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This paper examines the interval forecasting of carbon futures prices in one of the most important carbon futures market.
Specifically, the purpose of this study is to present a novel hybrid approach, which is composed of multioutput support vector
regression (MSVR) and particle swarm optimization (PSO), in the task of forecasting the highest and lowest prices of carbon
futures on the next trading day. Furthermore, we set out to investigate if considering some potential predictors, which have strong
influence on carbon futures prices, in modeling process is useful for achieving better prediction performance. Aiming at testing
its effectiveness, we benchmark the forecasting performance of our approach against four competitors. The daily interval prices of
carbon futures contracts traded in the Intercontinental Futures Exchange from August 12, 2010, to November 13, 2014, are used as
the experiment dataset. The statistical significance of the interval forecasts is examined. The proposed hybrid approach is found to
demonstrate the higher forecasting performance relative to all other competitors. Our application offers practitioners a promising
set of results with interval forecasting in carbon futures market.

1. Introduction

Forecasting carbon futures prices is part of the basis of
financial investment decisions. Accurately forecasting carbon
futures prices proves to be a great challenge and thus is of
great interest to market stakeholders. Over the past decades,
methods for forecasting carbon futures prices have attracted
the attention of financial researchers and practitioners.

After an extensive review of the extant literature, we
found that in recent years great research efforts have been
expended in two areas: (1) understanding the underlying
mechanisms that determine carbon futures prices [1–3] and
(2) the development of variousmodels suitable for forecasting
carbon futures prices [4–15]. A slight significant progress in
forecasting carbon futures prices is notable. Specifically, Fan
et al. [6] proposed a short-term prediction model, based on
neural networks, for carbon futures prices forecasting. To
capture the effects of various institutional features of carbon
price, Koop and Tole [8] used dynamic model averaging to
model and forecast spot and future prices in the EUETS

carbon market. Zhu and Wei [11] developed a novel hybrid
prediction model that exploits the unique strength of the
ARIMA and LSSVM techniques for carbon futures prices
forecasting. Hong et al. [13] developed a predictive regression
model of carbon price movements with past returns of
various commodities and financial products. Atsalakis [15]
proposed three computational intelligence techniques, that
is, a hybrid neurofuzzy controller that forms a closed-loop
feedback mechanism, an artificial neural network based
system, and an adaptive neurofuzzy inference system for
accurately forecasting the changes in the carbon price. Nev-
ertheless, it should be noted that the studies aforementioned
concentrated on point forecasting instead of an interval one.

Interval forecasting of carbon futures prices has several
advantages compared to point forecasting. Interval forecast-
ing emphasizes the uncertainty and thus reduces the random
variation, compared to the common single-value time series
(e.g., carbon futures daily settlement prices). Interval fore-
casting of time series was established on the frontier of the
literature following the work ofMoore [16]. After establishing
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the basis for interval analysis in [16], Moore [17] further
developed a set of mathematically rigorous error analysis
techniques, for computational results. Other notable works
in interval-valued time series (ITS) forecasting research
include Arroyo et al. [18], who developed three exponential
smooth methods for interval-valued time series, and Billard
and Diday [19], who provided a method of fitting a linear
regressionmodel to interval-valued time series.These studies
have spawned a growing body of literature with various
applications in the fields of interval forecasting of time series.
Successful applications include the finance market [20–23]
and the energy market [24–27]. For example, Arroyo et al.
[20] reviewed and compared the forecasting performance of
exponential smoothing, ARIMA, multilayer perceptron, 𝑘-
NN, and vector error correction model in financial interval-
valued time series forecasting. Following the hybrid linear
and nonlinear, Xiong et al. [25] proposed a novel modeling
framework integrating bivariate empirical mode decomposi-
tion and support vector regression, extended from the well-
established empirical mode decomposition based time series
modeling framework, for interval forecasting of electric-
ity demand. While these studies have many contributions,
we have identified some of the limitations in the current
technique. For example, potential variables that may affect
interval-valued time series are ignored in these studies, which
tend to depreciate the modeling quality as well as overall
prediction performance.

This study focuses on interval forecasting of carbon
futures prices with consideration of a large set of potential
predictors. Generally speaking, two fundamental issues must
be addressed to achieve this objective: feature selection and
modeling technique. As Koop and Tole [8] pointed out, a
large number of potential variables may affect carbon futures
prices. Thus, several potential predictors, which have also
been considered in other studies, are evaluated in this study.
A filter method, in which the predictor subset is chosen by an
evaluation criterion defined in advance, based on the dataset
is employed for feature selection in this study.This evaluation
criterion should be able to measure the relationship of each
subset of predictors with the two outputs (i.e., the highest
and lowest prices of carbon futures). Therefore, 2-fold cross-
validation of a 1-NN approximator [28] is adopted for feature
selection here.

