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The problem of delay-dependent asymptotic stability analysis for neural networks with interval time-varying delays is considered
based on the delay-partitioningmethod. Some less conservative stability criteria are established in terms of linearmatrix inequalities
(LMIs) by constructing a new Lyapunov-Krasovskii functional (LKF) in each subinterval and combining with reciprocally convex
approach. Moreover, our criteria depend on both the upper and lower bounds on time-varying delay and its derivative, which is
different from some existing ones. Finally, a numerical example is given to show the improved stability region of the proposed
results.

1. Introduction

In the past decades, neural networks have been paid much
attention due to their strong capability of information pro-
cessing such as pattern recognition, image processing, fault
diagnosis, and associative memories. Meanwhile, due to the
finite switching speed of amplifiers, time-delay is inevitably
encountered in real-world neural networks. Time-delays
often cause instability and oscillation in neural networks.
Therefore, many effects have been paid to delay-dependent
stability analysis of neural networks with time-delays.

For the delay-dependent stability criteria of neural net-
works with time delays, the main purpose is to obtain
a maximum value of the admissible delay such that the
concerned systems are asymptotically stable. To enhance
the feasible region of stability criteria, by using the free
weighting matrix method, a new delay-dependent stability
criterion for delayed neural networks was obtained in [1].
But some useful terms were ignored in [1] when estimat-
ing the upper bound on the derivative of the Lyapunov
functionals. Then, the result was further improved in [2]
by considering the relationships among some useful terms
adequately. In order to reduce the conservatism, researchers
have introduced the augmented Lyapunov functionalmethod

[3] and the reciprocally convex approach [4]. Recently, the
delay-partitioning approach which divides delay interval into
some subintervals was employed to investigate the delay-
dependent stability problem of delayed neural networks [5–
12]. In [5, 6], the delay-partitioning number was chosen
as 2. In [5], some improved stability criteria were obtained
by utilizing different free-weighting matrices in each delay
subinterval for neural networks with time-varying delays.
In [7–12], the delay-partitioning number was chosen as 𝑚,
where 𝑚 ⩾ 1. In [8], a weighting delay based method was
introduced to derive the stability criteria for recurrent neural
networks with time-varying delay. Different from some exist-
ing results, by employing weighting delays, the delay interval
[0, 𝑑(𝑡)] was divided into some variable subintervals. In [10],
complete delay-decomposing approach was introduced to
derive asymptotic stability criterion for neural networks with
time-varying delays by using reciprocally convex technique.
Among those above methods, the delay-partitioning method
is proven to be more effective than the free-weighting matrix
approach and augmented Lyapunov functional method.

In the above mentioned results [1–12], the lower bound of
time-varying delay for delayed neural networks is restricted
to be 0. However, in the real world, the time-varying delay
may be an interval delay; that is, the lower bound of
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the delay is not restricted to be 0. Therefore, many effects
have been paid to delay-dependent stability analysis of neural
networks with interval time-varying delay [13–17]. In [13],
A piecewise delay method is introduced to derive several
novel delay-dependent stability criteria for neural networks
with interval time-varying delay. By using the delay decom-
position method and a new convex combination technique,
some new delay-dependent stability criteria were obtained
in [14]. Recently, by constructing a new Lyapunov functional
and dividing the lower bound of the time-varying delay, the
asymptotic stability for cellular neural networks with interval
time-varying delays is investigated in [15]. By dividing the
lower and upper bounds of the time-varying delay and
constructing an improved Lyapunov-Krasovskii functional,
[16] obtained some delay-dependent stability criteria in terms
of LMIs to reduce the conservatism. The proposed stability
conditions are less conservative due to the novel delay-
partitioning method and convex combination technique
considered. By considering the sufficient information of
neuron activation functions, [17] obtained some improved
delay-dependent stability criteria for neural networks with
interval time-varying delay. However, there are rooms for
further improvement. Firstly, in [15], only the delay interval
[0, ℎ
1
] has been divided into 𝑚 segments. In this case,

there is no connection between time-varying delay and each
subinterval, which may lead to much conservatism. In [16],
the delay intervals [0, ℎ

1
] and [ℎ

1
, ℎ
2
] have been divided

into some segments and the information 𝜏(𝑡) ∈ [ℎ
1
, ℎ
2
] is

considered, but the relation between the time-varying delay
and each subinterval is not adequately considered, whichmay
lead to considerable conservatism. Secondly, many stability
conditions ignore the information of the lower bound of
delay derivative. In fact, the lower bound of delay derivative
plays an important role in improving stability region of
the proposed results. Thirdly, the information of neuron
activation functions is not adequately considered, which may
lead to much conservatism.

In this paper, to show the merits of our new delay-
partitioning method, we only need to divide the delay
intervals [0, ℎ

1
] and [ℎ

1
, ℎ
2
] into 2 segments; that is, [0, ℎ

1
] =

[0, ℎ
1
/2] ∪ [ℎ

1
/2, ℎ
1
], [ℎ
1
, ℎ
2
] = [ℎ

1
, (ℎ
1
+ ℎ
2
)/2] ∪ [(ℎ

1
+

ℎ
2
)/2, ℎ
2
], respectively. Some existing results [14–16] only

consider the information 𝜏(𝑡) ∈ [ℎ
1
, ℎ
2
] and do not consider

the information 𝜏(𝑡) ∈ [ℎ
1
, (ℎ
1
+ ℎ
2
)/2] or 𝜏(𝑡) ∈ [(ℎ

1
+

ℎ
2
)/2, ℎ
2
], which may lead to considerable conservatism.

Thus, when dealing with the time derivative of𝑉(𝑧
𝑡
), not only

the information 𝜏(𝑡) ∈ [ℎ
1
, ℎ
2
] but also the information 𝜏(𝑡) ∈

[ℎ
1
, (ℎ
1
+ ℎ
2
)/2] and 𝜏(𝑡) ∈ [(ℎ

1
+ ℎ
2
)/2, ℎ
2
] is considered

in our paper. So the information between time-varying delay
𝜏(𝑡) and each subinterval is considered adequately, which
may play an important role in reducing conservatism of
derived results. By taking more information of the lower
bound of delay derivative, an augmented LKF is introduced to
derive two stability criteria for neural networks with interval
time-varying delay. Then, by employing reciprocally convex
approach, some less conservative delay-dependent stability
criteria are presented in terms of LMI. Finally, a numerical
example is given to show the effectiveness of the proposed
method.

