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Multiagent goal recognition is a tough yet important problem in many real time strategy games or simulation systems. Traditional
modeling methods either are in great demand of detailed agents’ domain knowledge and training dataset for policy estimation or
lack clear definition of action duration. To solve the above problems, we propose a novel Dec-POMDM-T model, combining the
classic Dec-POMDP, an observation model for recognizer, joint goal with its termination indicator, and time duration variables
for actions with action termination variables. In this paper, a model-free algorithm named cooperative colearning based on
Sarsa is used. Considering that Dec-POMDM-T usually encounters multiagent goal recognition problems with different sorts of
noises, partially missing data, and unknown action durations, the paper exploits the SIS PF with resampling for inference under
the dynamic Bayesian network structure of Dec-POMDM-T. In experiments, a modified predator-prey scenario is adopted to
study multiagent joint goal recognition problem, which is the recognition of the joint target shared among cooperative predators.
Experiment results show that (a) Dec-POMDM-T works effectively in multiagent goal recognition and adapts well to dynamic
changing goals within agent group; (b) Dec-POMDM-T outperforms traditional Dec-MDP-based methods in terms of precision,
recall, and 𝐹-measure.

1. Introduction

Recently,more andmore commercial real time strategy (RTS)
games have received attention from AI researchers, behavior
scientists, policy evaluators, and staff training groups [1].
A key aspect in developing these RTS games is to create
human-like players or agents who can act or react intelli-
gently against changing virtual environment and incoming
interactions from real players [2]. Though many AI planning
and decision-making algorithms have been applied to agents
in RTS games, their behavior patterns are still easy to
be predicted and thus making games less entertaining or
intuitive. This is partially because of agents’ low information
processing and understanding ability, for example, the recog-
nition of goal or intention fromopponents or friends. In other
words, understanding goals or intentions in time helps agents
cooperate better or make counter decisions more efficiently.

A typical scenario in RTS games is a group of AI players
cooperating to achieve a certain mission. In the Star-Craft,

for example, the AI players have to cooperate so as to besiege
enemy bases or intercept certain logistic forces [3].Therefore,
if AI players can recognize the realmoving or attacking target,
they will be better prepared, no matter with early defense
employment or counter decision-making. Considering these
benefits, goal recognition has attracted lots of attention from
researchers in many different fields. Many related models
and algorithms have been proposed and applied, such as
hidden Markov models (HMMs) [4], conditional random
fields (CRFs) [5],Markov decision processes (MDPs) [6], and
particle filtering (PF) [7].

HiddenMarkovmodels [8] are especially known for their
applications in temporal pattern recognition such as speech,
handwriting, and gesture recognition. Though convenient
in representing system states, HMMs have low ability in
describing agent actions in dynamic environment. Com-
paring to HMMs, MDPs have a better representation of
actions and their future effects. MDP is the framework for
solving sequential decision problems: agents select actions
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sequentially based on states and each action will have an
impact on future states. They have been successfully applied
in goal and intention recognition [6]. Several modifications
based on the MDP framework have a finer formalization
towards more complex scenarios. Among these models, the
Dec-POMDM (decentralized partially observable Markov
decision model) [9] is a MDP-based method focusing on
solving multiagent goal recognition problem.Though having
all details of cooperation embedded in team’s joint policy,
Dec-POMDM is only concerned about actions starting and
terminating within one time step. This is usually not applica-
ble in RTS games.

Based on ideas from Dec-POMDM and SMDPs [10], we
propose a novel decentralized partially observable Markov
decision model with time duration (Dec-POMDM-T) to
formalize multiagent cooperative behaviors with durative
actions. The Dec-POMDM-T models the joint goal, the
actions, and the world states hierarchically. Compared to
works in [9, 11], Dec-POMDM-T explicitly models the time
duration for primitive actions, indicating whether actions are
terminated or not. In Dec-POMDM-T, the multiagent joint
goal recognition consists of three components: (a) formaliza-
tion of behaviors, the environment, and the observation for
organizers; (b) model parameter estimation through learning
or other methods; and (c) goal inference from observations:

(a) For the problem formalization, agents’ cooperative
behaviors are modeled by joint policies, ensuring
model’s effectiveness without considering domain-
related cooperationmechanism. Besides, explicit time
duration modeling of primitive actions is also imple-
mented.

(b) For the parameter estimation, under the assump-
tion of agents’ rationality, many algorithms for Dec-
POMDP could be exploited for accurate or approxi-
mate policy estimation, making the training dataset
unnecessary. This paper uses a model-free algorithm
named cooperative colearning based on Sarsa [12] in
policy learning.

(c) For the goal reference, the modified particle filtering
method is exploited because of its advantages in
solving goal recognition problems with different sorts
of noises, partially missing data and unknown action
duration.

Like the modified predator-prey problem presented in
[9], the scenario in this paper also hasmore than one prey and
predator.The predators first establish joint pursuing target or
goal, which would be changed halfway, before capturing it.
The model and its inference methods applied in this paper
are to recognize the real goal behind agents’ cooperative
behaviors which are partially observable traces with addi-
tional noises. Based on this scenario, we retrieve agents’
optimal policies using amodel-freemultiagent reinforcement
learning (MARL) algorithm. After that, we run a simulation
model in which agents select actions according to policies
and generate a dataset consisting of 100 labeled traces. With
this dataset, statistical metrics including precision, recall, and𝐹-measure are computed using Dec-POMDM-T and other

Dec-MDP-based methods, respectively. Experiments show
that Dec-POMDM-T outperforms the others in all three
metrics. Besides, recognition results of two traces are also
analyzed, showing that Dec-POMDM-T is also quite robust
when joint goals change dynamically during the recognition
process. The paper also analyzes the estimation variance and
time efficiency of our modified particle filter algorithm and
thus proves its effectiveness in practice.

The rest of the paper is organized as follows. Section 2
introduces related works. Section 3 analyzes the moving
process in RTS games and presents the formal definition
of Dec-POMDM-T as well as its DBN structure. Based on
that, Section 4 introduces the way to use modified particle
filter algorithm in multiagent joint goal inference. After that,
experiment scenarios and parameter settings as well as results
are shown in Section 5. Finally, the paper draws conclusions
and discusses future works in Section 6.

