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We first provide a weighted Fourier multiplier theorem for multilinear operators which extends Theorem 1.2 in Fujita and Tomita
(2012) by using 𝐿𝑟-based Sobolev spaces (1 < 𝑟 ≤ 2). Then, by using a different method, we obtain a result parallel to Theorem 6.2
which is an improvement of Theorem 1.2 under assumption (i) in Fujita and Tomita (2012).

1. Introduction

During the last several years, considerable attention has been
paid to the study of multilinear Fourier multiplier operators.
Let S(R𝑑

) be the Schwartz space of all rapidly decreasing
smooth functions on R𝑑, for some 𝑑 ∈ Z+. The multilinear
Fourier multiplier operator 𝑇

𝜎
associated with a symbol 𝜎 is

defined by

𝑇
𝜎
(𝑓
1
, . . . , 𝑓

𝑚
) (𝑥)

= ∫
R𝑚𝑛

𝑒
2𝜋𝑖𝑥⋅(𝜉

1
+⋅⋅⋅+𝜉

𝑚
)

𝜎 (𝜉
1
, . . . , 𝜉

𝑚
)

× 𝑓
1
(𝜉
1
) ⋅ ⋅ ⋅ 𝑓

𝑚
(𝜉
𝑚
) 𝑑𝜉

1
⋅ ⋅ ⋅ 𝑑𝜉

𝑚

(1)

for 𝑓
𝑖
∈ S(R𝑛

), 𝑖 = 1, . . . , 𝑚.
Coifman and Meyer [1] proved that if 𝜎 is a bounded

function on R𝑚𝑛

\ {0} that satisfies
󵄨󵄨󵄨󵄨󵄨󵄨
𝜕
𝛼
1

𝜉
1

⋅ ⋅ ⋅ 𝜕
𝛼
𝑚

𝜉
𝑚

𝜎 (𝜉
1
, . . . , 𝜉

𝑚
)
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

𝛼
(
󵄨󵄨󵄨󵄨𝜉1

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝜉𝑚

󵄨󵄨󵄨󵄨)
−(|𝛼
1
|+⋅⋅⋅+|𝛼

𝑚
|)

(2)

away from the origin for all sufficiently large multi-indices
𝛼
𝑗
, then 𝑇

𝜎
is bounded from the product 𝐿𝑝1(R𝑛

) × ⋅ ⋅ ⋅ ×

𝐿
𝑝
𝑚(R𝑛

) to 𝐿
𝑝

(R𝑛

) for all 1 < 𝑝
1
, . . . , 𝑝

𝑚
, 𝑝 < ∞ satisfying

1/𝑝
1
+ ⋅ ⋅ ⋅ + 1/𝑝

𝑚
= 1/𝑝. The multiplier theorem of Coifman

and Meyer was extended to indices 𝑝 < 1 (and larger than
1/𝑚) by Grafakos and Torres [2] and Kenig and Stein [3]

(when 𝑚 = 2). Exploiting the idea of the proof of the
Hörmander multiplier theorem in [4], Tomita [5] gave a
Hörmander type theorem for multilinear Fourier multipliers
with more weaker smoothness condition assumed on 𝜎 than
(2). Grafakos and Si [6] gave similar results for 𝑝 ≤ 1 by
using 𝐿𝑟-based Sobolev spaces (1 < 𝑟 ≤ 2). Grafakos et al. [7]
proved the 𝐿2-boundedness of𝑇

𝜎
with multipliers of limited

smoothness.
In order to state other known results, we first introduce

some notations. The Laplacian on R𝑑 is Δ𝑔 = ∑
𝑑

𝑗=1
𝜕
2

𝑔/𝜕𝑥
2

𝑗
,

that is, the sum of the second partials of 𝑔 in every variable.
We define the operator (𝐼 − Δ)

𝛾/2

(𝑔) = F−1

(𝑤
𝛾
F(𝑔)), where

𝑤
𝛾
(𝜉) = (1+4𝜋

2

|𝜉|
2

)
𝛾/2 for 𝛾 > 0. Let 𝐿𝑟

𝛾
(R𝑑

) be the 𝐿𝑟-based
Sobolev space with norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑟
𝛾

=
󵄩󵄩󵄩󵄩󵄩
(𝐼 − Δ)

𝛾/2

𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑟(R𝑑)

, (3)

where 1 ≤ 𝑟 < ∞.
Let ⃗𝑠 = (𝑠

1
, . . . , 𝑠

𝑚
) and let the product type Sobolev

space 𝑊𝑠
1
,...,𝑠
𝑚(R𝑚𝑛

) consist of all functions 𝐹 such that the
following norm of 𝐹 is finite:

‖𝐹‖
𝑊
𝑠
1
,...,𝑠𝑚 (R𝑚𝑛)

= (∫
R𝑚𝑛

⟨𝜉
1
⟩
2𝑠
1

⋅ ⋅ ⋅ ⟨𝜉
𝑚
⟩
2𝑠
𝑚
󵄨󵄨󵄨󵄨󵄨
𝐹 (𝜉)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜉)

1/2

,

(4)

where 𝜉 = (𝜉
1
, . . . , 𝜉

𝑚
) and ⟨𝜉

𝑘
⟩ = (1 + |𝜉

𝑘
|
2

)
1/2.
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Let 𝜓 ∈ S(R𝑚𝑛

) be such that supp 𝜓 ⊂ {𝜉 ∈ R𝑚𝑛

: 1/2 ≤

|𝜉| ≤ 2} and ∑
𝑗∈Z 𝜓(2

−𝑗

𝜉) = 1 for 𝜉 ̸= 0.
Let S

1
(R𝑑

) be the set of all Schwartz functions Ψ on R𝑑,
whose Fourier transform is supported in an annulus of the
form {𝜉 : 𝑐

1
< |𝜉| < 𝑐

2
}, is nonvanishing in a smaller annulus

{𝜉 : 𝑐
󸀠

1
≤ |𝜉| ≤ 𝑐

󸀠

2
} (for some choice of constants 0 < 𝑐

1
< 𝑐

󸀠

1
<

𝑐
󸀠

2
< 𝑐

2
< ∞), and satisfies

∑

𝑗∈Z

Ψ̂ (2
−𝑗

𝜉) = constant, 𝜉 ∈ R
𝑑

\ {0} . (5)

The weighted estimate for 𝑇
𝜎
is also an interesting topic

in harmonic analysis. And it has attracted many authors in
this area. Recently, Fujita and Tomita [8] established some
weighted estimates of 𝑇

𝜎
under the Hörmander condition

and classical𝐴
𝑝
weights. For other works about the weighted

estimates for 𝑇
𝜎
, see [9, 10] and the references therein.

TheoremA (see [8]). Let 1 < 𝑝
1
, 𝑝

2
, . . . , 𝑝

𝑁
< ∞, 1/𝑝

1
+⋅ ⋅ ⋅+

1/𝑝
𝑁
= 1/𝑝, and𝑁𝑛/2 < 𝑠 ≤ 𝑁𝑛. Assume

(i) min𝑝
1
, . . . , 𝑝

𝑁
> 𝑁𝑛/𝑠 and 𝜔 ∈ 𝐴min𝑝

1
𝑠/𝑁𝑛,...,𝑝

𝑁
𝑠/𝑁𝑛

;

(ii) min𝑝
1
, . . . , 𝑝

𝑁
> (𝑁𝑛/𝑠)

󸀠 and 1 < 𝑝 < ∞, 𝜔1−𝑝
󸀠

∈

𝐴
𝑝
󸀠
𝑠/(𝑁𝑛)

.

If 𝜎 ∈ 𝐿
∞ satisfies sup

𝑘∈𝑍
‖𝜎(2

𝑘

⋅)𝜓‖
𝐿
2

𝑠

< ∞, then 𝑇
𝜎
is

bounded from 𝐿
𝑝
1(𝜔) × ⋅ ⋅ ⋅ × 𝐿

𝑝
𝑚(𝜔) to 𝐿𝑝(𝜔).

An improvement of Theorem 1.2 is stated as follows.

Theorem B (see [8]). Let 1 < 𝑝
1
, 𝑝

2
, . . . , 𝑝

𝑁
< ∞, 1/𝑝

1
+

⋅ ⋅ ⋅ + 1/𝑝
𝑁

= 1/𝑝, and 𝑛/2 < 𝑠
𝑗
≤ 𝑛, 𝑗 = 1, . . . , 𝑁. Assume

𝑝
𝑗
> 𝑛/𝑠

𝑗
and 𝜔

𝑗
∈ 𝐴

𝑝
𝑗
𝑠
𝑗
/𝑛

for 1 ≤ 𝑗 ≤ 𝑁. If 𝜎 ∈ 𝐿
∞ satisfies

sup
𝑘∈𝑍

‖𝜎(2
𝑘

⋅)𝜓‖
𝑊
(𝑠
1
,⋅⋅⋅ ,𝑠
𝑁
)
(𝑅
𝑁𝑛
)
< ∞, then 𝑇

𝜎
is bounded from

𝐿
𝑝
1(𝜔

1
) × ⋅ ⋅ ⋅ × 𝐿

𝑝
𝑚(𝜔

𝑁
) to 𝐿𝑝(𝜔), where 𝜔 = 𝜔

𝑝/𝑝
1

1
⋅ ⋅ ⋅ 𝜔

𝑝/𝑝
𝑁

𝑁
.

The first purpose of this paper is to improve Theorem A
by using 𝐿

𝑟-based Sobolev spaces (1 < 𝑟 ≤ 2). The second
purpose is to give a new proof of Theorem B. The following
are the main results.