The presence of many predictors is bound to place a
high demand for the generalization ability of modeling tech-
nique. As a novel intelligent algorithm, multioutput support
vector regression (MSVR), which is the generalization of
the standard SVR, has attracted particular attention from a
variety of disciplines. It has especially been successful when
applied to interval forecasting that is ofmultioutputmodeling
problem in essence. To address the interval forecasting of
carbon futures prices with a variety of predictors, the MSVR
is selected as the modeling technique here. In addition, the
generalization ability of the MSVR depends on adequately
setting parameters. Therefore, particle swarm optimization
(PSO) developed by Kennedy and Eberhart [29] is used
for parameter selection of MSVR for interval forecasting.
Thus, we propose a novel hybrid prediction method (abbre-
viated as MSVR-PSO) by incorporating MSVR and PSO for

interval forecasting of carbon futures prices. More impor-
tantly, we further investigate the feasibility of forecasting the
two bounds of carbon futures prices series simultaneously
by MSVR-PSO with influencing variables (abbreviated as
MSVR-PSO-W). In this MSVR-PSO-Wmodel, the inputs are
the potential predictors, while the outputs correspond to the
forecasts of the two bounds.

For comparison purposes, the MSVR-PSO model with-
out influencing variables is constructed and selected as
benchmark (abbreviated as MSVR-PSO-WO). In addition,
two traditional ITS modeling techniques, Holt’s exponential
smoothing method for intervals (HoltI) [30] and vector
error correction model (VECM) [31], are also selected as
benchmarks. It should be noted that, in the cases of HoltI
andVECM, only historical lower and upper bounds of carbon
futures prices (without influencing variables) are used as pre-
dictors. Another traditional intelligent algorithm, artificial
neural networks (ANN), is also selected as benchmarks.More
specifically, two artificial neural networks-based prediction
models, with and without influencing variables, are con-
structed (abbreviated as ANN-W and ANN-WO, resp.). The
largest carbon market, European Union emissions trading
scheme (EUETS), is chosen as the experimental datasets.
Evaluation of the proposed model and selected counterparts
is performed using out-of-sample forecasts.

In summary, for the purpose of constructing models
that can accurately perform interval forecast of daily carbon
futures prices, the contributions of this study are presented as
follows. First, we proposed a MSVR-based prediction model
for interval forecasting of carbon futures prices. Experimen-
tal results indicate that the proposed prediction model is
a promising alternative for interval forecasting of carbon
futures prices. Second, we investigate whether considering a
large set of potential influencing variables is useful to achieve
a better prediction performance for interval forecasting.
Third, the feasibility of forecasting the two bounds of interval-
valued carbon futures prices series simultaneously by the
MSVR with influencing variables is examined. Finally, we
provide the empirical evidence on the interval forecasting of
carbon futures prices forecasting with real-world data from
European carbon futures market.

The rest of the article is organized as follows. In Section 2,
the construction of an interval-valued carbon futures prices
series and the description of the proposed MSVR-PSO
method are detailed. Section 3 discusses the research design
and experimental results. Section 4 provides the conclusion.

2. Forecasting Method for Interval-Valued
Carbon Futures Price

2.1. Construction of Interval-Valued Carbon Futures Prices.
An interval-valued variable, X𝑡 = {[𝑋𝐿𝑡 , 𝑋𝑈𝑡 ]𝑇 : 𝑋𝐿𝑡 , 𝑋𝑈𝑡 ∈
R, 𝑋𝐿𝑡 ≤ 𝑋𝑈𝑡 }, ∀𝑡 ∈ 𝐸, is a variable where each element is
an interval instead of a single point. Let the 𝑡th element of 𝑋
be𝑋𝑡. Let𝑋𝑡 be represented as an interval, with its lower and
upper bounds,X𝑡 = [𝑋𝐿𝑡 , 𝑋𝑈𝑡 ]𝑇.The daily values of the carbon
futures prices at EUETS can be represented as interval values,
as shown in Table 1.
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Table 1: Interval-valued variable.

Year 2014 Carbon futures prices (Euro cents per tonne)
[Lower, upper]

Oct. 09 [5.98, 6.15]
Oct. 10 [5.96, 6.11]
Oct. 13 [5.86, 6.07]
Oct. 14 [5.99, 6.18]
Oct. 15 [6.01, 6.17]
Oct. 16 [6.13, 6.24]
Oct. 17 [6.12, 6.27]⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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Figure 1: Daily interval-valued carbon futures prices.

The daily carbon futures prices form a sequence of
interval-valued variables, X𝑡 = [𝑋𝐿𝑡 , 𝑋𝑈𝑡 ]𝑇 for 𝑡 = 1, . . . , 𝑛,
with lower bound 𝑋𝐿𝑡 and upper bound 𝑋𝑈𝑡 . Figure 1 depicts
the set of daily carbon futures prices from October 09, 2014,
to October 22, 2014.