2. Related Works

As an interdisciplinary research hotspot covering psychology
and artificial intelligence, the problem of goal recognition
or intention recognition has been tried from many different
ways. In early days, the formalization of goal recognition
problem is usually related to the construction of plan library,
in which the recognition process is based on logical consis-
tency matching between observations and plan library. After
that, the well-known Probabilistic Graphic Models (PGMs)
[13] family, including MDPs [6], HMMs [3], and CRFs [5],
were further proposed as amore compact graph-based repre-
sentation approach. Additionally, PGMs have their advantage
in modeling the uncertainty and dynamics both in environ-
ments and the agent itself, which is not possible in the above
consistency-based methods. Among PGMs, several modifi-
cations including forming hierarchical graphmodel structure
[14–16] and explicit modeling of action duration [17, 18] are
also proposed. Although probabilistic methods have their
advantage in uncertainty modeling, still they cannot repre-
sent and process structural or relational data. Statistical rela-
tional learning (SRL) [19] is a relatively new theory applied
in intention recognition, including logical HMMs (LHMMs)
[20], Markov logic networks (MLNs) [21], and Bayesian
logic programs (BLPs) [22]. It combines relation represen-
tation, first-order logic, probabilistic inference, and machine
learning altogether. Besides, several other methods based
on probabilistic grammar have also been proposed on the
discovery of the similarity between natural language process
(NLP) and intention recognition [23]. Most recently, deep
learning and other intelligent algorithms in retrieving agent’s
decisionmodel are also applied in intention recognition [24].
Other considerations like goal recognition design (GRD)
[25, 26] try to solve the same problem from different aspects.

2.1. Goal RecognitionwithActionDurationModeling. There is
a group ofmodels in PGMs, like HMM-/MDP-basedmodels,
that has close relationship with Markov property. The prop-
erty assumes that the future states depend only on the current
state. Generally speaking, the Markov property enables rea-
soning and computationwith themodel thatwould otherwise
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be intractable. Though it is desirable for models to exhibit
Markov property, it is not always the truth in real goal
recognition scenarios, causing serious performance degrada-
tion like lower precision, longer convergence time, and even
wrong prediction. One main reason for Markov property
violation occurs in agents having durative primitive actions.
Typically there are two approaches in solving the above
problem. One is forming hierarchical structures. Fine et al.
[14] proposedHierarchical HMM(HHMM) in 1998. Bui et al.
[3] used abstract hidden Markov models (AHMM) for hier-
archical goal recognition based on abstract Markov policies
(AMPs). A problem of the AHMM is that it does not allow
the top-level policy to be interrupted when the subplan is
not completed. Saria andMahadevan [27] extended the work
by Bui to multiagent goal recognition. Similar modifications
include works like Layered HMM (LHMM) [15], Dynamic
CRF (DCRF) [28], and Hierarchical CRF (HCRF) [16].

Another kind of approaches tackling non-Markov prop-
erty falls into explicit modeling of action duration time.
Hladky and Bulitko [17] applied hidden semi-Markov model
(HSMM) to opponent position estimation in the first person
shooting (FPS) game Counter Strike. Duong et al. [18]
proposed a Coxian hidden semi-Markov model (CxHSMM)
for recognizing human activities of daily living (ADL). The
CxHSMM modifies HMM in two aspects: on one hand, it is
a special DBN representation of two-layer HMM, and it also
has termination variables; on the other hand, it used Coxian
distribution to model the duration of primitive actions
explicitly. Besides, Yue et al. [9] proposed a SMDM (semi-
Markov Decision Model) based on AHMM, which not only
has hierarchical structure, but also models the time duration.
Similar methods also include Semi-Markov CRF (SMCRF)
[29] and Hierarchical Semi-Markov CRF (HSCRF) [30].

2.2. Multiagent Goal Recognition Based on MDP Frame-
work. As what we have known, MDP is the framework
for solving sequential decision problems. Baker et al. [6]
proposed a computational framework based on Bayesian
inverse planning for recognizing mental states such as goals.
They assumed that the agent is rational: actions are selected
based on an optimal or approximate optimal value func-
tion, given the beliefs about the world, and the posterior
distribution of goals is computed by Bayesian inference.
Ullman et al. [31] also successfully applied this theory in
more complex social goals, such as helping and hindering,
where an agent’s goals depend on the goals of other agents.
In the military domain, Riordan et al. [32] borrowed Baker’s
idea and applied Bayesian inverse planning to inferred intents
in multi-Unmanned Aerial Systems (UASs). Ramırez and
Geffner [11] extended Baker’s work by applying the goal-
POMDP in formalizing the problem. Compared to the MDP,
the POMDPmodels the relation between real world state and
observation of the agent explicitly. Comparing to POMDP, I-
POMDP defines an interactive state space, which combines
the traditional physical state space with explicit models of
other agents sharing the environment in order to predict
their behavior. Ramirez and Geffner also solved the inference
problem even when observations are incomplete. Besides,
Yue et al. [9] also proposed a Dec-POMDMmodel based on

Dec-POMDP in recognizing multiagent goal recognition. Its
model, however, does not consider situations when agents are
having durative actions in RTS games. Above modifications
based on MDP framework, like SMDPs, POMDPs, and
Dec-POMDPs, all have a finer formalization towards more
complex scenarios.

3. The Model

We propose the Dec-POMDM-T for formalizing the world
states, behaviors, goals, and action durations in goal recogni-
tion problem. In this section, we first introduce how agents
do path planning and move between adjacent grids in RTS
games. Then, the formal definition of the Dec-POMDM-T
and relations among variables in the model is explained by
a DBN representation. Based on that, the planning algorithm
for finding out the optimal policies is given.

3.1. Agent Maneuvering in RTS Games. Agents’ maneuvering
in RTS games usually consists of two processes: one is the
path planning knowing the starting point and destination
beforehand; the other one is agents moving from current
positions to adjacent grids.

3.1.1. Path Planning. Like many classical planning problems,
path planning would also generate several courses of actions
given starting points and destinations, which is a sequence
of positions specifically. In dynamic environments however,
the effects of actions would be uncertain. Besides, agent man-
euvering is essentially a sequential decision problem, in
which agents select actions according to current states and
destinations. Further, in multiagent cooperative behaviors,
path planning also needs to follow joint policy shared among
the agent group. Thus a probabilistic Markov decision model
is needed.