Theorem 1. For some 1 < 𝑟 ≤ 2, suppose that 𝜎 ∈ 𝐿
∞

(R𝑚𝑛

)

and Ψ ∈ S
1
(R𝑚𝑛

) satisfy, for some𝑚𝑛/𝑟 < 𝛾 ≤ 𝑚𝑛,

sup
𝑘∈Z

󵄩󵄩󵄩󵄩󵄩
𝜎(2

𝑘

⋅)Ψ̂
󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝛾
(R𝑚𝑛)

= 𝐾 < ∞. (6)

If 𝑝
1
, . . . , 𝑝

𝑚
, 𝛾, and the weights 𝜔 satisfy one of the follow-

ing two conditions:

(i) min{𝑝
1
, . . . , 𝑝

𝑚
} > 𝑚𝑛/𝛾 and 𝜔 ∈

𝐴min{𝑝
1
𝛾/(𝑚𝑛),...,𝑝

𝑚
𝛾/(𝑚𝑛)}

,

(ii) min{𝑝
1
, . . . , 𝑝

𝑚
} > (𝑚𝑛/𝛾)

󸀠, 1 < 𝑝 < ∞, and 𝜔
1−𝑝
󸀠

∈

𝐴
𝑝
󸀠
𝛾/(𝑚𝑛)

,

then there is a number 𝛿 = 𝛿(𝑚𝑛, 𝛾, 𝑟) satisfying 0 < 𝛿 ≤

𝑟 − 1, such that the 𝑚-linear operator 𝑇
𝜎
, associated with the

multiplier 𝜎, is bounded from 𝐿
𝑝
1(𝜔) × ⋅ ⋅ ⋅ × 𝐿

𝑝
𝑚(𝜔) to 𝐿𝑝(𝜔),

whenever 𝑟 − 𝛿 < 𝑝
𝑗
< ∞ for all 𝑗 = 1, . . . , 𝑚, and 𝑝 is given

by 1/𝑝 = 1/𝑝
1
+ ⋅ ⋅ ⋅ + 1/𝑝

𝑚
.

Theorem 2. Let 1 < 𝑝
1
, . . . , 𝑝

𝑚
< 2 and let 𝑠

1
> 𝑛/𝑝

1
, . . . ,

𝑠
𝑚
> 𝑛/𝑝

𝑚
and 𝑠

1
+ ⋅ ⋅ ⋅ + 𝑠

𝑚
< 𝑛/𝑝

1
+ ⋅ ⋅ ⋅ + 𝑛/𝑝

𝑚
+ 1. If 𝜎 ∈

𝐿
∞

(R𝑚𝑛

) satisfies sup
𝑘∈Z‖𝜎(2

𝑘

⋅)𝜓‖
𝑊
𝑠
1
,...,𝑠𝑚 (R𝑚𝑛) < ∞, then 𝑇

𝜎

is bounded from 𝐿
𝑞
1(𝑤

𝑞
1

1
)×⋅ ⋅ ⋅×𝐿

𝑞
𝑚(𝑤

𝑞
𝑚

𝑚
) to 𝐿𝑞(𝑤𝑞

), whenever
1 < 𝑞

1
, . . . , 𝑞

𝑚
< ∞, 1/𝑞

1
+ ⋅ ⋅ ⋅ + 1/𝑞

𝑚
= 1/𝑞, and

(𝑤
𝑞
1

1
, . . . , 𝑤

𝑞
𝑚

𝑚
) ∈ (𝐴

𝑞
1

, . . . , 𝐴
𝑞
𝑚

) with 𝑤 = 𝑤
1
⋅ ⋅ ⋅ 𝑤

𝑚
.

2. The Proof of Theorem 1

In this section we discuss the proof of Theorem 1. We begin
with some definitions formaximal operators.Throughout the
paper, 𝑀 denotes the Hardy-Littlewood maximal operator
defined by

𝑀(𝑓) (𝑥) = sup
𝑥∈𝑄

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦, (7)

where 𝑄moves over all cubes containing 𝑥. For 𝛿 > 0,𝑀
𝛿
is

the maximal function defined by

𝑀
𝛿
𝑓 (𝑥) = 𝑀(

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝛿

)

1/𝛿

(𝑥) = (sup
𝑄∋𝑥

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

𝛿

𝑑𝑦)

1/𝛿

.

(8)

In addition, 𝑀♯ is the sharp maximal function of Fefferman
and Stein:

𝑀
♯

𝑓 (𝑥) = sup
𝑄∋𝑥

inf
𝑐

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑐
󵄨󵄨󵄨󵄨 𝑑𝑦

≈ sup
𝑄∋𝑥

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑓
𝑄

󵄨󵄨󵄨󵄨 𝑑𝑦,

(9)

where𝑓
𝑄
denotes the average of𝑓 over𝑄 and a variant of𝑀♯

is given by

𝑀
♯

𝛿
𝑓 (𝑥) = 𝑀

♯

(
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝛿

)

1/𝛿

(𝑥) . (10)

We prepare some lemmas which will be used later.

Lemma 3 (see [11]). Let 1 < 𝑝 < ∞ and 𝜔 ∈ 𝐴
𝑝
. Then

(1) 𝜔
1−𝑝
󸀠

∈ 𝐴
𝑝
󸀠 ; (2) there exists 𝑞 < 𝑝 such that 𝜔 ∈ 𝐴

𝑞
.

Lemma 4 (see [12]). Let 1 < 𝑝, 𝑞 < ∞, and 𝜔 ∈ 𝐴
𝑝
. Then

there exist positive finite constants 𝐶(𝑝, 𝑞) such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{∑

𝑘∈Z

󵄨󵄨󵄨󵄨𝑀 (𝑓
𝑘
)
󵄨󵄨󵄨󵄨

𝑞

}

1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

≤ 𝐶 (𝑝, 𝑞)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{∑

𝑘∈Z

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨

𝑞

}

1/𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

(11)

for all sequences {𝑓
𝑘
}
𝑘∈Z of locally integrable functions on R𝑛.

Lemma 5. Let Δ
𝑘
be the Littlewood-Paley operator given by

Δ
𝑘
(𝑔)̂ (𝜉) = 𝑔(𝜉)Ψ̂(2

−𝑘

𝜉), 𝑘 ∈ Z, where Ψ is a Schwartz
function whose Fourier transform is supported in the annulus
{𝜉 : 2

−𝑏

< |𝜉| < 2
𝑏

}, for some 𝑏 ∈ Z+, and satisfies
∑
𝑘∈Z Ψ̂(2

−𝑘

𝜉) = 𝑐
0
, for some constant 𝑐

0
. Let 0 < 𝑝 < ∞
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and 𝜔 ∈ 𝐴
∞
. Then there is a constant 𝑐 = 𝑐(𝑛, 𝑝, 𝑐

0
, Ψ), such

that for 𝐿𝑝(𝜔) functions 𝑓 one has

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

≤ 𝑐

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(∑

𝑘∈Z

󵄨󵄨󵄨󵄨Δ 𝑘
(𝑓)

󵄨󵄨󵄨󵄨

2

)

1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

. (12)

Proof. Theproof follows from similar steps in Lemma 4 of [6]
and combines themethod used in Remark 2.6 of [8]. LetΦ be
a Schwartz function with integral one. Then,

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 = lim

𝑡→0

󵄨󵄨󵄨󵄨Φ𝑡
∗ 𝑓 (𝑥)

󵄨󵄨󵄨󵄨 ≤ sup
𝑡>0

󵄨󵄨󵄨󵄨Φ𝑡
∗ 𝑓 (𝑥)

󵄨󵄨󵄨󵄨 . (13)

If 𝜔 ∈ 𝐴
∞
, the weighted Hardy space 𝐻𝑝

(𝜔) coincides with
the weighted Triebel-Lizorkin space 𝐹̇

𝑝,2

0
for 0 < 𝑝 < ∞.

Hence, if 𝜔 ∈ 𝐴
∞
, we have

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

sup
𝑡>0

󵄨󵄨󵄨󵄨Φ𝑡
∗ 𝑓 (𝑥)

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

= 𝑐
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻𝑝(𝜔)
≈
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐹̇
𝑝,2

0
(𝜔)

≤ 𝑐

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(∑

𝑘∈Z

󵄨󵄨󵄨󵄨Δ 𝑘
(𝑓)

󵄨󵄨󵄨󵄨

2

)

1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

.

(14)

The proof is complete.

Now we give the proof of Theorem 1.

Proof. Since the proof follows from similar steps inTheorem
1 in [6], we just give the different parts. For each 𝑗 = 1, . . . , 𝑚,
we let 𝑅

𝑗
be the set of points (𝜉

1
, . . . , 𝜉

𝑚
) in (R𝑛

)
𝑚 such

that |𝜉
𝑗
| = max{|𝜉

1
|, . . . , |𝜉

𝑚
|} and we introduce nonnegative

smooth functions 𝜙
𝑗
on [0,∞)

𝑚−1 that are supported in
[0, 11/10]

𝑚−1 such that

1 =

𝑚

∑

𝑗=1

𝜙
𝑗
(

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨

, . . . ,

󵄨̂󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨

, . . . ,

󵄨󵄨󵄨󵄨𝜉𝑚
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨

) (15)

for all (𝜉
1
, . . . , 𝜉

𝑚
) ̸= 0, with the understanding that the vari-

able with the hat is missing. These functions introduce a
partition of unity of (R𝑛

)
𝑚

\ {0} subordinate to a conical
neighborhood of the region 𝑅

𝑗
.