2.2. MSVR for Interval-Valued Carbon Futures Prices Forecast-
ing. Multioutput support vector regression (MSVR) tech-
nique for interval forecasting of carbon futures prices is
briefly described in this subsection. For more in-depth
discussion on MSVR, please refer to [32–34]. MSVR, a
generalization of the standard SVR, is originally developed
by Tuia et al. [34] to solve the nonlinear regression problem
for multiple variables. Interval forecasting is a multioutput
modeling problem, andMSVR has been successfully used for
interval forecasting [25, 35].

Assume there is an interval-valued carbon futures
price [𝑋𝑡] = [𝑋𝐿𝑡 , 𝑋𝑈𝑡 ]𝑇 for 𝑡 = 1, . . . , 𝑛 as shown in Figure 1,
where 𝑋𝑡 ∈ R2 is the 𝑡th interval. The basic idea of interval
forecasting using MSVR is to find the mapping between
an input vector and an output vector from a given dataset{(x𝑖, y𝑖)}𝑛𝑖=𝑑, where 𝑑 denotes embedded dimension. The
input vector, x = [𝑋𝐿𝑖 , 𝑋𝑈𝑖 , 𝑋𝐿𝑖−1, 𝑋𝑈𝑖−1, . . . , 𝑋𝐿𝑖−𝑑+1, 𝑋𝑈𝑖−𝑑+1, 𝑃1𝑖 ,𝑃2𝑖 , . . . , 𝑃𝑚𝑖 ]𝑇 ∈ R2𝑑+𝑚, is composed of the lagged intervals
of carbon futures prices from period 𝑖, and the set of
influencing variables at the same period. The output vector,
y = [𝑋𝐿𝑖+1, 𝑋𝑈𝑖+1]𝑇 ∈ R2, is the interval of next period
carbon futures price.Thus, ourMSVRmodel contains 2𝑑+𝑚
inputs and two outputs, corresponding to the forecast of the

two bounds, 𝑋𝐿𝑖+1 and𝑋𝑈𝑖+1, of interval-valued carbon futures
prices.

TheMSVR solves the stated mapping problem by finding
the regressors w𝑗 and 𝑏𝑗 (𝑗 = 1, 2) for every output that
minimizes the following equation:

𝐿𝑝 (W, b) = 12 2∑
𝑗=1

w𝑗2 + 𝐶 𝑛∑
𝑖=1

𝐿 (𝑢𝑖) , (1)

where

𝑢𝑖 = e𝑖 = √(e𝑇𝑖 e𝑖), e𝑇𝑖 = y𝑇𝑖 − 𝜑 (x𝑖)W − b𝑇,
W = [w1,w2] ,
b = [𝑏1, 𝑏2]𝑇 ,

(2)

where 𝜑(⋅) is a nonlinear transformation of the feature
space. 𝐶 is the parameter that represents the trade-off
between the regularization and error reduction terms, which
will be tuned by particle swarm optimization. 𝐿(𝑢) is a
quadratic epsilon-insensitive cost function defined in (3),
which is a differentiable form of the Vapnik 𝜀 insensitive loss
function

𝐿 (𝑢) = {{{
0 𝑢 < 𝜀𝑢2 − 2𝑢𝜀 + 𝜀2 𝑢 ≥ 𝜀. (3)

When 𝜀 is nonzero in (3), the function will take all
outputs into account when constructing each individual
regressor and will obtain more robust predications and will
then yield a single support vector set for all dimensions.
Noteworthy, the proposed optimization problem can be
resolved by an iterative reweighted least squares (IRWLS)
procedure developed by Sanchez-Fernandez et al. [33]. The
objective of (1) can be approximated as (4) by means of first-
order Taylor expansion of the cost function 𝐿(𝑢)
𝐿𝑝 (W, b) = 12 2∑

𝑗=1

w𝑗2 + 12 𝑛∑
𝑖=1

𝑎𝑖𝑢2𝑖 + CT,
𝑎𝑖 = {{{{{{{

0 𝑢𝑘𝑖 < 𝜀2𝐶 (𝑢𝑘𝑖 − 𝜀)𝑢𝑘𝑖 𝑢𝑘𝑖 ≥ 𝜀,
(4)

where CT is a constant term that does not depend onW and
b and the superscript 𝑘 denotes the 𝑘th iteration.

An IRWLS procedure, which linearly searches the next
step solution along the descending direction based on the
previous solution [33], is constructed to solve the minimiza-
tion problem of (4). Based on the Representer Theorem
[36], w𝑗 = ∑𝑖 𝜙(x𝑖)𝛽𝑗 = Φ𝑇𝛽𝑗 is the best solution of (4) in
the feature space.Thus, the objective of theMSVR problem is
transformed to search the objective minimizing 𝛽 and b.

The general steps of the IRWLS procedure can be
described as follows. For detailed description of IRWLS,
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Table 2: The statistical description of the interval-valued carbon future prices.