3.1.2. Moving between Adjacent Grids. After knowing the
next position or grid from path planning algorithm, agents
need to move from original position to it. In real situations,
one moving action usually lasts for several steps before agent
arriving in target position. This situation breaks the Markov
property, and thus making the agent decision process falls
into a semi-Markov one.

As in Figure 1, which is originally shown in [33], assume
that an agent is on the point𝑋 which is in the grid of C2 and
wants to go to the point𝑍which is in the gridA3. For the path
planning level, the agent needs to choose a grid among the
five adjacent grids (B1, B2, B3, C1, and C3). In this example,
the agent decides to go to grid B2. In the moving level, the
agent will move along the line from point𝑋 to point 𝑆 which
is the center of grid B2. Because the simulation step is a short
time, the agent will compute how long it will take to reach
point 𝑆 according to the current speed. Because the position
of the agent is a continuous variable, it is very unlikely that the
agent just gets the grid center when a simulation step ends.
Thus, the duration of moving is usually computed by

duration = ⌊󵄩󵄩󵄩󵄩position𝑋 − position𝑆
󵄩󵄩󵄩󵄩

speed × 𝑇step ⌋ , (1)
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Figure 1: An example of maneuvering on a grid map.

where speed is a constant in the moving process and 𝑇step is
the time of a simulation step. ‖position𝑋 − position𝑆‖ is the
distance between the point 𝑆 and point 𝑋. The duration is
computed by a floor operator. In this case, duration = 3. After
moving for 3 steps fromposition𝑋, the agent will get position𝑌 and choose the next grid. This moving process will not be
intercepted except that the intention is changed.

3.2. Formalization. In standard definition of Dec-POMDP,
there is no concept of intention or joint intention. The Dec-
POMDP defines the states which consist of all information
needed for making decisions. When formalizing a model
for goal recognition, the original definition of states should
be further decomposed into inner and external states, cor-
responding to agents’ intentions and outside environment,
respectively. Thus the action selection is determined by
all inner and external states. Besides, in multiagent goal
recognition for cooperative behaviors, inner states could
further be extended to joint intentions or goals. In our
Dec-POMDM-T, it should also satisfy situations when joint
goal can be terminated as of goal achievement or halfway
interruption. Thus, the Dec-POMDM-T is a combination of
four parts: (a) the standard Dec-POMDP; (b) the joint goal
and goal termination variable; (c) the observation model for
recognizer; and (d) the time duration for joint actions and
action termination variables.

A classic Dec-POMDP is a tuple ⟨𝐼, 𝑆, 𝐴,Ω, ⃗𝑎, ⃗𝑜, 𝜋⃗, 𝑃𝑇,𝑃𝑂, 𝜆, ℎ, 𝑅⟩, where
(i) 𝐼: set of agents, indexed 1, . . . , 𝑛;
(ii) 𝑆: set of states;
(iii) 𝐴: set of joint actions, 𝐴 = ⊗𝑖∈𝐼𝐴 𝑖, in which 𝐴 𝑖 is the

set of possible actions for agent 𝑖;
(iv) Ω: set of joint observations, Ω = ⊗𝑖∈𝐼Ω𝑖, in which Ω𝑖

is the set of observations for agent 𝑖;
(v) ⃗𝑎: joint action, ⃗𝑎 = ⟨𝑎1, . . . , 𝑎𝑛⟩;
(vi) ⃗𝑜: joint observation, ⃗𝑜 = ⟨𝑜1, . . . , 𝑜𝑛⟩;
(vii) 𝜋⃗: joint policy 𝜋⃗ = ⟨𝜋1, . . . , 𝜋𝑛⟩, inwhich𝜋𝑖 is the local

policy for agent 𝑖, mapping from
󳨀→𝑜𝑖 = 𝑜𝑖1 , . . . , 𝑜𝑖𝑡 to

action 𝑎𝑖;
(viii) 𝑃𝑇: transition function, 𝑃𝑇 = 𝑃(𝑠󸀠 | 𝑠, 𝑎);

(ix) 𝑃𝑂: observation function, 𝑃𝑂 = 𝑃(𝑜 | 𝑎, 𝑠󸀠);
(x) 𝜆: discount factor;
(xi) ℎ: planning horizon;
(xii) 𝑅: reward function, 𝑅 = 𝑅( ⃗𝑎, 𝑠󸀠).
More definition details, explanations, and demonstra-

tions could be found in [34]. As we have discussed above,
the original Dec-POMDP has no definition of joint goals,
observation model for recognizers, and action durations.

Besides, 𝜋𝑖 in Dec-POMDP, mapping from
󳨀→𝑜𝑖 = 𝑜𝑖1 , . . . , 𝑜𝑖𝑡 to

action 𝑎𝑖, does not satisfy Markov property. Thus we simply
assume that agents select actions based only on current states
as work in [9, 11]. Therefore, the Dec-POMDM-T
becomes a tuple ⟨𝐼, 𝑆, 𝐴⃗, Ω⃗, ⃗𝑎, ⃗𝑜, 󳨀→𝜋󸀠, 𝑃𝑇, 𝑃𝑂, 𝜆, ℎ, 𝑅, 𝐺, 𝐸1, 𝑔, Υ,𝑌, 𝑍, 𝐶, 𝐵, 𝐷⃗, 󳨀→𝐸2⟩, where

(i) 𝐺: set of all possible joint goals, 𝐺 = ⊗𝑖∈𝐼𝐺𝑖, in which𝐺𝑖 is the set of goals for agent 𝑖;
(ii) 𝐺𝐸: the joint goal termination variable which is

shared among agents in multiagent cooperative
behaviors, 𝐸1 = {0, 1};

(iii)
󳨀→𝜋󸀠: joint policy 󳨀→𝜋󸀠 = ⟨𝜋󸀠1, . . . , 𝜋󸀠𝑛⟩, in which 𝜋󸀠𝑖 is the
local policy for agent 𝑖, mapping from

󳨀→𝑜𝑖 = 𝑜𝑖𝑡 to
action 𝑎𝑖;

(iv) 𝑔: the joint goal shared among agents;
(v) Υ: the observation function for recognizer, which is

defined as Υ : 𝑆 × 𝑌 → [0, 1];
(vi) 𝑌: the finite set of joint observations for recognizer;
(vii) 𝑍: the goal selection function, which is defined as 𝑍 :𝑆 × 𝐺 → [0, 1];
(viii) 𝐶: goal termination function, which is defined as 𝐶 :𝑆 × 𝐺 → [0, 1];
(ix) 𝐵: the initial goal distribution at 𝑡 = 0;
(x) 𝐷⃗: the set of time durations of actions, 𝐷 =⟨𝑑1, . . . , 𝑑𝑛⟩, where 𝑑𝑖 ∈ {0, 1, 2, . . .} and is a nature

number indicating additional time steps needed for
accomplishing agent 𝑖’s current action;

(xi) 󳨀󳨀→𝐴𝐸: set of action termination variables, 󳨀󳨀→𝐴𝐸 =⟨𝑎𝑒1, . . . , 𝑎𝑒𝑛⟩, where 𝑎𝑒𝑖 tells whether the agent 𝑖’s
current action is terminated.