Each region 𝑅
𝑗
can be written as the union of sets:

𝑅
𝑗,𝑘

= {(𝜉
1
, . . . , 𝜉

𝑚
) ∈ 𝑅

𝑗
:
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨 ≥
󵄨󵄨󵄨󵄨𝜉𝑠

󵄨󵄨󵄨󵄨 ∀𝑠 ̸= 𝑗} (16)

with 𝑘 = 1, . . . , 𝑚. We need to work with a finer partition of
unity, subordinate to each 𝑅

𝑗,𝑘
. To achieve this, for each 𝑗, we

introduce smooth functions 𝜙
𝑗,𝑘

on [0,∞)
𝑚−2 supported in

[0, 11/10]
𝑚−2 such that

1 =

𝑚

∑

𝑘=1

𝑘 ̸= 𝑗

𝜙
𝑗,𝑘

(

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

, . . . ,

󵄨̂󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

, . . . ,

󵄨̂󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨

, . . . ,

󵄨󵄨󵄨󵄨𝜉𝑚
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

) (17)

for all (𝜉
1
, . . . , 𝜉

𝑚
) in the support of 𝜙

𝑗
with 𝜉

𝑘
̸= 0.

We now have obtained the following partition of unity of
(R𝑛

)
𝑚

\ {0}:

1 =

𝑚

∑

𝑗=1

𝑚

∑

𝑘=1

𝑘 ̸= 𝑗

𝜙
𝑗
(⋅ ⋅ ⋅ ) 𝜙

𝑗,𝑘
(⋅ ⋅ ⋅ ) , (18)

where the dots indicate the variables of each function.
We now introduce a nonnegative smooth bump 𝜓 sup-

ported in the interval [(10𝑚)
−1

, 2] and equal to 1 in the
interval [(5𝑚)

−1

, 12/10] and we decompose 𝜎 into a finite
number of multipliers:

𝜎 =

𝑚

∑

𝑗=1

𝑚

∑

𝑘=1

𝑘 ̸= 𝑗

[𝜎Φ
𝑗,𝑘

+ 𝜎Ψ
𝑗,𝑘
] , (19)

where

Φ
𝑗,𝑘

(𝜉
1
, . . . , 𝜉

𝑚
) = 𝜙

𝑗
(⋅ ⋅ ⋅ ) 𝜙

𝑗,𝑘
(⋅ ⋅ ⋅ ) (1 − 𝜓(

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨

)) ,

Ψ
𝑗,𝑘

(𝜉
1
, . . . , 𝜉

𝑚
) = 𝜙

𝑗
(⋅ ⋅ ⋅ ) 𝜙

𝑗,𝑘
(⋅ ⋅ ⋅ ) 𝜓(

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨

) .

(20)

We will prove the required assertion for each piece of this
decomposition, that is, for the multipliers 𝜎Φ

𝑗,𝑘
and 𝜎Ψ

𝑗,𝑘
for

each pair (𝑗, 𝑘) in the previous sum. In view of the symmetry
of the decomposition, it suffices to consider the case of a fixed
pair (𝑗, 𝑘) in the previous sum. To simplify notation, we fix
the pair (𝑚,𝑚 − 1); thus, for the rest of the proof we fix
𝑗 = 𝑚 and 𝑘 = 𝑚 − 1 and we prove boundedness for the
𝑚-linear operators whose symbols are 𝜎

1
= 𝜎Φ

𝑚,𝑚−1
and

𝜎
2
= 𝜎Ψ

𝑚,𝑚−1
. These correspond to the 𝑚-linear operators

𝑇
𝜎
1

and 𝑇
𝜎
2

, respectively.
We first prove Theorem 1 under assumption (i). Since

1 ≤ 𝑚𝑛/𝛾 < min{𝑟, 𝑝
1
, . . . , 𝑝

𝑚
}, we can take 𝜌 such that 1 ≤

𝑚𝑛/𝛾 < 𝜌 < min{𝑟, 𝑝
1
, . . . , 𝑝

𝑚
} and 𝜔 ∈ 𝐴min{𝑝

1
/𝜌,...,𝑝

𝑚
/𝜌}
.

We first consider𝑇
𝜎
1

(𝑓
1
, . . . , 𝑓

𝑚
), where𝑓

𝑗
are fixed Schwartz

functions. We fix a Schwartz radial function 𝜂 whose Fourier
transform is supported in the annulus 1 − (1/25) ≤ |𝜉| ≤ 2

and satisfies

∑

𝑗∈Z
𝜂 (2

−𝑗

𝜉) = 1, 𝜉 ∈ R
𝑛

\ {0} . (21)

Associated with 𝜂 we define the Littlewood-Paley operator
Δ
𝑗
(𝑓) = 𝑓 ∗ 𝜂

2
−𝑗 , where 𝜂

𝑡
(𝑥) = 𝑡

−𝑛

𝜂(𝑡
−1

𝑥) for 𝑡 > 0. We
also define an operator 𝑆

𝑗
by setting

𝑆
𝑗
(𝑔) = 𝑔 ∗ 𝜁

2
−𝑗 , (22)

where 𝜁 is a smooth function whose Fourier transform is
equal to 1 on the ball |𝑧| < 3/5𝑚 and vanishes outside
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the double of this ball. As in [6, page 143], by using Lemma 5
we get

󵄩󵄩󵄩󵄩󵄩
𝑇
𝜎
1

(𝑓
1
, . . . , 𝑓

𝑚
)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

≤ 𝐶

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[

[

∑

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
1

(𝑆
𝑗
(𝑓
1
) , . . . , 𝑆

𝑗
(𝑓
𝑚−1

) , Δ
𝑗
(𝑓
𝑚
))
󵄨󵄨󵄨󵄨󵄨

2

]

]

1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

.

(23)

We will use the following estimate for 𝑇
𝜎
1

(see [6, page
145]):

󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
1

(𝑆
𝑗
(𝑓
1
) , . . . , 𝑆

𝑗
(𝑓
𝑚−1

) , Δ
𝑗
(𝑓
𝑚
))
󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝐾

𝑚−1

∏

𝑖=1

(𝑀(𝑀(𝑓
𝑖
)
𝜌

))
1/𝜌

(𝑀(
󵄨󵄨󵄨󵄨󵄨
Δ
𝑗
(𝑓
𝑚
)
󵄨󵄨󵄨󵄨󵄨

𝜌

))
1/𝜌

.

(24)

We now square the previous expression, we sum over 𝑗 ∈
Z, and we take square roots. Since 𝑟 − 𝛿 = 𝜌, the hypothesis
𝑝
𝑗
> 𝑟−𝛿 implies 𝑝

𝑗
> 𝜌, and thus each term (𝑀(𝑀(𝑓

𝑖
)
𝜌

))
1/𝜌

is bounded on 𝐿
𝑝
𝑗(𝜔). We obtain

󵄩󵄩󵄩󵄩󵄩
𝑇
𝜎
1

(𝑓
1
, . . . , 𝑓

𝑚−1
, 𝑓

𝑚
)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

≤ 𝐶𝐾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{

{

{

∑

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
1

(𝑆
𝑗
(𝑓
1
) , . . . , 𝑆

𝑗
(𝑓
𝑚−1

) ,

Δ
𝑗
(𝑓
𝑚
))
󵄨󵄨󵄨󵄨󵄨

2}

}

}

1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

≤ 𝐶
󸀠

𝐾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{

{

{

∑

𝑗

𝑀(
󵄨󵄨󵄨󵄨󵄨
Δ
𝑗
(𝑓
𝑚
)
󵄨󵄨󵄨󵄨󵄨

𝜌

)
2/𝜌}

}

}

1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝𝑚 (𝜔)

×

𝑚−1

∏

𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑀(𝑀(𝑓

𝑖
)
𝜌

))
1/𝜌

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝𝑖 (𝜔)

≤ 𝐶
󸀠󸀠

𝐾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{

{

{

∑

𝑗

𝑀(
󵄨󵄨󵄨󵄨󵄨
Δ
𝑗
(𝑓
𝑚
)
󵄨󵄨󵄨󵄨󵄨

𝜌

)
2/𝜌}

}

}

𝜌/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1/𝜌

𝐿
𝑝𝑚/𝜌(𝜔)

𝑚−1

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖 (𝜔)

≤ 𝐶
󸀠󸀠

𝐾

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖 (𝜔)

,

(25)

where the last step holds due to Lemma 4 with 𝑞 = 2/𝜌 and
the weighted Littlewood-Paley theorem.