2. Problem Formulation

Consider the following neural networks with interval time-
varying delay:

�̇� (𝑡) = −𝐶𝑥 (𝑡) + 𝐴𝑔 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝜇, (1)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇
∈ R𝑛 is the neuron

state vector, 𝑔(𝑥(⋅)) = [𝑔
1
(𝑥
1
(⋅)), 𝑔
2
(𝑥
2
(⋅)), . . . , 𝑔

𝑛
(𝑥
𝑛
(⋅))]
𝑇
∈

R𝑛 denotes the neuron activation function, and 𝜇 =

(𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑛
)
𝑇
∈R𝑛 is a constant input vector. 𝐴 ∈R𝑛×𝑛 is

the connection weight matrix and 𝐵 ∈ R𝑛×𝑛 is the delayed
connection weight matrix. 𝐶 = diag(𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑛
) is a

diagonal matrix with 𝐶
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛. 𝜏(𝑡) is time-

varying continuous function that satisfies 0 ⩽ ℎ
1
⩽ 𝜏(𝑡) ⩽ ℎ

2
,

𝑢
1
⩽ ̇𝜏(𝑡) ⩽ 𝑢

2
, where ℎ

1
, ℎ
2
and 𝑢

1
, 𝑢
2
are constants. In

addition, it is assumed that each neuron activation function
𝑔
𝑖
(⋅), 𝑖 = 1, 2, . . . , 𝑛, satisfies the following condition:

𝑘
−

𝑖
⩽

𝑔
𝑖
(𝑥) − 𝑔

𝑖
(𝑦)

𝑥 − 𝑦

⩽ 𝑘
+

𝑖
, ∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ̸= 𝑦, 𝑖 = 1, 2, . . . , 𝑛,

(2)

where 𝑘−
𝑖
, 𝑘
+

𝑖
, 𝑖 = 1, 2, . . . , 𝑛 are constants.

Assuming that 𝑥∗ = [𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
]
𝑇 is the equilibrium

point of (1). By the transformation 𝑧(⋅) = 𝑥(⋅) − 𝑥∗, (1) can be
converted to the following form:

�̇� (𝑡) = −𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) + 𝐵𝑓 (𝑧 (𝑡 − 𝜏 (𝑡))) , (3)

where 𝑧(𝑡) = [𝑧
1
(𝑡), 𝑧
2
(𝑡), . . . , 𝑧

𝑛
(𝑡)]
𝑇, 𝑓(𝑧(⋅)) = [𝑓

1
(𝑧
1
(⋅)),

𝑓
2
(𝑧
2
(⋅)), . . . , 𝑓

𝑛
(𝑧
𝑛
(⋅))]
𝑇, and𝑓

𝑖
(𝑧
𝑖
(⋅)) = 𝑔

𝑖
(𝑧
𝑖
(⋅)+𝑥
∗

𝑖
)−𝑔
𝑖
(𝑥
∗

𝑖
),

𝑖 = 1, 2, . . . , 𝑛. According to inequality (2), we obtain

𝑘
−

𝑖
⩽

𝑓
𝑖
(𝑧
𝑖
(𝑡))

𝑧
𝑖
(𝑡)

⩽ 𝑘
+

𝑖
𝑓
𝑖
(0) = 0, 𝑖 = 1, 2, . . . , 𝑛. (4)

Lemma 1 (see [18]). For any constant matrix 𝑍 ∈ R𝑛×𝑛, 𝑍 =
𝑍
𝑇
> 0, scalars ℎ

2
> ℎ
1
> 0; then

− (ℎ
2
− ℎ
1
) ∫

𝑡−ℎ
1

𝑡−ℎ
2

𝑥
𝑇
(𝑠) 𝑍𝑥 (𝑠) ds

⩽ −∫

𝑡−ℎ
1

𝑡−ℎ
2

𝑥
𝑇
(𝑠) 𝑑𝑠𝑍∫

𝑡−ℎ
1

𝑡−ℎ
2

𝑥 (𝑠) ds.

(5)

Lemma 2 (see [19]). Let 𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑁
: R𝑚 → R

have positive values in an open subset 𝐷 of R𝑚. Then, the
reciprocally convex combination of 𝑓

𝑖
over𝐷 satisfies

min
{𝛼𝑖|𝛼𝑖>0,∑𝑖 𝛼𝑖=1}

∑

𝑖

1

𝛼
𝑖

𝑓
𝑖
(𝑡) = ∑

𝑖

𝑓
𝑖
(𝑡) +max
𝑔
𝑖,𝑗(𝑡)

∑

𝑖 ̸=𝑗

𝑔
𝑖,𝑗
(𝑡) (6)

subject to

{𝑔
𝑖,𝑗
: 𝑅
𝑚
→ 𝑅, 𝑔

𝑗,𝑖
(𝑡) Δ𝑔

𝑖,𝑗
(𝑡) , [

𝑓
𝑖
(𝑡) 𝑔

𝑖,𝑗
(𝑡)

𝑔
𝑖,𝑗
(𝑡) 𝑓

𝑗
(𝑡)
] ⩾ 0} .

(7)
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3. Main Results

Theorem 3. For given positive scalars ℎ
1
, ℎ
2
, ℎ = ℎ

2
−

ℎ
1
, and any scalars 𝑢

1
, 𝑢
2
, diagonal matrices 𝐾

1
=

diag(𝑘−
1
, 𝑘
−

2
, . . . , 𝑘

−

𝑛
), 𝐾
2
= diag(𝑘+

1
, 𝑘
+

2
, . . . , 𝑘

+

𝑛
), and system

(3) is globally asymptotically stable for 0 ⩽ ℎ
1
⩽ 𝜏(𝑡) ⩽ ℎ

2
,

𝑢
1
⩽ ̇𝜏(𝑡) ⩽ 𝑢

2
if there exist symmetric positive matrices𝑃,𝑋 =

[𝑋𝑖𝑗]2×2
, 𝑄 = [𝑄𝑖𝑗]2×2, 𝑃 = [𝑃𝑖𝑗]2×2, 𝑅𝑖 (𝑖 = 1, 2, 3, 4), positive

diagonal matrices 𝑇
1
, 𝑇
2
, 𝑇
3
, Δ = diag(𝛿

1
, 𝛿
2
, . . . , 𝛿

𝑛
), Λ =

diag(𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
), and any matrices 𝑆

1
, 𝑆
2
with appropriate

dimensions, satisfying the following LMIs:

[
Σ + Φ + Π

1
A𝑇𝑅

∗ −𝑅

] < 0, (8)

[
Σ + Φ + Π

2
A𝑇𝑅

∗ −𝑅

] < 0, (9)

[

𝑅
1
𝑆
1

∗ 𝑅
1

] > 0, (10)

[

𝑅
2
𝑆
2

∗ 𝑅
2

] > 0, (11)

where

Σ =

[

[

[

[

[

[

[

[

[

[

[

[

[

Σ
11

𝑋
12

0 0 0 0 0 𝑄
12
− 𝑃
12

−𝑌
12

∗ 𝑋
22
− 𝑋
11

−𝑋
12

0 0 0 0 0 0

∗ ∗ −𝑋
22
− 𝑌 0 0 0 0 0 0

∗ ∗ ∗ Σ
44

0 0 − (1 − 𝑢
2
) 𝑄
12

0 0

∗ ∗ ∗ ∗ Σ
55
Σ
56

Σ
57

0 𝑌
12

∗ ∗ ∗ ∗ ∗ Σ
66

(Λ − Δ) 𝐵 0 0

∗ ∗ ∗ ∗ ∗ ∗ − (1 − 𝑢
2
) 𝑄
22

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝑄
22
− 𝑃
22

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝑌
22
− 𝑌
11

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Φ =

[

[

[

[

[

[

[

[

[

[

[

[

[

−2𝐾
2
𝑇
3
𝐾
1
0 0 0 0 0 0 𝑇

3
(𝐾
1
+ 𝐾
2
) 0

∗ 0 0 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0 0 0

∗ ∗ ∗ −2𝐾
2
𝑇
2
𝐾
1

0 0 𝑇
2
(𝐾
1
+ 𝐾
2
) 0 0

∗ ∗ ∗ ∗ −2𝐾
2
𝑇
1
𝐾
1
𝑇
1
(𝐾
1
+ 𝐾
2
) 0 0 0

∗ ∗ ∗ ∗ ∗ −2𝑇
1

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −2𝑇
2

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −2𝑇
3

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Π
1
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑅
1
− 𝑅
4