In above definitions, 𝐸1 tells whether cooperative agents
would pursue the current goal 𝑔 in next time step or change it
according to goal selection function𝑍. 𝐷⃗would be computed
when new actions are taken according to (1) defined above. As
discussed above, 󳨀→𝐸2 indicates the on and off situation of each
action. It would be affected by both 𝐸1 and 𝐷⃗, which would
be further explained in following sections.

3.3. The DBN Structure. Essentially, the Dec-POMDM-T is a
dynamic Bayesian network, in which all causalities would be
depicted. In this section, we first introduce some subnetworks
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so as to explain their causal influences among different
variables, like joint goal, states, actions, time durations, and
termination variables. Based on that, a full DBN structure
depicting two time slices of Dec-POMDM-T is presented.

Figure 2 shows the subnetwork for joint goal in cooper-
ative missions. As shown in Figure 2(a), the full dependency
of the joint goal 𝑔𝑡+1 would include no more than original
goal 𝑔𝑡, goal termination variable 𝐺𝐸𝑡, and the current state𝑠𝑡 at time 𝑡. When𝐺𝐸𝑡 takes on 0 at time 𝑡, showing that joint
intention is not terminated, 𝑔𝑡+1 would remain the same as𝑔𝑡. While if 𝐺𝐸𝑡 takes on 1, agents would select another joint
goal according to goal selection function 𝑍 with 𝑍(𝑠, goal) =𝑝(goal | 𝑠). In our modified predator-prey scenario, it means
that predator team would change their joint target with the
consideration of their inner and outer situations.

Similarly, we also depict the subnetwork for action taking
by different agents in Figure 3. As shown in Figure 3(a), action
selection for agent 𝑖 at time 𝑡 + 1 would always be deter-
mined by the previous executing action 𝑎𝑖𝑡, action termina-
tion indicator 𝑎𝑒𝑖𝑡, observation 𝑜𝑖𝑡+1, and the joint goal 𝑔𝑡+1 at
time 𝑡 + 1. Different situations are described in Figure 3(b),
with agent 𝑖 continuing its action 𝑎𝑖𝑡 when 𝑎𝑒𝑖𝑡 = 0 and agent𝑗 taking new action 𝑎𝑗𝑡+1 based on 𝑜𝑗𝑡 and 𝑔𝑡+1 when 𝑎𝑒𝑖𝑡 = 1.
The action selection follows 𝜋󸀠𝑗 for agent 𝑗.

Further, the relationships for action time duration are
depicted in Figure 4. As it shows, the time duration 𝑑𝑖𝑡+1 for
action 𝑎𝑖𝑡+1 would be determined by 𝑑𝑖𝑡 according to 𝑝(𝑑𝑖𝑡+1 |𝑑𝑖𝑡) if 𝑎𝑒𝑖𝑡 = 0. While when 𝑎𝑒𝑖𝑡 = 1, indicating 𝑎𝑖𝑡 to

be terminated, a new 𝑑𝑖𝑡+1 would be computed by 𝑝(𝑑𝑖𝑡+1 |𝑎𝑖𝑡+1, 𝑜𝑖𝑡+1).
Other variables and their parameters are given as follows.

(i) Goal Termination Variable (𝐺𝐸𝑡). 𝐺𝐸𝑡 depends on 𝑔𝑡 and𝑠𝑡 with 𝑝(𝐺𝐸𝑡 | 𝑔𝑡, 𝑠𝑡).
(ii) ActionTerminationVariable (𝑎𝑒𝑖𝑡). 𝑎𝑒𝑖𝑡 depends on𝐺𝐸𝑡 and𝑑𝑖𝑡 with 𝑝(𝑎𝑒𝑖𝑡 | 𝐺𝐸𝑡, 𝑑𝑖𝑡).
(iii) Agent Observations (𝑜𝑖𝑡). 𝑜𝑖𝑡 is the reflection of real state𝑠𝑡−1 with 𝑝(𝑜𝑖𝑡 | 𝑠𝑡−1).
(iv) Recognizer Observations (𝑦𝑡). 𝑦𝑡 is the observation of
recognizers with 𝑝(𝑦𝑡 | 𝑠𝑡).

The full DBN structure of Dec-POMDM-T in two time
slices is presented in Figure 5.

For simplicity and clarity, a snapshot of only the agent 𝑖
in two time slices is presented in Figure 5, with its activities
being depicted using dashed frame in both slices. Detailed
relationships among variables have already been explained
in Figure 2 to Figure 5. Agents have no knowledge about
each other and make their decision based on individual
observations. Apparently, the DBN structure of the Dec-
POMDM-T is much more complex than previous works in
[3, 9, 33]. Compared to goal or plan recognition models with
hierarchical structures like AHMM [3] and SMDM [33], the
Dec-POMDM-T implicitly represents task decomposition
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and mission allocation in joint policies. While for models
[9] based on Dec-POMDP, the Dec-POMDM-T explicitly
models time duration of primitive actions.

4. Inference

Recognizing themultiagent joint goal is an inference problem
trying to find out the real joint goal behind agent actions
based on observations online. Essentially, this process is to
compute the distribution of joint goal 𝑔𝑡 given 𝑦𝑡, which is𝑝(𝑔𝑡 | 𝑦𝑡). It can be achieved either by accurate inference
methods or approximate ones. As we have already exhibited
the complexity of Dec-POMDM-T’s DBN structure in above
section, accurate inference of 𝑝(𝑔𝑡 | 𝑦𝑡) would be quite time
consuming and thus impractical inmanyRTS games. Besides,
accurate inference requires nearly perfect observations which
would also be impossible in RTS games permitting only
partially observable data using similar applications of war
fog.