Bound Sample size Min Max Mean Std Skewness Kurtosis
Upper bound 1101 3.20 21.25 9.6868 5.15093 0.801 −0.806
Lower bound 1101 15050 33300 20903.96 5.21888 0.820 −0.774
Notes.Theminimum, maximum, and standard deviation are given under the Mix, Max, and Std, respectively.

please refer to [32, 33].The first step initializes the parameters
as 𝑘 = 0, 𝛽𝑘 = 0, and b𝑘 = 0 and then computes 𝑢𝑘𝑖 and𝑎𝑖. The second step is to calculate the solutions 𝛽𝑠 and b𝑠

according to [ K+D−1 1a𝑇K𝑎 1𝑇a ] [ 𝛽𝑗𝑏𝑗 ] = [ y𝑗

a𝑇y𝑗 ], 𝑗 = 1, 2, where
a = [𝑎1, . . . , 𝑎𝑛]𝑇, (D𝑎)𝑖𝑗 = 𝑎𝑖𝛿(𝑖 − 𝑗), and K is the kernel
matrix.The corresponding descending direction is defined as
p𝑘 = [ w𝑠−w𝑘

(b𝑠−b𝑘)𝑇 ]. The third step is to calculate 𝛽𝑘+1 and b𝑘+1 by
using a backtracking algorithm and then obtain 𝑢𝑘+1𝑖 and 𝑎𝑖.
Return to step 2 until the function converges.

In this study, the radial basis function (RBF) is selected
as the kernel function for MSVR. As such, three hyper-
parameters, namely 𝐶, 𝜀, and 𝜎, of MSVR will need to be
determined. Here, a PSO-based method for this parameter
selection of MSVR is developed and detailed in the following
subsection.

2.3. PSO for Parameter Selection of MSVR. Particle swarm
optimization (PSO) developed by Kennedy and Eberhart
[29] is an emerging population-based evolutionary algorithm
inspired by social behavior among individuals. PSO performs
searches on the basis of a population (swarm) of several
individuals (particles). Each particle represents a candidate
position (potential solution) and moves in an N-dimension
search space.

Given an N-dimension search space, let 𝑝𝑡𝑖 ={𝑝𝑡𝑖1, 𝑝𝑡𝑖2, . . . , 𝑝𝑡𝑖𝑁} and V𝑡𝑖 = {V𝑡𝑖1, V𝑡𝑖2, . . . , V𝑡𝑖𝑁} denote the
position and velocity of the particle 𝑖 at iteration 𝑡,
respectively. To find the optimal solution, each particle
updates its position according to two experiences, its own
best previous solution (pbest) and the best solution in swarm
(𝑔best) until iteration 𝑡. Each particle updates its velocity
according to the following equation:

V𝑡𝑖𝑛 = V𝑡−1𝑖𝑛 + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑡𝑖 − 𝑝𝑡𝑖𝑛) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡𝑡 − 𝑝𝑡𝑖𝑛) ,𝑛 = 1, 2, . . . , 𝑁, (5)

where 𝑐1 and 𝑐2 denote the cognition and social learning
factors, respectively, and 𝑟1 and 𝑟2 are both random variables,
uniformly distributed in 𝑈(0, 1). After obtaining the new
velocity, each particle updates its position as follows:

𝑥𝑡+1𝑖𝑛 = 𝑥𝑡𝑖𝑛 + V𝑡𝑖𝑛, 𝑛 = 1, 2, . . . , 𝑁. (6)

In this study, we develop a MSVR-PSOmethod, in which
PSO is used to solve the parameter for MSVR, for interval
forecasting of carbon futures prices. As discussed in Sec-
tion 2.2, three hyperparameters, the decision variables 𝐶, 𝜀,
and 𝜎, are required and are tuned in a 3-dimensional search
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Figure 2: Interval-valued carbon futures prices series.

space. The search space of these parameters is exponentially
growing: log2𝐶 ∈ [−6, 6], log2𝜀 ∈ [−6, 6], and log2𝜎 ∈[−6, 6].

The fitness function of each particle is defined as the
prediction performance of the MSVR model in the interval
forecasting of carbon futures price, in terms of the interval𝑈
of Theil statistic (𝑈I). This is a classic accuracy measure and
has been widely adopted for interval forecasting [22, 30, 35].
The definition of 𝑈I is as follows:

𝑈I = √∑𝑛𝑡=1 (𝑋𝑈𝑡+1 − 𝑋𝑈𝑡+1)2 + ∑𝑛𝑡=1 (𝑋𝐿𝑡+1 − 𝑋𝐿𝑡+1)2∑𝑛𝑡=1 (𝑋𝑈𝑡+1 − 𝑋𝑈𝑡 )2 + ∑𝑛𝑡=1 (𝑋𝐿𝑡+1 − 𝑋𝐿𝑡 )2 , (7)

where 𝑛 is the amount of fitted intervals and [𝑋𝐿𝑡 , 𝑋𝑈𝑡 ] and[𝑋𝐿𝑡 , 𝑋𝑈𝑡 ] are the 𝑡th true and fitted intervals, respectively.