𝑆
1

0 𝑅
1
− 𝑆
1

0 0 0 0 𝑅
4

∗ −𝑅
1
− 𝑅
2
𝑅
2

𝑅
1
− 𝑆
𝑇

1
0 0 0 0 0

∗ ∗ −𝑅
2

0 0 0 0 0 0

∗ ∗ ∗ −2𝑅
1
+ 𝑆
1
+ 𝑆
𝑇

1
0 0 0 0 0

∗ ∗ ∗ ∗ −𝑅
3
0 0 0 𝑅

3

∗ ∗ ∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
3
− 𝑅
4

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Π
2
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑅
1
− 𝑅
4

𝑅
1

0 0 0 0 0 0 𝑅
4

∗ −𝑅
1
− 𝑅
2
𝑆
2

𝑅
2
− 𝑆
2

0 0 0 0 0

∗ ∗ −𝑅
2

𝑅
2
− 𝑆
𝑇

2
0 0 0 0 0

∗ ∗ ∗ −2𝑅
2
+ 𝑆
2
+ 𝑆
𝑇

2
0 0 0 0 0

∗ ∗ ∗ ∗ −𝑅
3
0 0 0 𝑅

3

∗ ∗ ∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
3
− 𝑅
4

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,



4 Mathematical Problems in Engineering

Σ
11
= 𝑋
11
+ 𝑄
11
− 𝑃
11
− 𝑌
22
,

Σ
44
= − (1 − 𝑢

2
) 𝑄
11
+ (1 − 𝑢

1
) 𝑌,

Σ
55
= −𝑃𝐶 − 𝐶

𝑇
𝑃 − (𝐾

2
Δ − 𝐾

1
Λ)𝐶

− 𝐶
𝑇
(𝐾
2
Δ − 𝐾

1
Λ) + 𝑃

11
+ 𝑌
11
,

Σ
56
= 𝑃𝐴 − 𝐶 (Λ − Δ) + (𝐾

2
Δ − 𝐾

1
Λ)𝐴 + 𝑃

12
,

Σ
57
= 𝑃𝐵 + (𝐾

2
Δ − 𝐾

1
Λ)𝐵,

Σ
66
= (Λ − Δ)𝐴 + 𝐴

𝑇
(Λ − Δ) + 𝑃

22
,

A = [0 0 0 0 −𝐶 𝐴 𝐵 0 0] ,

𝑅 =

ℎ
2

4

(𝑅
1
+ 𝑅
2
) +

ℎ
2

1

4

(𝑅
3
+ 𝑅
4
) .

(12)

Proof. We construct a new LKF as

𝑉 (𝑧
𝑡
) =

5

∑

𝑖=1

𝑉
𝑖
(𝑧
𝑡
) , (13)

where

𝑉
1
(𝑧
𝑡
) = ∫

𝑡−ℎ
1

𝑡−ℎ
1
−(ℎ/2)

[

[

𝑧 (𝑠)

𝑧 (𝑠 −

ℎ

2

)

]

]

𝑇

[

𝑋
11
𝑋
12

∗ 𝑋
22

]

⋅
[

[

𝑧 (𝑠)

𝑧 (𝑠 −

ℎ

2

)

]

]

d𝑠

+ ∫

𝑡

𝑡−(ℎ
1
/2)

[

[

𝑧 (𝑠)

𝑧 (𝑠 −

ℎ
1

2

)

]

]

𝑇

[

𝑌
11
𝑌
12

∗ 𝑌
22

]

⋅
[

[

𝑧 (𝑠)

𝑧 (𝑠 −

ℎ
1

2

)

]

]

d𝑠,

𝑉
2
(𝑧
𝑡
) = 𝑧
𝑇
(𝑡) 𝑃𝑧 (𝑡) + 2

𝑛

∑

𝑖=1

{∫

𝑧
𝑖
(𝑡)

0

𝜆
𝑖
(𝑓
𝑖
(𝑠) − 𝑘

−

𝑖
𝑠) d𝑠

+∫

𝑧
𝑖
(𝑡)

0

𝛿
𝑖
(𝑘
+

𝑖
𝑠 − 𝑓
𝑖
(𝑠)) d𝑠} ,

𝑉
3
(𝑧
𝑡
) = ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

[

𝑧 (𝑠)

𝑓 (𝑧 (𝑠))
]

𝑇

[

𝑄
11
𝑄
12

∗ 𝑄
22

] [

𝑧 (𝑠)

𝑓 (𝑧 (𝑠))
] d𝑠

+ ∫

𝑡

𝑡−ℎ
1

[

𝑧 (𝑠)

𝑓 (𝑧 (𝑠))
]

𝑇

[

𝑃
11
𝑃
12

∗ 𝑃
22

] [

𝑧 (𝑠)

𝑓 (𝑧 (𝑠))
] d𝑠,

𝑉
4
(𝑧
𝑡
) = ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑧
𝑇
(𝑠) 𝑌𝑧 (𝑠) d𝑠,

𝑉
5
(𝑧
𝑡
) =

ℎ

2

∫

−ℎ
1

−(ℎ
1
+ℎ
2
)/2

∫

𝑡

𝑡+𝜃

�̇�
𝑇
(𝑠) 𝑅
1
�̇� (𝑠) d𝑠d𝜃

+

ℎ

2

∫

−(ℎ
1
+ℎ
2
)/2

−ℎ
2

∫

𝑡

𝑡+𝜃

�̇�
𝑇
(𝑠) 𝑅
2
�̇� (𝑠) d𝑠d𝜃

+

ℎ
1

2

∫

0

−(ℎ
1
/2)

∫

𝑡

𝑡+𝜃

�̇�
𝑇
(𝑠) 𝑅
3
�̇� (𝑠) d𝑠d𝜃

+

ℎ
1

2

∫

−(ℎ
1
/2)

−ℎ
1

∫

𝑡

𝑡+𝜃

�̇�
𝑇
(𝑠) 𝑅
4
�̇� (𝑠) d𝑠d𝜃.

(14)

Remark 4. When constructing the 𝑉
1
(𝑧
𝑡
), we not only divide

the delay interval [0, ℎ
1
] but also divide the delay interval

[ℎ
1
, ℎ
2
] into 2 segments; that is, [0, ℎ

1
] = [0, ℎ

1
/2]∪[ℎ

1
/2, ℎ
1
],

[ℎ
1
, ℎ
2
] = [ℎ

1
, (ℎ
1
+ ℎ
2
)/2] ∪ [(ℎ

1
+ ℎ
2
)/2, ℎ
2
], respectively,

which may play an important role in reducing conservatism
of derived results.

Remark 5. Since𝑉
4
(𝑧
𝑡
) considers the information of the lower

bound of delay derivative, the LKF in this paper is more
general than that in [14–16]. So the obtained stability criteria
may be less conservative than the existing ones.