Traditional methods like Kalman filter and HMM filter
usually rely on various assumptions to ensure mathematical
tractability. However, data in multiagent goal recognition

involves elements of non-Gaussianity, high-dimensionality,
and nonlinearity and thus preclude analytic solutions. As a
widely appliedmethod in sequential state estimation, particle
filter (PF) is a kind of sequential Bayesian filter based on
Monte Carlo simulations [35]. Unlike methods like extended
Kalman filter and grid-based filters, PF is very flexible, easy to
implement, and applicable in very general settings. Besides,
PF also has no restriction on types of system noises.

The working mechanism of classic particle filter is as
follows. The state space is partitioned as many parts, with
the particles being filled-in according to prior distribution
of states. The higher the probability or weight is, the denser
the particles are concentrated. All of particles evolve along
the time according to state transitions, reflecting the evolve-
ment of state estimation. The weights of particles would
then be updated and normalized. Further, particles are
resampled after a certain period as a countermeasure for
sample impoverishment. The above description is a standard
SIS (Sequential Importance Sampling) particle filter with
resampling, consisting of four steps, including initialization,
importance sampling, weight update, and particle resam-
pling.The essence of PF is to empirically represent a posterior
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distribution or density using a weighted sum of 𝑁𝑝 samples
drawn from the posterior distribution

𝑝 (𝑥𝑡 | 𝑦𝑡) ≈ 1𝑁𝑝
𝑁𝑝∑
𝑖=1

𝛿 (𝑥𝑡 − 𝑥(𝑖)𝑡 ) ≡ 𝑝 (𝑥𝑡 | 𝑦𝑡) , (2)

where 𝑥(𝑖)𝑡 are assumed to be 𝑖.𝑖.𝑑 drawn from 𝑝(𝑥𝑡 | 𝑦𝑡).
When 𝑁𝑝 is large enough, 𝑝(𝑥𝑡 | 𝑦𝑡) approximates the true
posterior distribution 𝑝(𝑥𝑡 | 𝑦𝑡). The importance weights𝑊(𝑖)𝑛 can be updated recursively:

𝑊(𝑖)𝑛 = 𝑝 (𝑥(𝑖)0:𝑡 | 𝑦0:𝑡)
𝑞 (𝑥(𝑖)0:𝑡 | 𝑦0:𝑡)

∝ 𝑊(𝑖)𝑛−1𝑝 (𝑦𝑡 | 𝑥
(𝑖)
𝑡 ) 𝑝 (𝑥(𝑖)𝑡 | 𝑥(𝑖)𝑡−1)

𝑞 (𝑥(𝑖)𝑡 | 𝑥(𝑖)0:𝑡−1, 𝑦0:𝑡) .
(3)

When the PF is applied in multiagent goal recognition
under the framework of Dec-POMDM-T, the set of particles

is defined as {𝑥(𝑖)𝑡 }𝑖=1:𝑁𝑝 , where 𝑥(𝑖)𝑡 = ⟨𝑔(𝑖)𝑡 , 𝐺𝐸(𝑖)𝑡 , 󳨀→𝑜(𝑖)𝑡 , 󳨀󳨀→𝑎(𝑖)𝑡 ,󳨀󳨀→𝑑(𝑖)𝑡 , 󳨀󳨀󳨀→𝑎𝑒(𝑖)𝑡 ⟩.𝑁𝑝 is the number of particles and the weight of 𝑖th
particle is𝑊(𝑖)𝑡 . As we use the simplest sampling, the 𝑞(𝑥(𝑖)𝑡 |𝑥(𝑖)0:𝑡−1, 𝑦0:𝑡) is set to be 𝑝(𝑥(𝑖)𝑡 | 𝑥(𝑖)𝑡−1). And as the observation𝑦𝑡 only depends on 𝑠𝑡, the importance weight 𝑊(𝑖)𝑡 can be
updated by

𝑊(𝑖)𝑡 = 𝑊(𝑖)𝑡−1 ⋅ 𝑝 (𝑦𝑡 | 𝑠𝑡) . (4)

The detailed procedure of multiagent goal recognition under
the framework of the Dec-POMDM-T is given in Algo-
rithm 1.

Four classic components of the SIS PF with resampling
are all present in Algorithm 1, with particle initialization from
line (2) to line (4), sequential importance sampling from line
(6) to (25), weight updating and normalizing from line (26)
to (29), and particle resampling in line (30). The joint goal
sampling in line (10) follows 𝑔(𝑖)𝑡 ⋅ 𝑝(𝑔(𝑖)𝑡 | 𝑔(𝑖)𝑡−1, 𝑠(𝑖)𝑡 ). The
observation for agents follows ⃗𝑜(𝑖)𝑡 ⋅ 𝑝( ⃗𝑜(𝑖)𝑡 | 𝑠(𝑖)𝑡−1) as in line (12).
The joint goal termination samples are from𝐺𝐸(𝑖)𝑡 ⋅𝑝(𝑔(𝑖)𝑡 | 𝑠(𝑖)𝑡 )
in line (13). Time duration for action 𝑎(𝑖)(𝑗)𝑡 would be updated
following 𝑑(𝑖)(𝑗)𝑡 ⋅ 𝑝(𝑑(𝑖)(𝑗)𝑡 | 𝑑(𝑖)(𝑗)𝑡−1 ) in line (17).

