod 2𝜋)) . (33)

3. Simulation

We tested the approach using weights and performance mea-
sures computed from simulated vertical-polarization element
patterns ⟨

⃗
𝑓
𝑛
(k), ⃗𝑐⟩ of 45 Vivaldi radiators embedded in

the uniform circular array of Figure 1. The 1GHz carrier
frequency and 22.9 cm (11.0 in) array radius used were con-
venient but have no TACAN significance. HFSS array sim-
ulation with one element driven and the others terminated
yielded one embedded element pattern, and (1) provided the
rest. Time-varying array excitations are from (7) and (17). We
aimedwavenumber vector kimp at the north horizon for a zero
“most important elevation.” Modulation indices 2𝑎 and 2𝑏

were each set to 0.2 per Shestag [2].
The embedded co-pol element pattern ⟨

⃗
𝑓
𝑛
(k), ⃗𝑐⟩ of the

Vivaldi radiator appears in Figure 2. Essentially all of the
samples used in DFT (14) were significant in magnitude.

Figure 3 shows that the co-pol array pattern obtained
approximates 15Hz rotation, and the Figure 4 slice at 𝑡 = 0

of that pattern hews closely to desired form (8) from Shestag
[2]. In both figures, gain is normalized to the 𝑡 = 0 peak.

Section 2.2 discussion assumed that, for 𝑛 ∈ {1, 9}, the
hypotenuse of a right trianglewith side lengths |𝑝

𝑛Δ
| and |𝑝

𝑛Σ
|

55.9 cm

14.5 cm

15
.9

cm

Figure 1: Simulated uniform circular array of 45 Vivaldi radiators.
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Figure 2: Real (solid) and imaginary (knobby) parts andmagnitude
(dashed) of embedded co-pol pattern ⟨ ⃗

𝑓
0

(k), ⃗𝑐⟩ of element zero, on
a linear scale, with k at bearing 𝜙 and the elevation of kimp. The
elements are identical, so the knobs every 8∘ mark those 𝜙 where
the curves also yield the ⟨ ⃗

𝑓
𝑛

(kimp), ⃗𝑐⟩ for 𝑛 = 0, . . . , 𝑁 − 1 used in
DFT (14).

−180∘ −90∘

Bearing 𝜙

0∘ 90∘ 180∘

−6

−4

−2

(d
B)

0

0.5

t/
T

1

Figure 3: Co-pol array gain as a function of bearing and time over
period 𝑇 = 1/(15Hz).

was essentially of the latter length because |𝑝
𝑛Δ
|was relatively

tiny. This is verified in Figure 5.
Figure 6 shows that time-average array gain 20 log

10

|𝑝
0

|

and modulation indices |𝑝
1Σ
| and |𝑝

9Σ
| vary little with bear-

ing. Average gain is consistent with Figure 4, and the modu-
lation indices approximate the 20% desired value.

The most important quantities computed in this system
simulation are undoubtedly the intrinsic errors (32) and (33)
in the coarse and fine bearing measurements, respectively,
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Figure 4: This paper’s synthesized 𝑡 = 0 co-pol array gain plotted
over the desired pattern of (8) and [2].

0.006

0.003

0.0

0.002

0.001

0.0

|p
1Δ
|/|
p
1Σ
|

|p
9
Δ
|/|
p
9
Σ
|

0∘ 90∘ 180∘−90∘−180∘

Bearing 𝜙

Figure 5: Approximating (25) by (26) is validated by the small error
ratio |𝑝

𝑛Δ

|/|𝑝
𝑛Σ

| shown here for 𝑛 = 1 (solid curve) and 𝑛 = 9

(dashed curve).

Ti
m

e A
vg

. g
ai

n 
(d

B) −2.85

−2.9

−2.95

M
od

ul
at

io
n 

in
di

ce
s (

%
)

20.5

20.0

19.5

Bearing 𝜙

−180∘ −90∘ 0∘ 90∘ 180∘

Figure 6: Time-averaged co-pol array gain (dashed curve using
same normalization as Figures 3 and 4) and modulation indices for
the 15Hz (solid curve) and 135Hz (knobby curve) components of
the AM signal.

intrinsic because they assume noise-free reception at the air-
craft. Those are shown in Figure 7. The intrinsic errors in the
fine bearing measurement never exceed 0.1∘ in magnitude,
while the magnitudes of the coarse errors never exceed 0.02∘.
While this appears to suggest that coarse measurement is
more accurate, this is somewhat illusory, as the error com-
ponent due to signal noise, not included here, will generally
dominate and be substantially greater for the coarsemeasure-
ment than for the fine measurement. Certainly the Figure 7
numbers leave plenty of room for those noise-related errors
before the TACAN system error limits of 10∘ and 2∘ for the
coarse and fine readings, respectively [5], are breached.
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Figure 7: Bearingmeasurement errors computed from the phases of
𝑝
1Σ

and 𝑝
9Σ

for coarse (solid curve) and fine (dashed curve) bearing
information, respectively.

4. Conclusions

In this preliminary study, we developed time-harmonic
weights to allow a uniform circular array to support TACAN
transmission of bearing information. We have shown how
those time-varying weights can be determined from the
embedded element pattern. Design and error calculations for
an example circular array of Vivaldi elements suggest that
acceptable accuracy is feasible with reasonable arrays.

Appropriate future work to expand upon these begin-
nings includes examining performance over an appropriate
elevation interval, considering other array dimensions and
numbers of elements, exploring other element geometries,
and, of course, validating the theoretical development via
measurements. Probably most important, however, is to
explore the effects of imperfect knowledge of the embedded
element patterns.
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