Next we deal with 𝜎
2
. Following [6, page 146], we write

𝑇
𝜎
2

(𝑓
1
, . . . , 𝑓

𝑚−1
, 𝑓

𝑚
)

= ∑

𝑗∈Z

𝑇
𝜎
2

(𝑆
󸀠

𝑗
(𝑓
1
) , . . . , 𝑆

󸀠

𝑗
(𝑓
𝑚−2

) , Δ
󸀠

𝑗
(𝑓
𝑚−1

) , Δ
𝑗
(𝑓
𝑚
)) ,

󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
2

(𝑆
󸀠

𝑗
(𝑓
1
) , . . . , 𝑆

󸀠

𝑗
(𝑓
𝑚−2

) , Δ
󸀠

𝑗
(𝑓
𝑚−1

) , Δ
𝑗
(𝑓
𝑚
))
󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝐾

𝑚−2

∏

𝑖=1

(𝑀(𝑀(𝑓
𝑖
)
𝜌

))
1/𝜌

(𝑀(
󵄨󵄨󵄨󵄨󵄨
Δ
󸀠

𝑗
(𝑓
𝑚−1

)
󵄨󵄨󵄨󵄨󵄨

𝜌

))
1/𝜌

× (𝑀(
󵄨󵄨󵄨󵄨󵄨
Δ
𝑗
(𝑓
𝑚
)
󵄨󵄨󵄨󵄨󵄨

𝜌

))
1/𝜌

,

(26)

for some other Littlewood-Paley operator Δ󸀠
𝑗
which is given

on the Fourier transform by multiplication with a bump
Θ̂(2

−𝑗

𝜉), where Θ̂ is equal to one on the annulus {𝜉 ∈ R𝑛

:

(24/25) ⋅ (1/10𝑚) ≤ |𝜉| ≤ 4} and vanishes on a larger annulus.
Also, 𝑆󸀠

𝑗
is given by convolutionwith 𝜁󸀠

2
−𝑗 , where 𝜁󸀠 is a smooth

function whose Fourier transform is equal to 1 on the ball
|𝑧| < (22/10) and vanishes outside the double of this ball.

Summing over 𝑗 and taking 𝐿𝑝(𝜔) norms yield
󵄩󵄩󵄩󵄩󵄩
𝑇
𝜎
2

(𝑓
1
, . . . , 𝑓

𝑚−1
, 𝑓

𝑚
)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

≤ 𝐶𝐾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚−2

∏

𝑖=1

(𝑀(𝑀(𝑓
𝑖
)
𝜌

))
1/𝜌

∑

𝑗∈Z

(𝑀(
󵄨󵄨󵄨󵄨󵄨
Δ
󸀠

𝑗
(𝑓
𝑚−1

)
󵄨󵄨󵄨󵄨󵄨

𝜌

))
1/𝜌

× (𝑀(
󵄨󵄨󵄨󵄨󵄨
Δ
𝑗
(𝑓
𝑚
)
󵄨󵄨󵄨󵄨󵄨

𝜌

))
1/𝜌

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

≤ 𝐶𝐾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚−2

∏

𝑖=1

(𝑀(𝑀(𝑓
𝑖
)
𝜌

) )
1/𝜌

×

{

{

{

𝑚

∏

𝑖=𝑚−1

∑

𝑗∈Z

󵄨󵄨󵄨󵄨󵄨
𝑀 (

󵄨󵄨󵄨󵄨󵄨
Δ
𝑗
(𝑓
𝑖
)
󵄨󵄨󵄨󵄨󵄨

𝜌

)
󵄨󵄨󵄨󵄨󵄨

2/𝜌}

}

}

1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

,

(27)

where the last step holds due to the Cauchy-Schwarz inequal-
ity and we omitted the prime from the term with 𝑖 = 𝑚 − 1

for the matter of simplicity. Applying Hölder’s inequality and
using that 𝜌 < 2 and Lemma 4 we obtain the conclusion that
the expression above is bounded by

𝐶
󸀠

𝐾
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐿𝑝1 (𝜔)
⋅ ⋅ ⋅

󵄩󵄩󵄩󵄩𝑓𝑚
󵄩󵄩󵄩󵄩𝐿𝑝𝑚 (𝜔)

. (28)

We next prove Theorem 1 under assumption (ii). It was
proven in [6, page 136] that condition (6) is invariant under
the adjoints; that is, it is also valid for the symbols of the dual
operators 𝜎∗𝑚(𝜉

1
, . . . , 𝜉

𝑚
) = 𝜎(𝜉

1
, . . . , 𝜉

𝑚−1
, −(𝜉

1
+ ⋅ ⋅ ⋅ + 𝜉

𝑚
)).

To prove the required assertion, by duality, it is enough to
prove that 𝑇

𝜎
∗𝑚

1

and 𝑇
𝜎
∗𝑚

2

are bounded from 𝐿
𝑝
1(𝜔) × ⋅ ⋅ ⋅ ×

𝐿
𝑝
𝑚−1(𝜔) × 𝐿

𝑝
󸀠

(𝜔
1−𝑝
󸀠

) to 𝐿
𝑝
󸀠

𝑚(𝜔
1−𝑝
󸀠

𝑚). We may assume that
𝑝
𝑚

= min{𝑝
1
, . . . , 𝑝

𝑚
}. Since 𝑝

𝑚
< (𝑚𝑛/𝛾)

󸀠, we see 1/𝑝
󸀠,

1/𝑝
𝑘

< 1/𝑝
󸀠

+ 1/𝑝
2
+ ⋅ ⋅ ⋅ + 1/𝑝

𝑚
= 1/𝑝

󸀠

𝑚
< 𝛾/(𝑚𝑛).

Hence, 𝑚𝑛/𝛾 < min{𝑟, 𝑝󸀠, 𝑝
1
, . . . , 𝑝

𝑚−1
}. Since 𝑝 < 𝑝

𝑚
and

𝜔
1−𝑝
󸀠

∈ 𝐴
𝑝
󸀠
𝛾/(𝑚𝑛)

⊂ 𝐴
𝑝
󸀠 , we deduce that 𝜔 ∈ 𝐴

𝑝
⊂

𝐴
𝑝
𝑚

; then 𝜔
1−𝑝
󸀠

𝑚 ∈ 𝐴
𝑝
󸀠

𝑚

. It is obvious that 𝜔(1−𝑝
󸀠

𝑚
)/𝑝
󸀠

𝑚 =

𝜔
−1/𝑝

𝜔
1/𝑝
1 ⋅ ⋅ ⋅ 𝜔

1/𝑝
𝑚 . Since 𝑝

𝑚
< 𝑝

𝑘
, 1/𝑝 = 1/𝑝

1
+ ⋅ ⋅ ⋅ + 1/𝑝

𝑘
+
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⋅ ⋅ ⋅ + 1/𝑝
𝑚−1

> 1/𝑝
𝑚
+ 1/𝑝

𝑘
≥ 2/𝑝

𝑘
. That is, 𝑝 < 𝑝

𝑘
/2;

then 𝜔 ∈ 𝐴
𝑝

⊂ 𝐴
𝑝
𝑘
/2

⊂ 𝐴
𝑝
𝑘
𝛾/(𝑚𝑛)

. Therefore, we take a
positive number 𝜌 such that 1 ≤ 𝑚𝑛/𝛾 < 𝜌 < min{𝑟, 𝑝󸀠, 𝑝

1
,

. . . , 𝑝
𝑚−1

}, and 𝛾 > 𝑚𝑛/𝜌 such that 𝜔1−𝑝
󸀠

∈ 𝐴
𝑝
󸀠
/𝜌

and
𝜔 ∈ 𝐴

𝑝
𝑘
/𝜌
. We have

󵄩󵄩󵄩󵄩󵄩
𝑇
𝜎
∗𝑚

1

(𝑓
1
, . . . , 𝑓

𝑚−1
, 𝑓

𝑚
)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠

𝑚 (𝜔
1−𝑝
󸀠

𝑚 )

≤ 𝐶𝐾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{

{

{

∑

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
1

(𝑆
𝑗
(𝑓
1
) , . . . , 𝑆

𝑗
(𝑓
𝑚−1

) ,

Δ
𝑗
(𝑓
𝑚
))
󵄨󵄨󵄨󵄨󵄨

2}

}

}

1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠

𝑚 (𝜔
1−𝑝
󸀠

𝑚 )

≤ 𝐶
󸀠

𝐾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{

{

{

∑

𝑗

𝑀(
󵄨󵄨󵄨󵄨󵄨
Δ
𝑗
(𝑓
𝑚
)
󵄨󵄨󵄨󵄨󵄨

𝜌

)
2/𝜌}

}

}

1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠

(𝜔
1−𝑝
󸀠

)

×

𝑚−1

∏

𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑀(𝑀(𝑓

𝑖
)
𝜌

))
1/𝜌

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝𝑖 (𝜔)

≤ 𝐶
󸀠󸀠

𝐾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{

{

{

∑

𝑗

𝑀(
󵄨󵄨󵄨󵄨󵄨
Δ
𝑗
(𝑓
𝑚
)
󵄨󵄨󵄨󵄨󵄨

𝜌

)
2/𝜌}

}

}

𝜌/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1/𝜌

𝐿
𝑝
󸀠
/𝜌
(𝜔
1−𝑝
󸀠

)

×

𝑚−1

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖 (𝜔)

≤ 𝐶
󸀠

𝐾
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐿𝑝1 (𝜔)
⋅ ⋅ ⋅

󵄩󵄩󵄩󵄩𝑓𝑚
󵄩󵄩󵄩󵄩𝐿𝑝𝑚 (𝜔)

.