Also, action changes would be sampled from 𝑎(𝑖)(𝑗)𝑡 ⋅𝑝(𝑎(𝑖)(𝑗)𝑡 | 𝑔(𝑖)𝑡 , 𝑜(𝑖)(𝑗)𝑡 ) in line (19). Compute the action time
duration of 𝑎(𝑖)(𝑗)𝑡 following 𝑑(𝑖)(𝑗)𝑡 ⋅ 𝑝(𝑑(𝑖)(𝑗)𝑡 | 𝑎(𝑖)(𝑗)𝑡 , 𝑜(𝑖)(𝑗)𝑡 ) as
in line (20). Further, sample the action termination following𝑎𝑒(𝑖)(𝑗)𝑡 ⋅ 𝑝(𝑎𝑒(𝑖)(𝑗)𝑡 | 𝐺𝐸(𝑖)𝑡 , 𝑑(𝑖)(𝑗)𝑡 ) in line (22). Each agent per-
forms its action and changes the states accordingly. In the
resampling process, the algorithmfirst calculates 𝑁̂eff accord-
ing to

𝑁̂eff = 1
∑𝑁𝑝𝑖=1 (𝑊̃(𝑖)𝑡 )2 . (5)

The resampling process returns if 𝑁̂eff > 𝑁𝑇, where 𝑁𝑇
is the predefined threshold which could be 𝑁𝑝/3 or 𝑁𝑝/2;

otherwise generate a new particle set {x(𝑖)𝑡 } by resamplingwith
replacement of 𝑁𝑝 times from the previous set {x(𝑖)𝑡−1} with
probabilities 𝑊̃(𝑖)𝑡 , and then reset the weights to 1/𝑁𝑝.
5. Experiments

5.1. The Modified Predator-Prey Problem. In this paper, a
modified predator-prey problem [9] is used. Compared to
the classic one, the modified one has more than one prey for
more than one predator to catch. This gives the test bed for
evaluating our multiagent goal recognition algorithm based
on Dec-POMDM-T. Our aim is to recognize the real target of
predators based on noisy observations.

Figure 6 shows the 5m × 5m map and the predator’s
observationmodel inmodified predator-prey problem.There
are two predators and two preys on the map, denoted by red
triangle and blue diamond, respectively. Predators establish a
joint goal by choosing one of the prey and work cooperatively
to capture it. The predator’s observation model has also been
explained in Figure 6. As we know, agents using tactical
sensors in RTS games usually have a noisy and partial obser-
vation.They know exactly what is happening around, but the
information quality drops when the distance gets larger. This
degeneration process is simplymodeled by the red circle with
its radius set to 2m inFigure 6. Further, we use several vertical
and horizontal lines to separate cardinal directions intoN,NE,
E, SE, S, SE, W, and NW, respectively. The directions inside
the circle are denoted by “direction 1,” while those outside are
denoted by “direction 2.” Thus the example in our 5m × 5m
map is as follows. According to Predator A’s observation, Prey
B is close to it and locates in SE 1 while Prey A and Predator
B each locates in NW 2 and S 2. Predator B, however, has a
clear sight of Prey B in the near northeast NE 1, while Prey
A and Predator A are all in a relatively far direction of NW 2
and N 2. All agents can move in four directions (north, east,
south, and west) or stay at the current position. Rules are set
to prevent agents frommoving out of the map.The joint goal
would be achieved when both of predators have less than 0.5-
meter distance with their target. Predators’ target, or joint
goal, could be changed halfway. The observation model for
the recognizer is that it can have exact positions of preys
while getting noisy observation of predators. Our purpose is
to compute the posterior distribution of predators’ joint goal
using observation traces.

Some important definitions in Dec-POMDM-T under
this scenario are as follows.

(i) 𝐼: the two predators;
(ii) 𝑆: the positions of predators and preys;
(iii) 𝐴: five actions for predators with moving in 4 direc-

tions and staying still;
(iv) 𝐺: Prey A or Prey B;
(v) Ω: the directions of agents faraway and exact positions

of agents nearby;
(vi) 𝑌: the real positions of prey and noisy positions of

predators;
(vii) ℎ: planning horizon.
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Input: particle number𝑁𝑝, agent team size𝑁𝐴, resampling threshold𝑁𝑇.
(1) Set time steps 𝑡 = 1.
(2) For 𝑖 = 1, . . . , 𝑁𝑝
(3) sample 𝑥(𝑖)𝑡 ⋅ 𝑝(𝑥𝑡), and set𝑊(𝑖)𝑡 = 1/𝑁𝑝. % Initialization
(4) End For
(5) For 𝑡 = 2, 3, . . .
(6) For 𝑖 = 1, . . . , 𝑁𝑝
(7) If GE(𝑖)𝑡−1 = 0 % Check if joint goal terminate
(8) 𝑔(𝑖)𝑡 ← 𝑔(𝑖)𝑡−1.
(9) Else
(10) 𝑔(𝑖)𝑡 ← SampleJointGoal(𝑔(𝑖)𝑡−1, 𝑠(𝑖)𝑡 ).
(11) End If
(12) ⃗𝑜(𝑖)𝑡 ← Observe(𝑠(𝑖)𝑡−1).
(13) GE(𝑖)𝑡 ← SampleGoalTerminate(𝑠(𝑖)𝑡 ).
(14) For 𝑗 = 1, . . . , 𝑁𝐴
(15) If 𝑎𝑒(𝑖)(𝑗)𝑡−1 = 0
(16) 𝑎(𝑖)(𝑗)𝑡 ← 𝑎(𝑖)(𝑗)𝑡−1 .
(17) 𝑑(𝑖)(𝑗)𝑡 ← TimeDurationUpdate(𝑑(𝑖)(𝑗)𝑡−1 ).
(18) Else
(19) 𝑎(𝑖)(𝑗)𝑡 ← SampleActionChange(𝑔(𝑖)𝑡 , 𝑜(𝑖)(𝑗)𝑡 ).
(20) 𝑑(𝑖)(𝑗)𝑡 ← ComputeTimeDuration(𝑎(𝑖)(𝑗)𝑡 , 𝑜(𝑖)(𝑗)𝑡 ).
(21) End If
(22) 𝑎𝑒(𝑖)(𝑗)𝑡 ← SampleActionTermination(𝐺𝐸(𝑖)𝑡 , 𝑑(𝑖)(𝑗)𝑡 ).
(23) End For
(24) 𝑠(𝑖)𝑡 ← Perform(𝑠(𝑖)𝑡 , ⃗𝑎(𝑖)𝑡 ). % Action Perform
(25) End For
(26) For 𝑖 = 1, . . . , 𝑁𝑝
(27) Calculate the importance weights𝑊(𝑖)𝑡 = 𝑊(𝑖)𝑡−1 ⋅ 𝑝(𝑦𝑡 | 𝑠𝑡)
(28) End For
(29) 𝑊𝑡 ← Normalize(𝑊𝑡). % Weight normalization
(30) Calculate 𝑁̂eff , return if 𝑁̂eff > 𝑁𝑇; otherwise resampling
(31) End For

Algorithm 1: Multiagent joint goal inference based on SIS PF with resampling under Dec-POMDM-T.

5.2. Experiment Settings. In this section, we provide param-
eter settings in scenarios, policy learning, and goal inference
algorithm.