3. Empirical Analysis

3.1. Data Descriptions and Input Selection. The ECX EUA
future prices used in our empirical analysis are obtained from
the Intercontinental Futures Exchange. The sample data are
daily carbon futures prices traded in the European Union,
covering the period from August 12, 2010, to November 13,
2014, with a total of 1101 observations, as shown in Figure 2.
To improve visibility, the lower bound of carbon future prices
in Figure 2 is the actual lower bound minus 2. The summary
statistics of sample data are presented in Table 2.
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Figure 3: Brent crude oil future prices series.
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Figure 4: Load price series.

As discussed in Section 1, this study attempts to investi-
gate whether considering a large set of potential influencing
variables can achieve a better prediction performance for
interval forecasting.The set of potential influencing variables
chosen for this study is specified as below.

(i) Oil Price. The Brent crude oil futures prices (euros per
barrel) are selected because this is themost importantmarker
for European oil and is a decisive factor in the configuration
of prices of carbon and other commodities [8, 37, 38]. The
daily settlement prices of Brent crude oil future are taken
from the Intercontinental Commodities Exchange, as shown
in Figure 3.

(ii) Load Price. Following the studies of [8, 37, 39], the daily
load prices, measured as the Phelix base and collected from
the European Energy Exchange, are selected as a predictor.
The load price series considered in this study is shown in
Figure 4.

(iii) Gas Price. Natural gas futures prices are selected as a
predictor [8]. We referred to gas futures traded in United
Kingdom, which is one of Europe’s largest exchange. The
daily settlement prices of natural gas futures are available
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Figure 5: Natural gas futures prices series.
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Figure 6: Coal price series.

from the Intercontinental Commodities Exchange, as shown
in Figure 5.

(iv) Coal Price. Coal prices, specifically the coals delivered to
Amsterdam, Rotterdam, and Antwerp region in the Nether-
lands, are selected in this study. Coal prices are included
because they may affect carbon prices by means of the fuel
switching behavior of electricity-generating plants [8, 38].
The daily settlement prices of coal are available from the
Stevens Reference Futures, as shown in Figure 6.

(v) Temperature. Following studies from [8, 37, 38], we
include the temperature in Europe as a predictor. The daily
temperature of 14 Europe countries was obtained from
European climate assessment, as shown in Figure 7.Then the
weighted average across countries is calculated, in which the
weights were proportional to the annual population. Finally,
the absolute value of the deviation from this weighted average
temperature was computed.

(vi) Stock Price. The daily settlement prices of Euronext
100 index are chosen in this study, as shown in Figure 8.
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Figure 7: Temperature series.
N

ov
. 1

3,
 2

01
4

M
ay

. 2
0,

 2
01

1

Fe
b.

 2
7,

 2
01

2

D
ec

. 6
, 2

01
2

Au
g.

 1
2,

 2
01

0

Se
p.

 2
0,

 2
01

3

Time

500

600

700

800

900

Eu
ro

ne
xt

 1
00

 in
de

x

Figure 8: Euronext 100 index series.

They are the blue chip index of the Pan-European Exchange
and are comprised of the largest and most liquid stocks
traded on the Euronext. Given that the stock market is
an important indicator of the health of the economy, and
economic growth is expected to raise the demand for energy,
and thus for carbon permits [8], stock performance is selected
as a predictor for carbon futures prices.

The historical intervals of carbon futures prices, and
the potential variables stated above, are chosen as vari-
ables that may affect carbon futures prices. These variables
are the inputs for the model in this study. The maxi-
mum embedding order for historical intervals, d, is set to
10. The initial input variables are [𝑋𝐿𝑖 , 𝑋𝑈𝑖 , 𝑋𝐿𝑖−1, 𝑋𝑈𝑖−1, . . . ,𝑋𝐿𝑖−𝑑+1, 𝑋𝑈𝑖−𝑑+1, 𝑃1𝑖 , 𝑃2𝑖 , . . . , 𝑃𝑚𝑖 ] ∈ R2𝑑+𝑚, 𝑑 = 10, and 𝑚 = 6.
The best subset of inputs is then identified using the filter
method. As discussed in Section 1, the 2-fold cross-validation
of a 1-NN approximator [28] is selected as evaluation criteria
in the filter method. The search algorithm used in the filter
method is a forward-backward selection method.

Table 3: Parameter selection of the PSO.

Parameters Values
Swarm size 30
Number of iterations 400
Cognitive coefficients 2.0
Interaction coefficients 2.0
Initial weight 0.9
Final weight 0.4

3.2. Statistical Criteria and Methodologies Implementation.
To evaluate and compare the effectiveness of the proposed
predictionmodels with selected counterparts, two commonly
used statistical criteria are adopted here. First, the forecast
accuracy of all estimated models is examined in terms of𝑈I, which is defined in (7). Second, we use the analysis
of variance (ANOVA) test to investigate if the means of
the accuracy measure (i.e., 𝑈I) are significantly different
among the six prediction models. If so, Tukey’s honesty
significant difference (HSD) [40] tests are then applied to
further identify the significantly different models by means
of multiple pairwise comparisons.