(29)

Similarly, we have
󵄩󵄩󵄩󵄩󵄩
𝑇
𝜎
∗𝑚

2

(𝑓
1
, . . . , 𝑓

𝑚−1
, 𝑓

𝑚
)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠

𝑚 (𝜔
1−𝑝
󸀠

𝑚 )

≤ 𝐶𝐾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚−2

∏

𝑖=1

(𝑀(𝑀(𝑓
𝑖
)
𝜌

))
1/𝜌

𝜔
1/𝑝
𝑖

× ∑

𝑗∈Z

(𝑀(
󵄨󵄨󵄨󵄨󵄨
Δ
󸀠

𝑗
(𝑓
𝑚−1

)
󵄨󵄨󵄨󵄨󵄨

𝜌

))
1/𝜌

× (𝑀(
󵄨󵄨󵄨󵄨󵄨
Δ
𝑗
(𝑓
𝑚
)
󵄨󵄨󵄨󵄨󵄨

𝜌

))
1/𝜌

𝜔
−1/𝑝+1/𝑝

𝑚−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠

𝑚 (𝜔
1−𝑝
󸀠

𝑚 )

≤ 𝐶𝐾

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚−2

∏

𝑖=1

(𝑀(𝑀(𝑓
𝑖
)
𝜌

))
1/𝜌

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝𝑖 (𝜔
𝑖
)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{

{

{

∑

𝑗∈Z

󵄨󵄨󵄨󵄨󵄨
𝑀 (

󵄨󵄨󵄨󵄨󵄨
Δ
𝑗
(𝑓
𝑚−1

)
󵄨󵄨󵄨󵄨󵄨

𝜌

)
󵄨󵄨󵄨󵄨󵄨

2/𝜌}

}

}

𝜌/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝𝑚−1/𝜌(𝜔)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{

{

{

∑

𝑗∈Z

󵄨󵄨󵄨󵄨󵄨
𝑀 (

󵄨󵄨󵄨󵄨󵄨
Δ
𝑗
(𝑓
𝑚
)
󵄨󵄨󵄨󵄨󵄨

𝜌

)
󵄨󵄨󵄨󵄨󵄨

2/𝜌}

}

}

𝜌/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠
/𝜌
(𝜔
1−𝑝
󸀠

)

≤ 𝐶
󸀠

𝐾
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐿𝑝1 (𝜔)
⋅ ⋅ ⋅

󵄩󵄩󵄩󵄩𝑓𝑚
󵄩󵄩󵄩󵄩𝐿𝑝𝑚 (𝜔)

.

(30)

This concludes the proof of Theorem 1.

3. The Proof of Theorem 2

We begin with some lemmas which will be used in the proof
of Theorem 2.

Lemma 6 (see [11]). Let 0 < 𝑝 and 𝛿 < ∞ and let 𝜔 be a
weight in 𝐴

∞
. Then, there exists 𝐶 > 0 (depending on the 𝐴

∞

constant of 𝜔) such that

∫
𝑅
𝑛

(𝑀
𝛿
𝑓 (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥 ≤ 𝐶∫
𝑅
𝑛

(𝑀
♯

𝛿
𝑓 (𝑥))

𝑝

𝜔 (𝑥) 𝑑𝑥, (31)

for all function 𝑓 for which the left-hand side is finite.

Lemma 7 (see [13]). Let 0 < 𝑝
1
, 𝑝

2
, 𝑝 ≤ ∞, and

1/𝑝
1
+ 1/𝑝

2
= 1/𝑝. Let 𝜎 be a multiplier satisfying

sup
𝑘∈Z‖𝜎(2

𝑘

⋅)𝜓‖
𝑊
𝑠
1
,𝑠
2 (R𝑚𝑛) < ∞ for 𝑠

1
> max{𝑛/2, 𝑛/𝑝

1
−𝑛/2},

𝑠
2
> max{𝑛/2, 𝑛/𝑝

2
− 𝑛/2}, and 𝑠

1
+ 𝑠

2
> 𝑛/𝑝

1
+ 𝑛/𝑝

2
− 𝑛/2;

then 𝑇
𝜎
is bounded from𝐻

𝑝
1(R𝑛

) × 𝐻
𝑝
2(R𝑛

) to 𝐿𝑝(R𝑛

).

Remark 8. It should be pointed out that Lemma 7 can be
extended to the case𝑚 ≥ 3.

Lemma 9 (see [8]). Let 𝑟 > 0, 𝑞
1
, . . . , 𝑞

𝑚
∈ [2,∞), and

𝑠
1
, . . . , 𝑠

𝑚
≥ 0. Then there exists a constant 𝐶 > 0 such that

(∫
R𝑛

⋅ ⋅ ⋅ ((∫
R𝑛

󵄨󵄨󵄨󵄨󵄨
𝐹 (𝜉

1
, . . . , 𝜉

𝑚
)
󵄨󵄨󵄨󵄨󵄨

𝑞
1

⟨𝜉
1
⟩
𝑠
1

𝑑𝜉
1
)

𝑞
2
/𝑞
1

×⟨𝜉
2
⟩
𝑠
2

𝑑𝜉
2
)

𝑞
3
/𝑞
2

⋅ ⋅ ⋅ ⟨𝜉
𝑚
⟩
𝑠
𝑚

𝑑𝜉
𝑚
)

1/𝑞
𝑚

≤ 𝐶‖𝐹‖
𝑊
𝑠
1
/𝑞
1
,...,𝑠𝑚/𝑞𝑚 (R𝑚𝑛)

(32)

for all 𝐹 ∈ 𝑊
𝑠
1
/𝑞
1
,...,𝑠
𝑚
/𝑞
𝑚(R𝑚𝑛

) with supp𝐹 ⊂

{√|𝑥
1
|
2

+ ⋅ ⋅ ⋅ + |𝑥
𝑚
|
2

≤ 𝑟}.
Next, we give a pointwise control of 𝑀♯

𝛿
𝑇
𝜎
( ⃗𝑓) which

becomes very useful in the proof of Theorem 2.

Lemma 10. Let 1 < 𝑝
1
, . . . , 𝑝

𝑚
< 2. Assume that 𝜎 ∈

𝐿
∞

(R𝑚𝑛

) which satisfies sup
𝑘∈Z‖𝜎(2

𝑘

⋅)𝜓‖ < ∞
𝑊
𝑠
1
,...,𝑠𝑚 (R𝑚𝑛)

for
𝑠
1

> 𝑛/𝑝
1
, . . . , 𝑠

𝑚
> 𝑛/𝑝

𝑚
and 𝑠

1
+ ⋅ ⋅ ⋅ + 𝑠

𝑚
< 𝑛/𝑝

1
+

⋅ ⋅ ⋅+ 𝑛/𝑝
𝑚
+ 1. For any 0 < 𝛿 < 1/𝑚, one has 𝑀♯

𝛿
𝑇
𝜎
( ⃗𝑓)(𝑥) ≤

𝐶∏
𝑚

𝑗=1
𝑀

𝑝
𝑗

𝑓
𝑗
(𝑥).

Proof. For simplicity, we only prove for the case𝑚 = 2, since
there is no essential difference for the general case. Fix an
𝑥 ∈ R𝑛 and a cube 𝑄 with side length 𝑙, such that 𝑥 ∈ 𝑄.
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Let 𝑓
𝑖
= 𝑓

0

𝑖
+ 𝑓

∞

𝑖
, where 𝑓0

𝑖
= 𝑓

𝑖
𝜒
𝑄
∗ and 𝑓

∞

𝑖
= 𝑓

𝑖
𝜒
(𝑄
∗
)
𝑐 for

𝑖 = 1, 2 and 𝑄
∗

= 4√𝑛𝑄. Since 0 < 𝛿 < 1/2, we have

(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑇𝜎 (𝑓1, 𝑓2) (𝑧)
󵄨󵄨󵄨󵄨

𝛿

− |𝐶|
𝛿
󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑧)

1/𝛿

≤ 𝐶(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑇𝜎 (𝑓1, 𝑓2) (𝑧) − 𝐶
󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

≤ 𝐶(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
(𝑓

0

1
, 𝑓

0

2
) (𝑧)

+ 𝑇
𝜎
(𝑓

∞

1
, 𝑓

∞

2
) (𝑧) + 𝑇

𝜎
(𝑓

0

1
, 𝑓

∞

2
) (𝑧)

+𝑇
𝜎
(𝑓

0

1
, 𝑓

0

2
) (𝑧) − 𝐶

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

≤ 𝐶(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
(𝑓

0

1
, 𝑓

0

2
) (𝑧)

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

+ (
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
(𝑓

∞

1
, 𝑓

∞

2
) (𝑧) + 𝑇

𝜎
(𝑓

0

1
, 𝑓

∞

2
) (𝑧)

+𝑇
𝜎
(𝑓

∞

1
, 𝑓

0

2
) (𝑧) − 𝐶

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

= 𝑈
1
+ 𝑈

2
.

(33)

We first consider 𝑈
1
. By Kolmogorov’s inequality,

Hölder’s inequality, and Lemma 7, we have

(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
(𝑓

0

1
, 𝑓

0

2
) (𝑧)

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑇
𝜎
(𝑓

0

1
, 𝑓

0

2
)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝,∞(𝑄,𝑑𝑥/|𝑄|)

≤ 𝐶

2

∏

𝑗=1

(
1

|𝑄
∗
|
∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑧)

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑗

𝑑𝑧)

1/𝑝
𝑗

≤ 𝐶

2

∏

𝑗=1

𝑀
𝑝
𝑗

𝑓
𝑗
(𝑥) ,

(34)

where 1/𝑝 = 1/𝑝
1
+ 1/𝑝

2
with 𝑝 > 𝛿 and 1 < 𝑝

1
, 𝑝

2
< ∞.

Next we deal with 𝑈
2
. We choose 𝐶 = ∑

3

𝑖=1
𝐶
𝑖
, where

𝐶
1
= 𝑇

𝜎
(𝑓

∞

1
, 𝑓

∞

2
) (𝑥) ,

𝐶
2
= 𝑇

𝜎
(𝑓

0

1
, 𝑓

∞

2
) (𝑥) ,

𝐶
3
= 𝑇

𝜎
(𝑓

∞

1
, 𝑓

0

2
) (𝑥) .