5.2.1. Scenario. Preys have no decision-making ability. They
are senseless and select all five actions randomly. The initial
positions of agents are randomly generated. The initial goal
distribution is set to be 𝑝(𝑔0 = Prey A) = 0.6 and 𝑝(𝑔0 =
Prey B) = 0.4. As the map is 5m × 5m, we set the moving
speed to 0.5m/step.

The goal termination function is simplified in the fol-
lowing way. If predators capture their target, then the goal
is achieved; otherwise the predator team would change their
joint goal with a probability of 0.05 for every time step.

At each time step, the recognizer has half a chance of
getting each predator’s true position, with the other half
chance being of getting noisy positions:

NoisyPosition = TruePosition + Directions {𝑖} × 𝐻, (6)

where 𝐻 and Directions = {[1, 0], [1, −1], [0, −1], [−1, −1],[−1, 0], [−1, 1], [0, 1], [1, 1]} each represents the vibration
strength of observation noise and its 8 possible directions.

5.2.2. Policy Learning. Under the assumption of agents’
rationality, the paper applies a model-free MARL algorithm,
named cooperative colearning based on Sarsa, in learning
agent’s optimal policy. The core idea of the algorithm is to
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Figure 6: The 5m × 5m map and predators’ observation model in predator-prey problem.

choose at each step a subgroup of agents and update their
policies to optimize the task, given the fact that the rest of
the agents have fixed plans; then, after a number of iterations,
the joint policies can converge to Nash equilibrium.

Thediscount factor𝜆 is set to 0.8. And the predator selects
an action 𝑎𝑖 given the observation 𝑜𝑖𝑡 with a probability

𝑝 (𝑎𝑖 | 𝑜𝑖𝑡) = exp (𝑄 (𝑜𝑖𝑡, 𝑎𝑖) /𝛽)
∑5𝑖=1 exp (𝑄 (𝑜𝑖𝑡, 𝑎𝑖) /𝛽) , (7)

where 𝛽 = 0.1 is the Boltzmann temperature. We set 𝛽 > 0 as
a constant, which means that predators would always select
approximately optimal actions. In our scenarios, the 𝑄-value
would converge after 750 iterations. In the learning process, if
predators cannot achieve their goal in 5000 steps, the process
would be reset.

5.2.3. Goal Inference. In our multiagent joint goal inference
algorithm based on SIS PF with resampling, we set particle
number𝑁𝑃 according to experiment needs.We alsomake the
resampling threshold 𝑁𝑇 equal to one-third of the particle
number𝑁𝑃.
5.3. Experiment Results and Discussion. The paper first
retrieves the agents’ optimal policies using MARL algorithm.
Based on that, we run the agent decision model repeatedly
and collect a test dataset consisting of 100 labeled traces. After
analyzing the dataset, we find that there are on average 28.05
steps in one trace, and the number of steps in one trace varies
from 16 to 48, respectively, with a standard deviation of 9.24.
Also we find that among 100 traces, there are approximately

Table 1: The details of two traces.

Trace Number Durations Targets Goal interrupted

1 𝑡 ∈ [1, 22] Prey B Yes𝑡 ∈ [23, 28] Prey A No
13 𝑡 ∈ [1, 22] Prey B No

60% traces where predators changed their joint goal for at
least once halfway, 27%where goals are changed at least twice,
and 15% where goals changed greater than or equal to three
times.The statistics above almost cover all situations we need
in validation of our method.

Based on the test dataset, we did our experiments on
three aspects: (a) to discuss details of the multiagent goal
recognition, present and analyze results of two specific traces,
and testify to the ability of our method in recognizing
dynamic changing goals; (b) to compare the performance of
joint goal recognition underDec-POMDM-T framework and
that of Dec-POMDM [9] in terms of precision, recall, and 𝐹-
measure; (c) to show the effectiveness of our multiagent goal
inference method based on SIS PF with resampling.

5.3.1. Goal Recognition of Specific Traces. To show the details
of the recognition results, we select two specific traces from
the dataset (Trace Number 1 and Number 13). These two
traces are selected because Trace Number 1 is the first trace
where the goal is changed before it is achieved, while Number
13 is the first trace where the goal is kept until it is finally
achieved. The detailed information is shown in Table 1.

Given the optimal policies and other parameters of the
Dec-POMDM-T including 𝐼, 𝑆, 𝐴, 𝐺,Ω, 𝑌, and ℎ, we used the
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Figure 7: Recognition results of two specific traces under the Dec-POMDM-T.

SIS PF with resampling to compute the posterior distribution
of goals at each time. In Trace Number 1, predators first
selected Prey B as their joint goal from 𝑡 = 1 to 𝑡 = 22. As
the initial distribution of goal Prey A and Prey B was set to
be 0.6 and 0.4, the blue line which represents the probability
of agents pursuing Prey B started from 0.4. It then rose up
as more evidence came in and finally overran the red line
at 𝑡 = 4. This trend continued with occasional bumps until
predators changed their goals at 𝑡 = 23. As the joint goal
had been changed to Prey A, the red line reacted fast between
time step 𝑡 = 24 and 𝑡 = 25. Finally, agents achieved their
goal at 𝑡 = 28. Trace Number 1 proves the effectiveness of our
method in recognizing dynamic changing goals.

In Trace Number 13, predators selected Prey B as their
initial goal. The goal was kept until it was achieved at 𝑡 = 22.
From Figure 7(b) we can see that, our method reacted very
fast to observation information, and the probability of Prey B
as the joint goal rose directly from no more than 0.4 towards
0.9 at 𝑡 = 3. This high confidence continued and stayed at
almost 1 along the whole recognition process. Besides, the
algorithm in Figure 7(b) shows its ability in reaching early
convergence point for multiagent joint goal recognition.