The time derivative of 𝑉(𝑧
𝑡
) along the trajectories of

system (3) yields

�̇� (𝑧
𝑡
) =

5

∑

𝑖=1

�̇�
𝑖
(𝑧
𝑡
) , (15)

where

�̇�
1
(𝑧
𝑡
) =

[

[

𝑧 (𝑡 − ℎ
1
)

𝑧 (𝑡 −

ℎ
1
+ ℎ
2

2

)

]

]

𝑇

[

𝑋
11
𝑋
12

∗ 𝑋
22

]

⋅
[

[

𝑧 (𝑡 − ℎ
1
)

𝑧 (𝑡 −

ℎ
1
+ ℎ
2

2

)

]

]
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−
[

[

𝑧(𝑡 −

ℎ
1
+ ℎ
2

2

)

𝑧 (𝑡 − ℎ
2
)

]

]

𝑇

[

𝑋
11
𝑋
12

∗ 𝑋
22

]

⋅
[

[

𝑧(𝑡 −

ℎ
1
+ ℎ
2

2

)

𝑧 (𝑡 − ℎ
2
)

]

]

−
[

[

𝑧 (𝑡)

𝑧 (𝑡 −

ℎ
1

2

)

]

]

𝑇

[

𝑌
11
𝑌
12

∗ 𝑌
22

]
[

[

𝑧 (𝑡)

𝑧 (𝑡 −

ℎ
1

2

)

]

]

−
[

[

𝑧(𝑡 −

ℎ
1

2

)

𝑧 (𝑡 − ℎ
1
)

]

]

𝑇

[

𝑌
11
𝑌
12

∗ 𝑌
22

]
[

[

𝑧(𝑡 −

ℎ
1

2

)

𝑧 (𝑡 − ℎ
1
)

]

]

,

�̇�
2
(𝑧
𝑡
) = 2𝑧

𝑇
(𝑡) 𝑃�̇� (𝑡) + 2 [𝑓 (𝑧 (𝑡)) − 𝐾

1
𝑧 (𝑡)]
𝑇

Λ�̇� (𝑡)

+ 2 [𝐾
2
𝑧 (𝑡) − 𝑓 (𝑧 (𝑡))]

𝑇

Δ�̇� (𝑡)

= 2𝑧
𝑇
(𝑡) 𝑃 [−𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) + 𝐵𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))]

+ 2 [𝑓 (𝑧 (𝑡)) − 𝐾
1
𝑧 (𝑡)]
𝑇

Λ [ − 𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡))

+ 𝐵𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))]

+ 2 [𝐾
2
𝑧 (𝑡) − 𝑓 (𝑧 (𝑡))]

𝑇

Δ [ − 𝐶𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡))

+ 𝐵𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))] ,

�̇�
3
(𝑧
𝑡
) ⩽ [

𝑧 (𝑡 − ℎ
1
)

𝑓 (𝑧 (𝑡 − ℎ
1
))
]

𝑇

[

𝑄
11
𝑄
12

∗ 𝑄
22

] [

𝑧 (𝑡 − ℎ
1
)

𝑓 (𝑧 (𝑡 − ℎ
1
))
]

− (1 − 𝑢
2
) [

𝑧 (𝑡 − 𝜏 (𝑡))

𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))
]

𝑇

⋅ [

𝑄
11
𝑄
12

∗ 𝑄
22

] [

𝑧 (𝑡 − 𝜏 (𝑡))

𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))
]

+ [

𝑧 (𝑡)

𝑓 (𝑧 (𝑡))
]

𝑇

[

𝑃
11
𝑃
12

∗ 𝑃
22

] [

𝑧 (𝑡)

𝑓 (𝑧 (𝑡))
]

− [

𝑧 (𝑡 − ℎ
1
)

𝑓 (𝑧 (𝑡 − ℎ
1
))
]

𝑇

[

𝑃
11
𝑃
12

∗ 𝑃
22

] [

𝑧 (𝑡 − ℎ
1
)

𝑓 (𝑧 (𝑡 − ℎ
1
))
] ,

�̇�
4
(𝑧
𝑡
) ⩽ (1 − 𝑢

1
) 𝑧
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑌𝑧 (𝑡 − 𝜏 (𝑡))

− 𝑧
𝑇
(𝑡 − ℎ

2
) 𝑌𝑧 (𝑡 − ℎ

2
) .

(16)

By (16), we obtain

�̇�
1
(𝑧
𝑡
) + �̇�
2
(𝑧
𝑡
) + �̇�
3
(𝑧
𝑡
) + �̇�
4
(𝑧
𝑡
) ⩽ 𝜁
𝑇
(𝑡) Σ𝜁 (𝑡) , (17)

where Σ is defined in (8). Consider the following:

𝜁
𝑇
(𝑡) = [𝑧

𝑇
(𝑡 − ℎ

1
) 𝑧
𝑇
(𝑡 −

ℎ
1
+ ℎ
2

2

)

⋅ 𝑧
𝑇
(𝑡 − ℎ

2
) 𝑧
𝑇
(𝑡 − 𝜏 (𝑡))

⋅ 𝑧
𝑇
(𝑡) 𝑓
𝑇
(𝑧 (𝑡)) 𝑓

𝑇
(𝑧 (𝑡 − 𝜏 (𝑡)))

⋅𝑓
𝑇
(𝑧 (𝑡 − ℎ

1
)) 𝑓
𝑇
(𝑧(𝑡 −

ℎ
1

2

))] ,

�̇�
5
(𝑧
𝑡
) = �̇�
𝑇
(𝑡) [

ℎ
2

2

(𝑅
1
+ 𝑅
2
) +

ℎ
2

1

2

(𝑅
3
+ 𝑅
4
)] �̇� (𝑡)

−

ℎ

2

∫

𝑡−ℎ
1

𝑡−(ℎ
1
+ℎ
2
)/2

�̇�
𝑇
(𝑠) 𝑅
1
�̇� (𝑠) d𝑠

−

ℎ

2

∫

𝑡−((ℎ
1
+ℎ
2
)/2)

𝑡−ℎ
2

�̇�
𝑇
(𝑠) 𝑅
2
�̇� (𝑠) d𝑠

−

ℎ
1

2

∫

𝑡

𝑡−(ℎ
1
/2)

�̇�
𝑇
(𝑠) 𝑅
3
�̇� (𝑠) d𝑠

−

ℎ
1

2

∫

𝑡−(ℎ
1
/2)

𝑡−ℎ
1

�̇�
𝑇
(𝑠) 𝑅
4
�̇� (𝑠) d𝑠.

(18)

Furthermore, there exist positive diagonalmatrices𝑇
1
,𝑇
2
,𝑇
3
,

such that the following inequalities hold based on (4):

0 ⩽ −2𝑓
𝑇
(𝑧 (𝑡)) 𝑇

1
𝑓 (𝑧 (𝑡)) + 2𝑧

𝑇
(𝑡) 𝑇
1
(𝐾
1
+ 𝐾
2
) 𝑓 (𝑧 (𝑡))

− 2𝑧
𝑇
(𝑡) 𝐾
2
𝑇
1
𝐾
1
𝑧 (𝑡)

− 2𝑓
𝑇
(𝑧 (𝑡 − 𝜏 (𝑡))) 𝑇

2
𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

+ 2𝑧
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑇

2
(𝐾
1
+ 𝐾
2
) 𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

− 2𝑧
𝑇
(𝑡 − 𝜏 (𝑡)) 𝐾

2
𝑇
2
𝐾
1
𝑧 (𝑡 − 𝜏 (𝑡))

− 2𝑓
𝑇
(𝑧 (𝑡 − ℎ

1
)) 𝑇
3
𝑓 (𝑧 (𝑡 − ℎ

1
))

+ 2𝑧
𝑇
(𝑡 − ℎ

1
) 𝑇
3
(𝐾
1
+ 𝐾
2
) 𝑓 (𝑧 (𝑡 − ℎ

1
))

− 2𝑧
𝑇
(𝑡 − ℎ

1
)𝐾
2
𝑇
3
𝐾
1
𝑧 (𝑡 − ℎ

1
)

= 𝜁
𝑇
(𝑡) Φ𝜁 (𝑡) .