(35)

We may split 𝑈
2
as 𝑈

2
≤ 𝑈

21
+ 𝑈

22
+ 𝑈

23
, where

𝑈
21

= (
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑇𝜎 (𝑓
∞

1
, 𝑓

∞

2
) (𝑧) − 𝑇

𝜎
(𝑓

∞

1
, 𝑓

∞

2
) (𝑥)

󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

,

𝑈
22

= (
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
(𝑓

0

1
, 𝑓

∞

2
) (𝑧) − 𝑇

𝜎
(𝑓

0

1
, 𝑓

∞

2
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

,

𝑈
23

= (
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
(𝑓

∞

1
, 𝑓

0

2
) (𝑧) − 𝑇

𝜎
(𝑓

∞

1
, 𝑓

0

2
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

.

(36)

Now we estimate 𝑈
21
first. We decompose 𝜎 as

𝜎 = ∑

𝑗∈Z

𝜎 (⋅) 𝜓 (⋅/2
𝑗

) ≐ ∑

𝑗∈Z

𝜎
𝑗
. (37)

Let 𝜎
𝑗
= 𝜎(⋅)𝜓(⋅/2

𝑗

), where 𝜓 ∈ S(R2𝑛

) with supp 𝜓 ⊂

{𝜉 ∈ R2𝑛

: 1/2 ≤ |𝜉| ≤ 2} and ∑
𝑗∈Z 𝜓(2

−𝑗

𝜉) = 1, 𝜉 ̸= 0. Thus,
we have

󵄨󵄨󵄨󵄨𝑇𝜎 (𝑓
∞

1
, 𝑓

∞

2
) (𝑧) − 𝑇

𝜎
(𝑓

∞

1
, 𝑓

∞

2
) (𝑥)

󵄨󵄨󵄨󵄨

≤ 𝐶∑

𝑗∈Z

󵄨󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
𝑗

(𝑓
∞

1
, 𝑓

∞

2
) (𝑧) − 𝑇

𝜎
𝑗

(𝑓
∞

1
, 𝑓

∞

2
) (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶∑

𝑗∈Z

∞

∑

𝑘
1
=0

∞

∑

𝑘
2
=0

∫
2
𝑘
2
+1
𝑄
∗
\2
𝑘
2𝑄
∗

∫
2
𝑘
1
+1
𝑄
∗
\2
𝑘
1𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝜎
∨

𝑗
(𝑧 − 𝑦

1
, 𝑧 − 𝑦

2
) − 𝜎

∨

𝑗
(𝑥 − 𝑦

1
, 𝑥 − 𝑦

2
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓1 (𝑦1) 𝑓2 (𝑦2)
󵄨󵄨󵄨󵄨 𝑑𝑦1 𝑑𝑦2

≤ 𝐶

∞

∑

𝑘
1
=0

∞

∑

𝑘
2
=0

∑

𝑗∈Z

∫
2
𝑘
2
+1
𝑄
∗
\2
𝑘
2𝑄
∗

∫
2
𝑘
1
+1
𝑄
∗
\2
𝑘
1𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝜎
∨

𝑗
(𝑧 − 𝑦

1
, 𝑧 − 𝑦

2
) − 𝜎

∨

𝑗
(𝑥 − 𝑦

1
, 𝑥 − 𝑦

2
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓1 (𝑦1) 𝑓2 (𝑦2)
󵄨󵄨󵄨󵄨 𝑑𝑦1 𝑑𝑦2

≐

∞

∑

𝑘
1
=0

∞

∑

𝑘
2
=0

𝐼
𝑘
1
,𝑘
2

.

(38)
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Applying Hölder’s inequality we have

𝐼
𝑘
1
,𝑘
2

= ∑

𝑗∈Z

∫
2
𝑘
2
+1
𝑄
∗
\2
𝑘
2𝑄
∗

∫
2
𝑘
1
+1
𝑄
∗
\2
𝑘
1𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝜎
∨

𝑗
(𝑧 − 𝑦

1
, 𝑧 − 𝑦

2
) − 𝜎

∨

𝑗
(𝑥 − 𝑦

1
, 𝑥 − 𝑦

2
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓1 (𝑦1) 𝑓2 (𝑦2)
󵄨󵄨󵄨󵄨 𝑑𝑦1𝑑𝑦2

≤ 𝐶∑

𝑗∈Z

(∫
2
𝑘
2
+1
𝑄
∗
\2
𝑘
2𝑄
∗

(∫
2
𝑘
1
+1
𝑄
∗
\2
𝑘
1𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝜎
∨

𝑗
(𝑧 − 𝑦

1
, 𝑧 − 𝑦

2
) − 𝜎

∨

𝑗
(𝑥 − 𝑦

1
, 𝑥 − 𝑦

2
)
󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

1

𝑑𝑦
1
)

𝑝
󸀠

2
/𝑝
󸀠

1

𝑑𝑦
2
)

1/𝑝
󸀠

2

× (∫
2
𝑘
1
+1
𝑄
∗

󵄨󵄨󵄨󵄨𝑓1 (𝑦1)
󵄨󵄨󵄨󵄨

𝑝
1

𝑑𝑦
1
)

1/𝑝
1

(∫
2
𝑘
2
+1
𝑄
∗

󵄨󵄨󵄨󵄨𝑓2 (𝑦2)
󵄨󵄨󵄨󵄨

𝑝
2

𝑑𝑦
2
)

1/𝑝
2

≐ 𝐶∑

𝑗∈Z

𝐼
𝑘
1
,𝑘
2
,𝑗
× (∫

2
𝑘
2
+1
𝑄
∗

󵄨󵄨󵄨󵄨𝑓1 (𝑦1)
󵄨󵄨󵄨󵄨

𝑝
1

𝑑𝑦
1
)

1/𝑝
1

(∫
2
𝑘
2
+1
𝑄
∗

󵄨󵄨󵄨󵄨𝑓2 (𝑦2)
󵄨󵄨󵄨󵄨

𝑝
2

𝑑𝑦
2
)

1/𝑝
2

.

(39)

Let ℎ = 𝑧 − 𝑥 and 𝑄 = 𝑥 − 𝑄
∗. Then we have

𝐼
𝑘
1
,𝑘
2
,𝑗
= (∫

2
𝑘
2
+1
𝑄
∗
\2
𝑘
2𝑄
∗

(∫
2
𝑘
1
+1
𝑄
∗
\2
𝑘
1𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝜎
∨

𝑗
(𝑧 − 𝑦

1
, 𝑧 − 𝑦

2
) − 𝜎

∨

𝑗
(𝑥 − 𝑦

1
, 𝑥 − 𝑦

2
)
󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

1

𝑑𝑦
1
)

𝑝
󸀠

2
/𝑝
󸀠

1

𝑑𝑦
2
)

1/𝑝
󸀠

2

≤ 𝐶(∫
2
𝑘
2
+1̃
𝑄\2
𝑘
2 ̃𝑄

(∫
2
𝑘
1
+1̃
𝑄\2
𝑘
1 ̃𝑄

󵄨󵄨󵄨󵄨󵄨
𝜎
∨

𝑗
(ℎ + 𝑦

1
, ℎ + 𝑦

2
) − 𝜎

∨

𝑗
(𝑦

1
, 𝑦

2
)
󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

1

𝑑𝑦
1
)

𝑝
󸀠

2
/𝑝
󸀠

1

𝑑𝑦
2
)

1/𝑝
󸀠

2

≤ 𝐶(∫
2
𝑘
2
+1̃
𝑄\2
𝑘
2 ̃𝑄

(∫
2
𝑘
1
+1̃
𝑄\2
𝑘
1 ̃𝑄

󵄨󵄨󵄨󵄨󵄨
𝜎
∨

𝑗
(𝑦

1
, 𝑦

2
)
󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

1

𝑑𝑦
1
)

𝑝
󸀠

2
/𝑝
󸀠

1

𝑑𝑦
2
)

1/𝑝
󸀠

2

≤ 𝐶(2
𝑘
1 𝑙)

−𝑠
1

(2
𝑘
2 𝑙)

−𝑠
2

(∫
2
𝑘
2
+1̃
𝑄\2
𝑘
2 ̃𝑄

(∫
2
𝑘
1
+1
𝑄
∗
\2
𝑘
1 ̃𝑄

󵄨󵄨󵄨󵄨󵄨
𝜎
∨

𝑗
(𝑦

1
, 𝑦

2
)
󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

1

×(1 +
󵄨󵄨󵄨󵄨𝑦1

󵄨󵄨󵄨󵄨

2

)
𝑠
1
𝑝
󸀠

1
/2

𝑑𝑦
1
)

𝑝
󸀠

2
/𝑝
󸀠

1

(1 +
󵄨󵄨󵄨󵄨𝑦2

󵄨󵄨󵄨󵄨

2

)
𝑠
2
𝑝
󸀠

2
/2

𝑑𝑦
2
)

1/𝑝
󸀠

2

≤ 𝐶(2
𝑘
1 𝑙)

−𝑠
1

(2
𝑘
2 𝑙)

−𝑠
2

(∫
R𝑛

(∫
R𝑛

󵄨󵄨󵄨󵄨󵄨
𝜎
∨

𝑗
(2

−𝑗

𝑦
1
, 2
−𝑗

𝑦
2
)
󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

1

×(1 +
󵄨󵄨󵄨󵄨󵄨
2
−𝑗

𝑦
1

󵄨󵄨󵄨󵄨󵄨

2

)