As discussed in Section 1, two interval-valued forecasting
techniques, that is, HoltI and VECM, and two ANN-based
prediction models with and without influencing variables
(ANN-W and ANN-WO) are constructed and selected as
benchmarks. To justify whether considering the influencing
variables is useful for achieving better prediction perfor-
mance, a MSVR-PSO model without the influencing vari-
ables (MSVR-PSO-WO) is also chosen as a benchmark.
Detailed formulations of these selected methods (HoltI,
VECM, and ANN) can be found in [30, 31].

The proposed MVSR-PSO prediction model is imple-
mented in MATLAB. Specifically, the MSVR with two out-
puts is implemented using the programpackage developed by
Pérezcruz et al. [32]. The PSO is implemented in MATLAB
with the formulation presented by Kennedy and Eberhart
[29]. Certain parameters in the PSO, for example, swarm size,
number of iterations, cognitive coefficient, and interaction
coefficient, should be determined in advance. By doing so,
all the particles can be randomly generated among the search
space discussed in Section 2.3. All the velocity components
are assigned the initial value of 0. The parameters of PSO are
determined in linewith the recommendations in [41–44].The
final parameters of PSO are shown in Table 3.

With respect to the VECM estimation, a preliminary
analysis on the interval-valued carbon futures prices shown
in Figure 2 is performed first. The augmented Dickey-Fuller
(ADF) test results at the level of 0.05 are reported in Table 4.
It is clear that both upper and lower bounds series are
nonstationary in level but stationary in 1-first differences.
The Johansen test is applied to examine any cointegrated
relations between the upper bound 𝑋𝑈𝑖 and lower bound𝑋𝐿𝑖 . According to the results of cointegration test at the
level of 0.05 as shown in Table 5, the null hypothesis of
no cointegration is rejected, but the test fails to reject the
hypothesis that at most one cointegration vector exists.These
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Table 4: ADF test results.

Bound Test for unit root in 𝑇 𝑝
Upper bound Level −1.760420 0.0744

1st difference −11.95007∗∗ 0.0000

Lower bound Level −1.698380 0.0847
1st difference −23.48374∗∗ 0.0000

Notes. 𝑇-statistics and 𝑝 value are given in the columns “𝑇” and “𝑝.” ∗∗ denotes significance at the 5% level.

Table 5: Cointegration test results.

Eigenvalue Trace statistics 𝑝 value Low bound Upper bound Lag
At most 1 0.002118 2.317761 0.1279 7
None 0.054679∗∗ 63.77838∗∗ 0.0000 7𝐶 1 −1.012751
Notes. “None” corresponds to the null hypothesis of no cointegration and “at most 1” corresponds to the hypothesis of at most one cointegration vector. The
row labeled “𝐶” gives cointegrating vectors with the coefficients of the lower bound series normalized to one. ∗∗ denotes significance at the 5% level.

results confirm that the dimension of the cointegration space
is one. As such, the upper and lower bounds series of the daily
carbon futures prices from August 12, 2010, to November 13,
2014, are considered to be CI(1, 1). In light of these results,
a VECM is constructed to further investigate the short-run
and long-run interactions between the upper bound𝑋𝑈𝑖 and
lower bound 𝑋𝐿𝑖 . The VECM for interval-valued carbon
futures prices is implemented in Eviews.

The HoltI is implemented with the methods used by
Maia and de Carvalho [30]. We estimate the smoothing
parameter matrices with elements constrained to the rang (0,
1), by minimizing the interval sum of the squared forecasting
errors. The limited memory BFGS method, which has been
implemented in program package “optimx” (R package
“optimx” is available at http://ftp.ctex.org/mirrors/CRAN/)
in R software, is adopted here to solve the optimization
problem.

3.3. Experimental Results. In this section, we present the
experiments carried out to examine the out-of-sample pre-
diction performance of the proposed MSVR-PSO method
using real-world datasets in carbon futures markets against
some selected competitors.