(19)
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For ℎ
1
⩽ 𝜏(𝑡) ⩽ (ℎ

1
+ ℎ
2
)/2, by use of Lemma 1, we obtain

−

ℎ

2

∫

𝑡−ℎ
1

𝑡−((ℎ
1
+ℎ
2
)/2)

�̇�
𝑇
(𝑠) 𝑅
1
�̇� (𝑠) d𝑠

= −

ℎ

2

∫

𝑡−𝜏(𝑡)

𝑡−((ℎ
1
+ℎ
2
)/2)

�̇�
𝑇
(𝑠) 𝑅
1
�̇� (𝑠) d𝑠

−

ℎ

2

∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

�̇�
𝑇
(𝑠) 𝑅
1
�̇� (𝑠) d𝑠.

(20)

Let

𝑒
1
(𝑡) = ∫

𝑡−𝜏(𝑡)

𝑡−((ℎ
1
+ℎ
2
)/2)

�̇� (𝑠) d𝑠,

𝑒
2
(𝑡) = ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

�̇� (𝑠) d𝑠;

(21)

then

−

ℎ

2

∫

𝑡−ℎ
1

𝑡−((ℎ
1
+ℎ
2
)/2)

�̇�
𝑇
(𝑠) 𝑅
1
�̇� (𝑠) d𝑠

⩽ −

ℎ/2

((ℎ
1
+ ℎ
2
) /2) − 𝜏 (𝑡)

𝑒
𝑇

1
(𝑡) 𝑅
1
𝑒
1
(𝑡)

−

ℎ/2

𝜏 (𝑡) − ℎ
1

𝑒
𝑇

2
(𝑡) 𝑅
1
𝑒
2
(𝑡)

= −𝑒
𝑇

1
(𝑡) 𝑅
1
𝑒
1
(𝑡) −

𝜏 (𝑡) − ℎ
1

((ℎ
1
+ ℎ
2
) /2) − 𝜏 (𝑡)

𝑒
𝑇

1
(𝑡) 𝑅
1
𝑒
1
(𝑡)

− 𝑒
𝑇

2
𝑅
1
𝑒
2
(𝑡) −

((ℎ
1
+ ℎ
2
) /2) − 𝜏 (𝑡)

𝜏 (𝑡) − ℎ
1

𝑒
𝑇

2
(𝑡) 𝑅
1
𝑒
2
(𝑡) .

(22)

If [ 𝑅1 𝑆1
∗ 𝑅
1

] > 0, then, by using Lemma 2, we obtain

[

[

[

[

[

[

√

𝜏 (𝑡) − ℎ
1

((ℎ
1
+ ℎ
2
) /2) − 𝜏 (𝑡)

𝑒
1
(𝑡)

−√

((ℎ
1
+ ℎ
2
) /2) − 𝜏 (𝑡)

𝜏 (𝑡) − ℎ
1

𝑒
2
(𝑡)

]

]

]

]

]

]

𝑇

[

𝑅
1
𝑆
1

∗ 𝑅
1

]

⋅

[

[

[

[

[

[

√

𝜏 (𝑡) − ℎ
1

((ℎ
1
+ ℎ
2
) /2) − 𝜏 (𝑡)

𝑒
1
(𝑡)

−√

((ℎ
1
+ ℎ
2
) /2) − 𝜏 (𝑡)

𝜏 (𝑡) − ℎ
1

𝑒
2
(𝑡)

]

]

]

]

]

]

⩾ 0,

(23)

which implies

−

𝜏 (𝑡) − ℎ
1

((ℎ
1
+ ℎ
2
) /2) − 𝜏 (𝑡)

𝑒
𝑇

1
(𝑡) 𝑅
1
𝑒
1
(𝑡)

−

((ℎ
1
+ ℎ
2
) /2) − 𝜏 (𝑡)

𝜏 (𝑡) − ℎ
1

𝑒
𝑇

2
(𝑡) 𝑅
1
𝑒
2
(𝑡)

⩽ −𝑒
𝑇

1
(𝑡) 𝑆
1
𝑒
2
(𝑡) − 𝑒

𝑇

2
(𝑡) 𝑆
𝑇

1
𝑒
1
(𝑡) .

(24)

Then, from (19)–(24), we obtain

−

ℎ

2

∫

𝑡−ℎ
1

𝑡−((ℎ
1
+ℎ
2
)/2)

�̇�
𝑇
(𝑠) 𝑅
1
�̇� (𝑠) d𝑠

⩽ −𝑒
𝑇

1
(𝑡) 𝑅
1
𝑒
1
(𝑡) − 𝑒

𝑇

2
(𝑡) 𝑅
1
𝑒
2
(𝑡)

− 𝑒
𝑇

1
(𝑡) 𝑆
1
𝑒
2
(𝑡) − 𝑒

𝑇

2
(𝑡) 𝑆
𝑇

1
𝑒
1
(𝑡)

= − [𝑧 (𝑡 − 𝜏 (𝑡)) − 𝑧 (𝑡 −

ℎ
1
+ ℎ
2

2

)]

𝑇

⋅ 𝑅
1
[𝑧 (𝑡 − 𝜏 (𝑡)) − 𝑧 (𝑡 −

ℎ
1
+ ℎ
2

2

)]

− [𝑧 (𝑡 − ℎ
1
) − 𝑧 (𝑡 − 𝜏 (𝑡))]

𝑇

⋅ 𝑅
1
[𝑧 (𝑡 − ℎ

1
) − 𝑧 (𝑡 − 𝜏 (𝑡))]

− [𝑧 (𝑡 − 𝜏 (𝑡)) − 𝑧 (𝑡 −

ℎ
1
+ ℎ
2

2

)]

𝑇

⋅ 𝑆
1
[𝑧 (𝑡 − ℎ

1
) − 𝑧 (𝑡 − 𝜏 (𝑡))]

− [𝑧 (𝑡 − ℎ
1
) − 𝑧 (𝑡 − 𝜏 (𝑡))]

𝑇

⋅ 𝑆
𝑇

1
[𝑧 (𝑡 − 𝜏 (𝑡)) − 𝑧 (𝑡 −

ℎ
1
+ ℎ
2

2

)] ,

(25)

−

ℎ

2

∫

𝑡−((ℎ
1
+ℎ
2
)/2)

𝑡−ℎ
2

�̇�
𝑇
(𝑠) 𝑅
2
�̇� (𝑠) d𝑠

⩽ − [𝑧(𝑡 −

ℎ
1
+ ℎ
2

2

) − 𝑧 (𝑡 − ℎ
2
)]

𝑇

⋅ 𝑅
2
[𝑧(𝑡 −

ℎ
1
+ ℎ
2

2

) − 𝑧 (𝑡 − ℎ
2
)] ,

(26)

−

ℎ
1

2

∫

𝑡

𝑡−(ℎ
1
/2)

�̇�
𝑇
(𝑠) 𝑅
3
�̇� (𝑠) d𝑠

−

ℎ
1

2

∫

𝑡−(ℎ
1
/2)

𝑡−ℎ
1

�̇�
𝑇
(𝑠) 𝑅
4
�̇� (𝑠) d𝑠

⩽ [𝑧 (𝑡) − 𝑧 (𝑡 −

ℎ
1

2

)]

𝑇

𝑅
3
[𝑧 (𝑡) − 𝑧 (𝑡 −

ℎ
1

2

)]

− [𝑧(𝑡 −

ℎ
1

2

) − 𝑧 (𝑡 − ℎ
1
)]

𝑇

⋅ 𝑅
4
[𝑧(𝑡 −

ℎ
1

2

) − 𝑧 (𝑡 − ℎ
1
)] .