5.3.2. Comparison of the Dec-POMDM-T and Dec-POMDM.
As stated above, the performance comparisons are made in
terms of three classic metrics in goal recognition domain,
which are precision, recall, and 𝐹-measure [36]. They are
computed as

precision = 1𝑁
𝑁∑
𝑖=1

TP𝑖
TI𝑖

recall = 1𝑁
𝑁∑
𝑖=1

TP𝑖
TT𝑖

𝐹-measure = 2 ⋅ precision ⋅ recall
precision + recall

,
(8)

where 𝑁 is the number of possible goals. TP𝑖, TI𝑖, and
TT𝑖 are the true positives, total of true labels, and total of
inferred labels for class 𝑖, respectively. Formulas (8) show
that, precision is used to scale the reliability of the recognized
results; recall is used to scale the efficiency of the algorithm
applied in the test data set; and 𝐹-measure is an integration
of precision and recall. We can find that the value of all these
metrics will be between 0 and 1, and a higher metric means
a better performance. In order to solve the problem of traces
having different lengths, the paper defines a positive integer𝑘 (𝑘 = 1, 2, . . . , 5). The corresponding observation sequences
are {𝑦𝑗∈1 : 100

𝑡∈1:⌈𝑘∗length𝑗/5⌉
}. Here, 𝑦𝑗

𝑡∈1:⌈𝑘∗length𝑗/5⌉
is the observation

sequence from time 1 to time ⌈𝑘 ∗ length𝑗/5⌉ of the 𝑗th
trace; the length𝑗 is the length of the 𝑗th trace. The metrics
under different 𝑘 show the models’ performance in different
simulation phases.

It is obvious in Figure 8 that the performance of Dec-
POMDM-T was much better than Dec-POMDMwhen more
observations were received. Specifically, all the three metrics
of the Dec-POMDM-T had exceeded 0.75 when more than
half of traces had been observed at 𝑘 ≥ 3. The Dec-POMDM,
however, did not perform that well in all three.This is mainly
because Dec-POMDM has no definition of action durations.
As predators will not select actions in every time step, the
filtering process of Dec-POMDM would usually fail.

5.3.3. Effectiveness of Multiagent Goal Inference Based on SIS
PF with Resampling. In this section, we test the effectiveness
of our multiagent goal inference based on SIS PF with
resampling. In Figure 9, we first give the changing patterns
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Figure 8: Three metrics of Dec-POMDM-T and Dec-POMDM (𝑁𝑝 = 6000).

of variances for above-mentioned two specific traces. The
weighted variances at time 𝑡 are computed by

Var𝑡 = 𝑛∑
𝑖=1

𝑤𝑖𝑡 (𝑔𝑖𝑡 − 𝑔𝑡) (𝑔𝑖𝑡 − 𝑔𝑡)𝑇 , (9)

where 𝑤𝑖𝑡 is the weight of particle 𝑥𝑖𝑡 and 𝑔𝑡 is the estimated
goal distribution in 𝑥𝑖𝑡. From Figure 9, it is obvious that all
variances of two traces had large values at the beginning and
they would all be affected by noisy observations or obser-
vations containing vague information. Then they dropped
with more information coming in. The variance for Trace
Number 13 in Figure 9(b) dropped continually along the
recognition process with several small up and downs as of
reasons above. Similar situations happened in Trace Number

1 in Figure 9(a). However, its variance rose up dramatically
when agents changed their joint goal halfway. This happened
at 𝑡 = 23, as shown in Table 1, and thus pushed up the variance
to more than 0.4. Finally, the curve dropped down fast to less
than 0.05 within 3 time steps and now the estimated goal was
changed from Prey B to Prey A.

We also conduct experiments on variance using goal
inference algorithm with different particle numbers. The
difference between the red and blue lines is that the former
exploits 4000 particles while the latter 8000.The results show
that variances are not sensitive to the particle number of PF
algorithm. It can get good performance with a few particles.

As a common problem in PF algorithms, particles may
not survive till the end of goal recognition process as their
number is not enough. In this scenario when 𝑁𝑝 ≤ 1000,
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Figure 9: Variances of Traces Number 1 and Number 13 (𝑁𝑝 = 4000, 8000).
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Figure 10: The average failure rate and time cost with different numbers of particles.

the goal inference algorithm may suffer from serious failure.
To view the specific effects of it, we ran the test dataset for
10 times with different numbers of particles. The average
failure rates are shown in Figure 10(a) and also summarized
in Table 2. Two more rates when the numbers of particles is
equal to 4000 and 6000 are also given in Table 2. Obviously,
average failure rate drops significantly as the particle number
gets larger.

The time cost with different particle numbers is shown in
Figure 10(b). The program was written in Matlab script and
ran in computer with an Intel Core i7-4770 CPU (3.40GHz).
We can see that time cost would increase as we expand

particle population. Consider the considerably long effects
of agent intention; this approximate inference method would
still be applicable under certain combination of parameter
settings. Further, we also compare the precision, recall, and𝐹-measure under different number of particles as in Figure 11.

In Figure 11, the red, blue, cyan, green, and magenta
dashed curves indicate the metrics of SIS PF with resampling
each with 1000, 2000, 4000, 6000, and 16000 particles,
respectively. The PF with the largest particle number, having
all metrics reaching to almost 0.9 at last, performed best than
the remaining ones. Filters with numbers 4000 and 6000
had similar trends along the process and came even closer at
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Figure 11: Three metrics of the recognition results with different particle numbers.

last, while filters with numbers 1000 and 2000 performed the
worst as of being short of particles.

6. Conclusions

In this paper, we propose a novel model for solving multi-
agent goal recognition problems, the Dec-POMDM-T, and
present its corresponding learning and inference algorithms,
which solve a multiagent goal recognition problem. First,
we use the Dec-POMDM-T to model the general multiagent
goal recognition problem. The Dec-POMDM-T presents the
agents’ cooperative behaviors in a compact way, and thus the
cooperation details are unnecessary in the modeling process.

It can also make use of existing algorithms for solving the
Dec-POMDP problem. Then we use the SIS particle filter
with resampling to infer goals under the framework of the
Dec-POMDM-T. Last, we also design a modified predator-
prey problem to test our method. In this modified problem,
there are multiple possible joint goals and agents may change
their goals before they are achieved. Experiment results show
that (a) Dec-POMDM-T works effectively in multiagent goal
recognition and adaptswell to dynamic changing goalswithin
agent group; (b) Dec-POMDM-T outperforms traditional
Dec-MDP-basedmethods in terms of precision, recall, and𝐹-
measure. In the future, we plan to apply the Dec-POMDM-T
in more complex scenarios.
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Table 2: The average failure rates with different numbers of
particles.

Particle numbers Average failure rates
100 66%
200 54%
300 50%
400 38%
500 33%
600 28%
700 26%
800 25%
900 23%
1000 19%
4000 8%
6000 2%
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