Figure 9 illustrates the experimental procedure with the
interval-valued carbon future prices. The carbon futures
prices series described in Section 3.1 is split into an estimation
sample and a hold-out sample. The first two-thirds of the
observations are selected as estimation sample, while the
remainder is saved for the hold-out sample. Each predic-
tion method is trained in the estimation sample, and the
prediction performance is evaluated in the hold-out sam-
ple. Afterward, the input selection is performed via filter
method. As discussed in Section 3.1, the initial input variables
are [𝑋𝐿𝑖 , 𝑋𝑈𝑖 , 𝑋𝐿𝑖−1, 𝑋𝑈𝑖−1, . . . , 𝑋𝐿𝑖−𝑑+1, 𝑋𝑈𝑖−𝑑+1, 𝑃1𝑖 , 𝑃2𝑖 , . . . , 𝑃𝑚𝑖 ] ∈
R2𝑑+𝑚, 𝑑 = 10, and 𝑚 = 6, where 𝑋𝐿𝑖 , 𝑋𝑈𝑖 , 𝑋𝐿𝑖−1, 𝑋𝑈𝑖−1, . . . ,𝑋𝐿𝑖−𝑑+1, 𝑋𝑈𝑖−𝑑+1 denote the historical intervals of carbon

futures prices at 𝑖, 𝑖 − 1, . . ., and 𝑖 − 9, respectively. 𝑃1𝑖 , 𝑃2𝑖 ,. . . , 𝑃6𝑖 denote the six influencing variables at 𝑖. To select
the best subset of original inputs, the 2-fold cross-validation
of a 1-NN approximator is adopted as evaluation criteria,
and the forward-backward selection method is employed
as search algorithm. By doing so, the best subsets of origi-
nal inputs for MSVR-PSO-W are as follows: 𝑋𝐿𝑖 , 𝑋𝑈𝑖 , 𝑋𝐿𝑖−1,𝑋𝐿𝑖−2, 𝑋𝑈𝑖−2, 𝑋𝐿𝑖−4, 𝑋𝑈𝑖−6, 𝑋𝐿𝑖−7, 𝑃2𝑖 (load price), 𝑃3𝑖 (gas price),
and 𝑃4𝑖 (coal price). Meanwhile, the model selection is deter-
mined by the means of the methodologies implementation
presented in Section 3.2 and a fivefold cross-validation
technique in estimation sample. Finally, the interval 𝑈 of
Theil statistic (𝑈I) is computed for each obtained prediction
model in hold-out sample. The previous modeling process is
repeated 50 times, which produces 50𝑈I for each prediction
model. Upon the termination of this loop, the prediction
performance of different methods considered in this study is
examined and compared in terms of the mean of𝑈I of the 50
replications in hold-out sample.

The prediction performance of the six examined meth-
ods, that is,MSVR-PSO-W,MSVR-PSO-WO,ANN-W,ANN-
WO, HoltI, and VECM, in terms of 𝑈I is shown in Figure 10.
To improve visibility, in addition, Figure 11 depicts represen-
tative example of actual intervals versus predicted intervals
from September 8, 2014, to October 22, 2014. One can deduce
the following understandings according to the experimental
results.

(i) Overall, the top four methods, MSVR-PSO-W,
MSVR-PSO-WO, ANN-W, and ANN-WO, are
almost in a tie. Obviously, the proposed MSVR-PSO-
W method achieves the best performance relative to
all of the other competitors.

(ii) MSVR-PSO-W forecasts more accurately than
MSVR-PSO-WO (though only marginally). Perhaps

http://ftp.ctex.org/mirrors/CRAN/
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Split dataset into estimation sample and hold-out sample

Perform forecasting using

Obtain the predicted intervals

Repeated 50
times?

Calculate the mean of U I

Perform ANOVA and Tukey HSD test

Input interval-valued carbon futures prices

Yes

No

Compare the quality of obtained results

ANN-WOMSVR-PSO-W MSVR-PSO-WO ANN-W HoltI VECM

Conduct input selection

Perform fivefold cross-validation for model selection

Figure 9: Experimental procedure.

the reason for the superiority of MSVR-PSO-
W method is because it brings some potential
predictors, which have strong influence on the
carbon futures prices, into the inputs in modeling
process. Thus, further proof of the superiority of
considering potential influencing factors in interval
forecasting is provided in this study.

(iii) Comparing the two MSVR-based prediction models
(MSVR-PSO-W and MSVR-PSO-WO) and the two

ANN-based prediction models (ANN-W and ANN-
WO), the former are generally better. Perhaps the
reason for the superiority ofMSVR relative to ANN is
that MSVR, which uses structural risk minimization,
is less prone to overfitting.

(iv) As far as the comparison betweenANN-WandANN-
WO is concerned, the ANN-W is slightly better. This
ranking further attests to the value that is added by
considering potential influencing factors in interval
forecasting.
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Figure 10: Prediction performance of examined methods in terms of 𝑈I.

(v) Two traditional ITS methods (HoltI and VECM)
almost have the worst performance. It is conceivable
that the reason of the inferiority of the HoltI and
VECM for ITS forecasting is that these can provide
good predictions only when ITS under study is linear
and stationary. But the interval-valued carbon futures
prices series examined in this study unfortunately
appears to be obviously nonlinear and nonstationary
as shown in Figure 2.