(27)

Therefore

�̇�
5
(𝑧
𝑡
) ⩽ 𝜁
𝑇
(𝑡) (Π

1
+A
𝑇
𝑅A) 𝜁 (𝑡) , (28)

where Π
1
,A, 𝑅 are defined in (8).

From (16)–(28), we obtain

�̇� (𝑧
𝑡
) ⩽ 𝜁
𝑇
(𝑡) (Σ + Φ + Π

1
+A
𝑇
𝑅A) 𝜁 (𝑡) . (29)
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If Σ+Φ+Π
1
+A𝑇𝑅A < 0, then there exists a scalar 𝜀 > 0,

such that

�̇� (𝑧
𝑡
) ⩽ −𝜀𝜁

𝑇
(𝑡) 𝜁 (𝑡) ⩽ −𝜀𝑧

𝑇
(𝑡) 𝑧 (𝑡) < 0, ∀𝑧 (𝑡) ̸= 0.

(30)

Thus, according to [20], system (3) is globally asymptotically
stable for ℎ

1
⩽ 𝜏(𝑡) ⩽ (ℎ

1
+ ℎ
2
)/2. By Schur complement,

Σ + Φ + Π
1
+A𝑇𝑅A < 0 is equivalent to (8).

For (ℎ
1
+ ℎ
2
)/2 ⩽ 𝜏(𝑡) ⩽ ℎ

2
, similar to ℎ

1
⩽ 𝜏(𝑡) ⩽ (ℎ

1
+

ℎ
2
)/2, we obtain

−

ℎ

2

∫

𝑡−ℎ
1

𝑡−((ℎ
1
+ℎ
2
)/2)

�̇�
𝑇
(𝑠) 𝑅
1
�̇� (𝑠) ds

⩽ −[𝑧 (𝑡 − ℎ
1
) − 𝑧 (𝑡 −

ℎ
1
+ ℎ
2

2

)]

𝑇

⋅ 𝑅
1
[𝑧 (𝑡 − ℎ

1
) − 𝑧 (𝑡 −

ℎ
1
+ ℎ
2

2

)] .

(31)

If [ 𝑅2 𝑆2
∗ 𝑅
2

] > 0, then we obtain

−

ℎ

2

∫

𝑡−((ℎ
1
+ℎ
2
)/2)

𝑡−ℎ
2

�̇�
𝑇
(𝑠) 𝑅
2
�̇� (𝑠) d𝑠

⩽ −𝑒
𝑇

3
(𝑡) 𝑅
2
𝑒
3
(𝑡) − 𝑒

𝑇

4
(𝑡) 𝑅
2
𝑒
4
(𝑡)

− 𝑒
𝑇

3
(𝑡) 𝑆
2
𝑒
4
(𝑡) − 𝑒

𝑇

4
(𝑡) 𝑆
𝑇

2
𝑒
3
(𝑡)

= − [𝑧(𝑡 −

ℎ
1
+ ℎ
2

2

) − 𝑧 (𝑡 − 𝜏 (𝑡))]

𝑇

⋅ 𝑅
2
[𝑧(𝑡 −

ℎ
1
+ ℎ
2

2

) − 𝑧 (𝑡 − 𝜏 (𝑡))]

− [𝑧 (𝑡 − 𝜏 (𝑡)) − 𝑧 (𝑡 − ℎ
2
)]
𝑇

⋅ 𝑅
2
[𝑧 (𝑡 − 𝜏 (𝑡)) − 𝑧 (𝑡 − ℎ

2
)]

− [𝑧(𝑡 −

ℎ
1
+ ℎ
2

2

) − 𝑧 (𝑡 − 𝜏 (𝑡))]

𝑇

⋅ 𝑆
2
[𝑧 (𝑡 − 𝜏 (𝑡)) − 𝑧 (𝑡 − ℎ

2
)]

− [𝑧 (𝑡 − 𝜏 (𝑡)) − 𝑧 (𝑡 − ℎ
2
)]
𝑇

⋅ 𝑆
𝑇

2
[𝑧(𝑡 −

ℎ
1
+ ℎ
2

2

) − 𝑧 (𝑡 − 𝜏 (𝑡))] ,

(32)

where

𝑒
3
(𝑡) = ∫

𝑡−((ℎ
1
+ℎ
2
)/2)

𝑡−𝜏(𝑡)

�̇� (𝑠) d𝑠, 𝑒
4
(𝑡) = ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

�̇� (𝑠) d𝑠.

(33)

Therefore, by (27), (31), and (32), we obtain

�̇�
5
(𝑧
𝑡
) ⩽ 𝜁
𝑇
(𝑡) (Π

2
+A
𝑇
𝑅A) 𝜁 (𝑡) , (34)

where Π
2
,A, 𝑅 are defined in (9).

From (16)–(19) and (34) we obtain

�̇� (𝑧
𝑡
) ⩽ 𝜁
𝑇
(𝑡) (Σ + Φ + Π

2
+A
𝑇
𝑅A) 𝜁 (𝑡) . (35)

If Σ + Φ + Π
2
+A𝑇𝑅A < 0, then there exists a scalar 𝜀

1
> 0,

such that

�̇� (𝑧
𝑡
) ⩽ −𝜀

1
𝜁
𝑇
(𝑡) 𝜁 (𝑡) ⩽ −𝜀

1
𝑧
𝑇
(𝑡) 𝑧 (𝑡) < 0, ∀𝑧 (𝑡) ̸= 0.

(36)

Thus, according to [20], system (3) is globally asymptotically
stable for (ℎ

1
+ ℎ
2
)/2 ⩽ 𝜏(𝑡) ⩽ ℎ

2
. By Schur complement,

Σ + Φ + Π
2
+A𝑇𝑅A < 0 is equivalent to (9). This completes

the proof.

Remark 6. From (25) and (32), the information 𝜏(𝑡) ∈

[ℎ
1
, (ℎ
1
+ ℎ
2
)/2] and 𝜏(𝑡) ∈ [(ℎ

1
+ ℎ
2
)/2, ℎ
2
] is considered

adequately in our paper, which may lead to less conservative
results.

Remark 7. The reciprocally convex optimization technique
was utilized in each subinterval [ℎ

1
, (ℎ
1
+ ℎ
2
)/2] and [(ℎ

1
+

ℎ
2
)/2, ℎ
2
], which has potential to yield less conservative

conditions.