𝑠
1
𝑝
󸀠

1
/2

2
−𝑗𝑛

𝑑𝑦
1
× 𝑦

1
)

𝑝
󸀠

2
/𝑝
󸀠

1

(1 +
󵄨󵄨󵄨󵄨󵄨
2
−𝑗

𝑦
2

󵄨󵄨󵄨󵄨󵄨

2

)

𝑠
2
𝑝
󸀠

2
/2

2
−𝑗𝑛

𝑑𝑦
2
)

1/𝑝
󸀠

2
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≤ 𝐶(2
𝑘
1 𝑙)

−𝑠
1

(2
𝑘
2 𝑙)

−𝑠
2

2
−𝑗(𝑠
1
+𝑠
2
)

2
𝑗𝑛((1/𝑝

1
)+(1/𝑝

2
))

× (∫
R𝑛

(∫
R𝑛

󵄨󵄨󵄨󵄨󵄨
2
−2𝑗𝑛

𝜎
∨

𝑗
(2

−𝑗

𝑦
1
, 2
−𝑗

𝑦
2
)
󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

1

(1 +
󵄨󵄨󵄨󵄨𝑦1

󵄨󵄨󵄨󵄨

2

)
𝑠
1
𝑝
󸀠

1
/2

𝑑𝑦
1
)

𝑝
󸀠

2
/𝑝
󸀠

1

(1 +
󵄨󵄨󵄨󵄨𝑦2

󵄨󵄨󵄨󵄨

2

)
𝑠
2
𝑝
󸀠

2
/2

𝑑𝑦
2
)

1/𝑝
󸀠

2

≤ 𝐶(2
𝑘
1 𝑙)

−𝑠
1

(2
𝑘
2 𝑙)

−𝑠
2

2
−𝑗(𝑠
1
+𝑠
2
)

2
𝑗𝑛((1/𝑝

1
)+(1/𝑝

2
))
󵄩󵄩󵄩󵄩󵄩
𝜎 (2

𝑗

⋅) 𝜓
󵄩󵄩󵄩󵄩󵄩𝑊𝑠1,𝑠2

,

(40)

where the last inequality holds due to Lemma 9. Suppose that
2
−𝑅

≤ 𝑙 < 2
−𝑅+1. Since 𝑛/𝑝

1
+ 𝑛/𝑝

2
− 𝑠

1
− 𝑠

2
< 0, we have

∑

𝑗≥𝑅

𝐼
𝑘
1
,𝑘
2
,𝑗
≤ sup

𝑗

󵄩󵄩󵄩󵄩󵄩
𝜎 (2

𝑗

⋅) 𝜓
󵄩󵄩󵄩󵄩󵄩𝑊𝑠1,𝑠2

× ∑

𝑗≥𝑅

(2
𝑘
1 𝑙)

−𝑠
1

(2
𝑘
2 𝑙)

−𝑠
2

2
𝑗(𝑛/𝑝

1
+𝑛/𝑝
2
−𝑠
1
−𝑠
2
)

≤ 𝐶 sup
𝑗

󵄩󵄩󵄩󵄩󵄩
𝜎 (2

𝑗

⋅) 𝜓
󵄩󵄩󵄩󵄩󵄩𝑊𝑠1,𝑠2

2
−𝑘
1
𝑠
12
−𝑘
2
𝑠
2 𝑙
−𝑛/𝑝
1 𝑙
−𝑛/𝑝
2 .

(41)
On the other hand

𝐼
𝑘
1
,𝑘
2
,𝑗
≤ (∫

2
𝑘
2
+1̃
𝑄\2
𝑘
2 ̃𝑄

(∫
2
𝑘
1
+1̃
𝑄\2
𝑘
1 ̃𝑄

󵄨󵄨󵄨󵄨󵄨
𝜎
∨

𝑗
(𝑦

1
+ ℎ, 𝑦

2
+ ℎ) − 𝜎

∨

𝑗
(𝑦

1
, 𝑦

2
)
󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

1

𝑑𝑦
1
)

𝑝
󸀠

2
/𝑝
󸀠

1

𝑑𝑦
2
)

1/𝑝
󸀠

2

≤ 𝐶(∫
2
𝑘
2
+1̃
𝑄\2
𝑘
2 ̃𝑄

(∫
2
𝑘
1
+1̃
𝑄\2
𝑘
1 ̃𝑄

(∫

1

0

󵄨󵄨󵄨󵄨󵄨
ℎ⃗ ⋅ ∇ (𝜎

∨

𝑗
) (𝑦

1
+ 𝜃ℎ, 𝑦

2
+ 𝜃ℎ)

󵄨󵄨󵄨󵄨󵄨
𝑑𝜃)

𝑝
󸀠

1

𝑑𝑦
1
)

𝑝
󸀠

2
/𝑝
󸀠

1

𝑑𝑦
2
)

1/𝑝
󸀠

2

≤ 𝐶∫

1

0

(∫
2
𝑘
2
+1̃
𝑄\2
𝑘
2 ̃𝑄

(∫
2
𝑘
1
+1̃
𝑄\2
𝑘
1 ̃𝑄

󵄨󵄨󵄨󵄨󵄨
ℎ⃗ ⋅ ∇ (𝜎

∨

𝑗
) (𝑦

1
+ 𝜃ℎ, 𝑦

2
+ 𝜃ℎ)

󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

1

𝑑𝑦
1
)

𝑝
󸀠

2
/𝑝
󸀠

1

𝑑𝑦
2
)

1/𝑝
󸀠

2

𝑑𝜃

≤ 𝐶(∫
2
𝑘
2
+1̃
𝑄\2
𝑘
2 ̃𝑄

(∫
2
𝑘
1
+1̃
𝑄\2
𝑘
1 ̃𝑄

󵄨󵄨󵄨󵄨󵄨
ℎ⃗ ⋅ ∇ (𝜎

∨

𝑗
) (𝑦

1
, 𝑦

2
)
󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

1

𝑑𝑦
1
)

𝑝
󸀠

2
/𝑝
󸀠

1

𝑑𝑦
2
)

1/𝑝
󸀠

2

,

(42)

where ℎ⃗ = (ℎ, ℎ) ∈ R2𝑛. Since ℎ⃗ ⋅ ∇(𝜎∨
𝑗
)(𝑦

1
, 𝑦

2
) =

∑
2𝑛

𝑟=1
ℎ
𝑟
𝜕
𝑟
(𝜎

∨

𝑗
)(𝑦

1
, 𝑦

2
), we have

𝐼
𝑘
1
,𝑘
2
,𝑗
≤ 𝐶

2𝑛

∑

𝑟=1

𝑙 (∫
2
𝑘
2
+1̃
𝑄\2
𝑘
2 ̃𝑄

(∫
2
𝑘
1
+1̃
𝑄\2
𝑘
1 ̃𝑄

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑟
(𝜎

∨

𝑗
) (𝑦

1
, 𝑦

2
)
󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

1

𝑑𝑦
1
)

𝑝
󸀠

2
/𝑝
󸀠

1

𝑑𝑦
2
)

1/𝑝
󸀠

2

≤ 𝐶

2𝑛

∑

𝑟=1

𝑙(2
𝑘
1 𝑙)

−𝑠
1

(2
𝑘
2 𝑙)

−𝑠
2

(∫
R𝑛

(∫
R𝑛

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑟
(𝜎

∨

𝑗
) (2

−𝑗

𝑦
1
, 2
−𝑗

𝑦
2
)
󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

1

(1 +
󵄨󵄨󵄨󵄨󵄨
2
−𝑗

𝑦
2

󵄨󵄨󵄨󵄨󵄨

2

)

𝑠
1
𝑝
󸀠

1
/2

2
−𝑗𝑛

𝑑𝑦
1
)

𝑝
󸀠

2
/𝑝
󸀠

1

×(1 +
󵄨󵄨󵄨󵄨󵄨
2
−𝑗

𝑦
2

󵄨󵄨󵄨󵄨󵄨

2

)

𝑠
2
𝑝
󸀠

2
/2

2
−𝑗𝑛

𝑑𝑦
2
)

1/𝑝
󸀠

2
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≤ 𝐶

2𝑛

∑

𝑟=1

𝑙(2
𝑘
1 𝑙)

−𝑠
1

(2
𝑘
2 𝑙)

−𝑠
2

(∫
R𝑛

(∫
R𝑛

󵄨󵄨󵄨󵄨󵄨
2
−2𝑗𝑛

𝜕
𝑟
(𝜎

∨

𝑗
) (2

−𝑗

𝑦
1
, 2
−𝑗

𝑦
2
)
󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

1

(1 +
󵄨󵄨󵄨󵄨𝑦1

󵄨󵄨󵄨󵄨

2

)
𝑠
1
𝑝
󸀠

1
/2

𝑑𝑦
1
)

𝑝
󸀠

2
/𝑝
󸀠

1

× (1 +
󵄨󵄨󵄨󵄨𝑦2

󵄨󵄨󵄨󵄨

2

)
𝑠
2
𝑝
󸀠

2
/2

𝑑𝑦
2
)

1/𝑝
󸀠

2

2
−𝑗(𝑠
1
+𝑠
2
)

2
𝑗𝑛((1/𝑝

1
)+(1/𝑝

2
))

≤ 𝐶

2𝑛

∑

𝑟=1

𝑙(2
𝑘
1 𝑙)

−𝑠
1

(2
𝑘
2 𝑙)

−𝑠
2

2
−𝑗(𝑠
1
+𝑠
2
)

2
𝑗𝑛((1/𝑝

1
)+(1/𝑝

2
))

2
𝑗
󵄩󵄩󵄩󵄩󵄩
𝜎 (2

𝑗

⋅) 𝜓
󵄩󵄩󵄩󵄩󵄩𝑊𝑠1,𝑠2

,

(43)

where in the last inequality Lemma 9 was used again and
hence

∑

𝑗<𝑅

𝐼
𝑘
1
,𝑘
2
,𝑗

≤ 𝐶 sup
𝑗

󵄩󵄩󵄩󵄩󵄩
𝜎 (2

𝑗

⋅) 𝜓
󵄩󵄩󵄩󵄩󵄩𝑊𝑠1,𝑠2

2
−𝑘
1
𝑠
12
−𝑘
2
𝑠
2 𝑙
−𝑛𝑝
1 𝑙
−𝑛/𝑝
2 .