Next, an ANOVA procedure is performed to identify
if the means of the accuracy measure (i.e., 𝑈I) are signif-
icantly different at a significance level of 0.05 among the
six prediction models. The F statistic and corresponding 𝑝
value of ANOVA test are 1067.11 and 0.000, respectively,
indicating that there are significant differences among the
six prediction models. As such, Tukey’s honesty significant
difference (HSD) test is then employed to further investigate
the significant difference between any two models here. The
multiple comparison test results at the significance level of
0.05 are reported in Table 6 in the form of a five-column
matrix. Each row of the matrix represents one test, and there
is one row for each pair of groups. The entries in the row
indicate the two models being compared, the difference in
means of 𝑈I of two models compared, and a confidence
interval (CI) for the difference. For each row of Table 6, if
the confidence interval does not contain 0.0, the difference is
significant at the 0.05 level, and thus the difference of means
of 𝑈I is marked with an asterisk. If the confidence interval
does contain 0.0, the difference is not significant at the 0.05
level.

Based on Table 6, one can make the following conclu-
sions:

(i) With respect to the proposed MSVR-PSO method,
the difference in prediction performance between
MSVR-PSO-W and MSVR-PSO-WO models is not

significant at the 0.05 level. In addition, same conclu-
sion can be drawn when comparing the performance
between ANN-W and ANN-WOmodels.

(ii) The proposed MSVR-PSO method (i.e., MSVR-PSO-
W and MSVR-PSO-WO) significantly outperforms
the ANN-based method, that is, ANN-W and ANN-
WO.

(iii) From the perspective of the modeling techniques
used in this study, the four computational intelligence
models (i.e., MSVR-PSO-W, MSVR-PSO-WO, ANN-
W, and ANN-WO) significantly outperform the two
traditional models (i.e., HoltI and VECM).

(iv) As for the comparison between two traditional mod-
els, the HoltI significantly outperforms the VECM at
the 0.05 level.

4. Conclusions

In this study, we proposed a hybridmethod, by incorporating
multioutput support vector regression and particle swarm
optimization (abbreviated as MSVR-PSO), for interval fore-
casting of the carbon futures prices. Specifically, we investi-
gate the feasibility of forecasting the two bounds (highest and
lowest prices) of carbon futures prices series simultaneously
by MSVR-PSO with some potential predictors which have
strong impact on carbon futures prices.The proposedMSVR-
PSOmethod and five selected competitors are developed over
the period from August 12, 2010, to June 13, 2013, and their
out-of-sample prediction performances are validated over the
period from June 14, 2013, to November 13, 2014. According
to the experimental results, two conclusions can be drawn: (1)
the proposed MSVR-PSO method has the higher forecasting
performance relative to five competitors, indicating that it
is a promising alternative for interval forecasting of carbon
futures prices; (2) introducing some potential predictors,
which have strong influence on carbon futures prices, in
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Figure 11: Representative examples of actual intervals versus predicted intervals using (a) MSVR-PSO-W andMSVR-PSO-WO, (b) ANN-W
and ANN-WO, and (c) HoltI and VECM.

modeling process is useful for achieving better prediction
performance (though lacking significance).

Our research could be extended in the following interest-
ing directions. First, this study is restricted to one-step-ahead
forecasting. Obviously, multistep-ahead forecasting could

be performed to provide a more comprehensive picture.
Moreover, although we examine the statistical prediction
performance of all examined models, economic criteria,
which are of greater value to market players in carbon futures
market, should be evaluated in future research.
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Table 6: Multiple comparison test result.

The two models being compared Lower bound of CI The difference of means of 𝑈I Upper bound of CI
First model Second model
MSVR-PSO-W MSVR-PSO-WO −0.0314 −0.0130 0.0053
MSVR-PSO-W ANN-W −0.2008 −0.1824∗ −0.1641
MSVR-PSO-W ANN-WO −0.2058 −0.1875∗ −0.1691
MSVR-PSO-W HoltI −0.3330 −0.3147∗ −0.2963
MSVR-PSO-W VECM −0.3770 −0.3587∗ −0.3403
MSVR-PSO-WO ANN-W −0.1877 −0.1694∗ −0.1511
MSVR-PSO-WO ANN-WO −0.1927 −0.1744∗ −0.1561
MSVR-PSO-WO HoltI −0.3199 −0.3016∗ −0.2833
MSVR-PSO-WO VECM −0.3639 −0.3456∗ −0.3273
ANN-W ANN-WO −0.0233 −0.0050 0.0133
ANN-W HoltI −0.1505 −0.1322∗ −0.1139
ANN-W VECM −0.1945 −0.1762∗ −0.1579
ANN-WO HoltI −0.1455 −0.1272∗ −0.1089
ANN-WO VECM −0.1895 −0.1712∗ −0.1529
HoltI VECM −0.0623 −0.0440∗ −0.0257
Notes.∗ indicates that the mean difference between the two adjacent models is significant at the 0.05 level.
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casting using interval time series: A comparison between VAR
and iMLP,” Energy Policy, vol. 38, no. 2, pp. 715–725, 2010.
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