Remark 8. Based on the results of Theorem 3, an improved
stability criterion for system (3) is introduced by utilizing
the idea of [17] which divided the bounding of activation
function 𝑘−

𝑖
⩽ 𝑓
𝑖
(𝑧
𝑖
(𝑡))/𝑧

𝑖
(𝑡) ⩽ 𝑘

+

𝑖
into two subintervals, such

as 𝑘−
𝑖
⩽ 𝑓
𝑖
(𝑧
𝑖
(𝑡))/𝑧

𝑖
(𝑡) ⩽ (𝑘

−

𝑖
+ 𝑘
+

𝑖
)/2 and (𝑘−

𝑖
+ 𝑘
+

𝑖
)/2 ⩽

𝑓
𝑖
(𝑧
𝑖
(𝑡))/𝑧

𝑖
(𝑡) ⩽ 𝑘

+

𝑖
. Finally, a numerical example is given

to show that Theorem 9 significantly improves the feasible
region of stability criterion comparing with some previous
literatures.

Theorem 9. For given positive scalars ℎ
1
, ℎ
2
, ℎ = ℎ

2
−

ℎ
1
, and any scalars 𝑢

1
, 𝑢
2
, diagonal matrices 𝐾

1
=

diag(𝑘−
1
, 𝑘
−

2
, . . . , 𝑘

−

𝑛
), 𝐾
2
= diag(𝑘+

1
, 𝑘
+

2
, . . . , 𝑘

+

𝑛
), and system

(3) is globally asymptotically stable for 0 ⩽ ℎ
1
⩽ 𝜏(𝑡) ⩽ ℎ

2
,

𝑢
1
⩽ ̇𝜏(𝑡) ⩽ 𝑢

2
, if there exist symmetric positive matrices 𝑃,

𝑋 = [𝑋𝑖𝑗]2×2
, 𝑄 = [𝑄𝑖𝑗]2×2

, 𝑃 = [𝑃𝑖𝑗]2×2
, 𝑅
𝑖
(𝑖 = 1, 2, 3, 4),

positive diagonal matrices 𝑇
11
, 𝑇
12
, 𝑇
13
, 𝑇
21
, 𝑇
22
, 𝑇
23
, Δ =

diag(𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑛
), Λ = diag(𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑛
), and any matri-

ces 𝑆
1
, 𝑆
2
with appropriate dimensions, satisfying the following

LMIs:

[
Σ + Φ

1
+ Π
1
A𝑇𝑅

∗ −𝑅

] < 0, (37)

[
Σ + Φ

1
+ Π
2
A𝑇𝑅

∗ −𝑅

] < 0, (38)

[
Σ + Φ

2
+ Π
1
A𝑇𝑅

∗ −𝑅

] < 0, (39)

[
Σ + Φ

2
+ Π
2
A𝑇𝑅

∗ −𝑅

] < 0, (40)
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[

𝑅
1
𝑆
1

∗ 𝑅
1

] > 0, (41)

[

𝑅
2
𝑆
2

∗ 𝑅
2

] > 0, (42)

where

Φ
1
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ
111

0 0 0 0 0 0

3𝐾
1
+ 𝐾
2

2

𝑇
13
0

∗ 0 0 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0 0 0

∗ ∗ ∗ − (𝐾
1
+ 𝐾
2
) 𝑇
12
𝐾
1

0 0

3𝐾
1
+ 𝐾
2

2

𝑇
12

0 0

∗ ∗ ∗ ∗ − (𝐾
1
+ 𝐾
2
) 𝑇
11
𝐾
1

3𝐾
1
+ 𝐾
2

2

𝑇
11

0 0 0

∗ ∗ ∗ ∗ ∗ −2𝑇
11

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −2𝑇
12

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −2𝑇
13

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Φ
2
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ
211

0 0 0 0 0 0

𝐾
1
+ 3𝐾
2

2

𝑇
23
0

∗ 0 0 0 0 0 0 0 0

∗ ∗ 0 0 0 0 0 0 0

∗ ∗ ∗ − (𝐾
1
+ 𝐾
2
) 𝑇
22
𝐾
2

0 0

𝐾
1
+ 3𝐾
2

2

𝑇
22

0 0

∗ ∗ ∗ ∗ − (𝐾
1
+ 𝐾
2
) 𝑇
21
𝐾
2

𝐾
1
+ 3𝐾
2

2

𝑇
21

0 0 0

∗ ∗ ∗ ∗ ∗ −2𝑇
21

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −2𝑇
22

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −2𝑇
23

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(43)

where

Φ
111
= − (𝐾

1
+ 𝐾
2
) 𝑇
13
𝐾
1
, Φ

211
= − (𝐾

1
+ 𝐾
2
) 𝑇
23
𝐾
2
.

(44)

The Σ,Π
1
, Π
2
are defined in Theorem 3.

Proof. Let us choose the same Lyapunov functional proposed
inTheorem 3.

Case 1. Consider

𝑘
−

𝑖
⩽

𝑓
𝑖
(𝑧
𝑖
(𝑡))

𝑧
𝑖
(𝑡)

⩽

𝑘
−

𝑖
+ 𝑘
+

𝑖

2

. (45)

Similar to (19), there exist positive diagonal matrices 𝑇
11
, 𝑇
12
,

𝑇
13
, such that the following inequalities hold based on (45):

0 ⩽ −2𝑓
𝑇
(𝑧 (𝑡)) 𝑇

11
𝑓 (𝑧 (𝑡))

+ 2𝑧
𝑇
(𝑡) 𝑇
11
(

3𝐾
1
+ 𝐾
2

2

)𝑓 (𝑧 (𝑡))

− 𝑧
𝑇
(𝑡) (𝐾

1
+ 𝐾
2
) 𝑇
11
𝐾
1
𝑧 (𝑡)

− 2𝑓
𝑇
(𝑧 (𝑡 − 𝜏 (𝑡))) 𝑇

12
𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

+ 2𝑧
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑇

12
(

3𝐾
1
+ 𝐾
2

2

)𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

− 𝑧
𝑇
(𝑡 − 𝜏 (𝑡)) (𝐾

1
+ 𝐾
2
) 𝑇
12
𝐾
1
𝑧 (𝑡 − 𝜏 (𝑡))

− 2𝑓
𝑇
(𝑧 (𝑡 − ℎ

1
)) 𝑇
13
𝑓 (𝑧 (𝑡 − ℎ

1
))

+ 2𝑧
𝑇
(𝑡 − ℎ

1
) 𝑇
13
(

3𝐾
1
+ 𝐾
2

2

)𝑓 (𝑧 (𝑡 − ℎ
1
))

− 𝑧
𝑇
(𝑡 − ℎ

1
) (𝐾
1
+ 𝐾
2
) 𝑇
13
𝐾
1
𝑧 (𝑡 − ℎ

1
)

= 𝜁
𝑇
(𝑡) Φ
1
𝜁 (𝑡) .

(46)

Therefore, by the use of proof of Theorem 3, when 𝑘−
𝑖
⩽

𝑓
𝑖
(𝑧
𝑖
(𝑡))/𝑧

𝑖
(𝑡) ⩽ (𝑘

−

𝑖
+ 𝑘
+

𝑖
)/2, ℎ

1
⩽ 𝜏(𝑡) ⩽ (ℎ

1
+ ℎ
2
)/2, from

(16)–(18), (34), and (46), we obtain

�̇� (𝑧
𝑡
) ⩽ 𝜁
𝑇
(𝑡) (Σ + Φ

1
+ Π
1
+A
𝑇
𝑅A) 𝜁 (𝑡) . (47)

If Σ +Φ
1
+ Π
1
+A𝑇𝑅A < 0, then there exists a scalar 𝜀

2
> 0,

such that

�̇� (𝑧
𝑡
) ⩽ −𝜀

2
𝜁
𝑇
(𝑡) 𝜁 (𝑡) ⩽ −𝜀

2
𝑧
𝑇
(𝑡) 𝑧 (𝑡) < 0, ∀𝑧 (𝑡) ̸= 0.