(44)

Combining the above arguments we have

󵄨󵄨󵄨󵄨𝑇𝜎 (𝑓
∞

1
, 𝑓

∞

2
) (𝑧) − 𝑇

𝜎
(𝑓

∞

1
, 𝑓

∞

2
) (𝑥)

󵄨󵄨󵄨󵄨

≤ 𝐶

∞

∑

𝑘
1
=0

∞

∑

𝑘
2
=0

2
−𝑘
1
𝑠
12
−𝑘
2
𝑠
2 𝑙
−𝑛/𝑝
1 𝑙
−𝑛/𝑝
2

× (∫
2
𝑘
1
+1
𝑄
∗

󵄨󵄨󵄨󵄨𝑓1 (𝑦1)
󵄨󵄨󵄨󵄨

𝑝
1

𝑑𝑦
1
)

1/𝑝
1

× (∫
2
𝑘
2
+1
𝑄
∗

󵄨󵄨󵄨󵄨𝑓2 (𝑦2)
󵄨󵄨󵄨󵄨

𝑝
2

𝑑𝑦
2
)

1/𝑝
2

≤ 𝐶

∞

∑

𝑘
1
=0

2
−𝑘
1
(𝑠
1
−𝑛/𝑝
1
)

×

∞

∑

𝑘
2
=0

2
−𝑘
2
(𝑠
2
−𝑛/𝑝
2
)

𝑀
𝑝
1

𝑓
1
𝑀

𝑝
2

𝑓
2

≤ 𝐶𝑀
𝑝
1

𝑓
1
𝑀

𝑝
2

𝑓
2
.

(45)

Thus, we obtain 𝑈
21

≤ 𝐶𝑀
𝑝
1

𝑓
1
𝑀

𝑝
2

𝑓
2
. What remain to

be considered are𝑈
22
and𝑈

23
. We just estimate𝑈

22
since the

same arguments can be applied to 𝑈
23
:

󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
(𝑓

0

1
, 𝑓

∞

2
) (𝑧) − 𝑇

𝜎
(𝑓

0

1
, 𝑓

∞

2
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶∑

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
𝑗

(𝑓
0

1
, 𝑓

∞

2
) (𝑧) − 𝑇

𝜎
𝑗

(𝑓
0

1
, 𝑓

∞

2
) (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶∑

𝑗

∞

∑

𝑘
2
=0

∫
2
𝑘
2
+1
𝑄
∗

󵄨󵄨󵄨󵄨𝑓2 (𝑦2)
󵄨󵄨󵄨󵄨 ∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝜎
∨

𝑗
(𝑧 − 𝑦

1
, 𝑧 − 𝑦

2
) − 𝜎

∨

𝑗
(𝑥 − 𝑦

1
, 𝑥 − 𝑦

2
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓1 (𝑦1)
󵄨󵄨󵄨󵄨 𝑑𝑦1 𝑑𝑦2

≤ 𝐶∑

𝑗∈Z

∞

∑

𝑘
2
=0

(∫
2
𝑘
2
+1
𝑄
∗
\2
𝑘
2𝑄
∗

(∫
𝑄
∗

󵄨󵄨󵄨󵄨󵄨
𝜎
∨

𝑗
(𝑧 − 𝑦

1
, 𝑧 − 𝑦

2
) − 𝜎

∨

𝑗
(𝑥 − 𝑦

1
, 𝑥 − 𝑦

2
)
󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

1

𝑑𝑦
1
)

𝑝
󸀠

2
/𝑝
󸀠

1

𝑑𝑦
2
)

1/𝑝
󸀠

2

× (∫
𝑄
∗

󵄨󵄨󵄨󵄨𝑓1 (𝑦1)
󵄨󵄨󵄨󵄨

𝑝
1

𝑑𝑦
1
)

1/𝑝
1

(∫
2
𝑘
2
+1
𝑄
∗

󵄨󵄨󵄨󵄨𝑓2 (𝑦2)
󵄨󵄨󵄨󵄨

𝑝
2

𝑑𝑦
2
)

1/𝑝
2

.

(46)

Then by similar arguments as the above mentioned we get
that

󵄨󵄨󵄨󵄨󵄨
𝑇
𝜎
(𝑓

0

1
, 𝑓

∞

2
) (𝑧) − 𝑇

𝜎
(𝑓

0

1
, 𝑓

∞

2
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶

∞

∑

𝑘
2
=0

2
−𝑘
2
𝑠
2 𝑙
−𝑛/𝑝
1 𝑙
−𝑛/𝑝
2(∫

𝑄
∗

󵄨󵄨󵄨󵄨𝑓1 (𝑦1)
󵄨󵄨󵄨󵄨

𝑝
1

𝑑𝑦
1
)

1/𝑝
1

× (∫
2
𝑘
2
+1
𝑄
∗

󵄨󵄨󵄨󵄨𝑓2 (𝑦2)
󵄨󵄨󵄨󵄨

𝑝
2

𝑑𝑦
2
)

1/𝑝
2

≤ 𝐶

∞

∑

𝑘
2
=0

2
−𝑘
2
(𝑠
2
−𝑝
2
)

𝑀
𝑝
1

𝑓
1
𝑀

𝑝
2

𝑓
2

≤ 𝐶𝑀
𝑝
1

𝑓
1
𝑀

𝑝
2

𝑓
2
.

(47)

The proof of Lemma 10 is complete.
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Now we are ready to give the proof of Theorem 2.

Proof. By Lemma 3, we can choose 1 < 𝑝
1
< 𝑞

1
and 1 <

𝑝
2
< 𝑞

2
such that 𝜔𝑞1

1
∈ 𝐴

𝑞
1
/𝑝
1

and 𝜔
𝑞
2

2
∈ 𝐴

𝑞
2
/𝑝
2

. Then by the
Hölder inequality, Lemma 10, and the weighted boundedness
of𝑀, we deduce that
󵄩󵄩󵄩󵄩𝑇𝜎 (𝑓1, 𝑓2)

󵄩󵄩󵄩󵄩𝐿𝑞(𝑤𝑞)
≤
󵄩󵄩󵄩󵄩𝑀𝛿

𝑇
𝜎
(𝑓
1
, 𝑓

2
)
󵄩󵄩󵄩󵄩𝐿𝑞(𝑤𝑞)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑀

♯

𝛿
𝑇
𝜎
(𝑓
1
, 𝑓

2
)
󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝑤𝑞)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑀

𝑝
1

𝑓
1
𝑀

𝑝
2

𝑓
2

󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝑤𝑞)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑀

𝑝
1

𝑓
1

󵄩󵄩󵄩󵄩󵄩𝐿𝑞1 (𝑤
𝑞
1

1
)

󵄩󵄩󵄩󵄩󵄩
𝑀

𝑝
1

𝑓
1

󵄩󵄩󵄩󵄩󵄩𝐿𝑞2 (𝑤
𝑞
2

2
)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐿𝑞1 (𝑤
𝑞
1

1
)

󵄩󵄩󵄩󵄩𝑓2
󵄩󵄩󵄩󵄩𝐿𝑞2 (𝑤

𝑞
2

2
)
.

(48)

The proof of Theorem 2 is complete.
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multilinear operators,” Journal für die Reine und Angewandte
Mathematik, vol. 668, pp. 133–147, 2012.

[7] L. Grafakos, A. Miyachi, and N. Tomita, “On multilinear
Fourier multipliers of limited smoothness,” Canadian Journal
of Mathematics, vol. 65, no. 2, pp. 299–330, 2013.

[8] M. Fujita and N. Tomita, “Weighted norm inequalities for
multilinear Fourier multipliers,” Transactions of the American
Mathematical Society, vol. 364, no. 12, pp. 6335–6353, 2012.

[9] G. Hu and C. C. Lin, “Weighted norm inequalities for multilin-
ear singular integral operators and applications,” Analysis and
Applications. In press, http://arxiv.org/abs/1208.6346.

[10] W. Li, Q. Xue, and K. Yabuta, “Weighted version of Carleson
measure and multilinear Fourier multiplier,” Forum Mathe-
maticum, 2012.

[11] E. M. Stein,Harmonic Analysis: Real-Variable Methods, Orthog-
onality, and Oscillatory Integrals, vol. 43 of PrincetonMathemat-
ical Series, PrincetonUniversity Press, Princeton,NJ,USA, 1993.

[12] K. F. Andersen and R. T. John, “Weighted inequalities for
vector-valuedmaximal functions and singular integrals,” Studia
Mathematica, vol. 69, no. 1, pp. 19–31, 1980/81.

[13] A. Miyachi and N. Tomita, “Minimal smoothness conditions
for bilinear Fouriermultipliers,”RevistaMatemática Iberoamer-
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