(48)

Thus, according to [20], system (3) is globally asymptotically
stable for 𝑘−

𝑖
⩽ 𝑓
𝑖
(𝑧
𝑖
(𝑡))/𝑧

𝑖
(𝑡) ⩽ (𝑘

−

𝑖
+ 𝑘
+

𝑖
)/2, ℎ

1
⩽ 𝜏(𝑡) ⩽
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(ℎ
1
+ ℎ
2
)/2. By Schur complement, Σ+Φ

1
+Π
1
+A𝑇𝑅A < 0

is equivalent to (37).

Case 2. Consider

𝑘
−

𝑖
+ 𝑘
+

𝑖

2

⩽

𝑓
𝑖
(𝑧
𝑖
(𝑡))

𝑧
𝑖
(𝑡)

⩽ 𝑘
+

𝑖
. (49)

Similar to (19), there exist positive diagonal matrices 𝑇
21
, 𝑇
22
,

𝑇
23
, such that the following inequalities hold based on (49):

0 ⩽ −2𝑓
𝑇
(𝑧 (𝑡)) 𝑇

21
𝑓 (𝑧 (𝑡))

+ 2𝑧
𝑇
(𝑡) 𝑇
21
(

3𝐾
2
+ 𝐾
1

2

)𝑓 (𝑧 (𝑡))

− 𝑧
𝑇
(𝑡) (𝐾

1
+ 𝐾
2
) 𝑇
21
𝐾
2
𝑧 (𝑡)

− 2𝑓
𝑇
(𝑧 (𝑡 − 𝜏 (𝑡))) 𝑇

22
𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

+ 2𝑧
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑇

22
(

3𝐾
2
+ 𝐾
1

2

)𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

− 𝑧
𝑇
(𝑡 − 𝜏 (𝑡)) (𝐾

1
+ 𝐾
2
) 𝑇
22
𝐾
2
𝑧 (𝑡 − 𝜏 (𝑡))

− 2𝑓
𝑇
(𝑧 (𝑡 − ℎ

1
)) 𝑇
23
𝑓 (𝑧 (𝑡 − ℎ

1
))

+ 2𝑧
𝑇
(𝑡 − ℎ

1
) 𝑇
23
(

3𝐾
2
+ 𝐾
1

2

)𝑓 (𝑧 (𝑡 − ℎ
1
))

− 𝑧
𝑇
(𝑡 − ℎ

1
) (𝐾
1
+ 𝐾
2
) 𝑇
23
𝐾
2
𝑧 (𝑡 − ℎ

1
)

= 𝜁
𝑇
(𝑡) Φ
2
𝜁 (𝑡) .

(50)

Therefore, by the use of proof of Theorem 3, when (𝑘−
𝑖
+

𝑘
+

𝑖
)/2 ⩽ 𝑓

𝑖
(𝑧
𝑖
(𝑡))/𝑧

𝑖
(𝑡) ⩽ 𝑘

+

𝑖
, ℎ
1
⩽ 𝜏(𝑡) ⩽ (ℎ

1
+ ℎ
2
)/2, from

(16)–(18), (34), and (50), we obtain

�̇� (𝑧
𝑡
) ⩽ 𝜁
𝑇
(𝑡) (Σ + Φ

2
+ Π
1
+A
𝑇
𝑅A) 𝜁 (𝑡) . (51)

If Σ +Φ
2
+ Π
1
+A𝑇𝑅A < 0, then there exists a scalar 𝜀

3
> 0,

such that

�̇� (𝑧
𝑡
) ⩽ −𝜀

3
𝜁
𝑇
(𝑡) 𝜁 (𝑡) ⩽ −𝜀

3
𝑧
𝑇
(𝑡) 𝑧 (𝑡) < 0, ∀𝑧 (𝑡) ̸= 0.

(52)

Thus, according to [20], system (3) is globally asymptotically
stable for (𝑘−

𝑖
+ 𝑘
+

𝑖
)/2 ⩽ 𝑓

𝑖
(𝑧
𝑖
(𝑡))/𝑧

𝑖
(𝑡) ⩽ 𝑘

+

𝑖
, ℎ
1
⩽ 𝜏(𝑡) ⩽

(ℎ
1
+ ℎ
2
)/2. By Schur complement, Σ+Φ

2
+Π
1
+A𝑇𝑅A < 0

is equivalent to (38).

Table 1: Allowable upper bound of ℎ
2
for different 𝑢

2
.

Method 𝑢
2
= 0.1 𝑢

2
= 0.5 𝑢

2
= 0.9

[15] 3.65 3.32 3.26
[16] 3.78 3.45 3.39
[17] 4.19 3.62 3.59
Theorem 3 4.97 4.01 3.90
Theorem 9 5.45 4.65 4.57

4. Numerical Examples

In this section, an example is given to demonstrate the
effectiveness of the derived method.

Example 1. Consider the stability of neural networks (3) with
the following parameters:

𝐶 =

[

[

[

[

1.2769 0 0 0

0 0.6231 0 0

0 0 0.9230 0

0 0 0 0.4480

]

]

]

]

,

𝐴 =

[

[

[

[

−0.0373 0.4852 −0.3351 0.2336

−1.6033 0.5988 −0.3224 1.2352

0.3394 −0.0860 −0.3824 −0.5785

−0.1311 0.3253 −0.9534 −0.5015

]

]

]

]

,

𝐵 =

[

[

[

[

0.8674 −1.2405 −0.5325 0.0220

0.0474 −0.9164 0.0360 0.9816

1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775

]

]

]

]

,

𝐾
1
= diag {0, 0, 0, 0} ,

𝐾
2
= diag {0.1137, 0.1279, 0.7994, 0.2368}

𝑓
1
(𝑠) = 0.05685 (|𝑠 + 1| − |𝑠 − 1|) ,

𝑓
2
(𝑠) = 0.06395 (|𝑠 + 1| − |𝑠 − 1|) ,

𝑓
3
(𝑠) = 0.3997 (|𝑠 + 1| − |𝑠 − 1|)

𝑓
4
(𝑠) = 0.1184 (|𝑠 + 1| − |𝑠 − 1|) .

(53)

For given ℎ
1
= 3, 𝑢

1
= 0, the upper bounds of ℎ

2
for different

𝑢
2
are derived byTheorems 3 and 9 and those results in [15–

17] are listed in Table 1. According to Table 1, our obtained
results are much less conservative than those in the literature.

5. Conclusions

Theproblem of delay-dependent asymptotic stability analysis
for neural networks with interval time-varying delays is
considered based on the delay-partitioning method. Some
less conservative stability criteria are established in terms
of linear matrix inequalities (LMIs) by constructing a new
L-K functional in each subinterval and combining with
reciprocally convex approach. Finally, a numerical example is
given to show the improved stability region of the proposed
results.
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