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Long noncoding RNA (lncRNA) is a kind of noncoding RNA with length more than 200 nucleotides, which aroused interest of
people in recent years. Lots of studies have confirmed that human genome contains many thousands of lncRNAs which exert great
influence over some critical regulators of cellular process. With the advent of high-throughput sequencing technologies, a great
quantity of sequences is waiting for exploitation. Thus, many programs are developed to distinguish differences between coding
and long noncoding transcripts. Different programs are generally designed to be utilised under different circumstances and it is
sensible and practical to select an appropriate method according to a certain situation. In this review, several popular methods
and their advantages, disadvantages, and application scopes are summarised to assist people in employing a suitable method and
obtaining a more reliable result.

1. Introduction

Long noncoding RNAs (lncRNAs), one of the most poorly
understood but also the most common RNA species,
are those noncoding transcripts with length more than
200 nucleotides. Initially, people classified noncoding RNA
(ncRNA) genes as “junk gene” or transcriptional “noise”
[1]. Nonetheless, researchers found that about 70% of the
genome is transcribed in various contexts and cell types [2, 3],
about 80% of the genome has biochemical functions [4], and
many DNAs code for RNAs as the end products instead of
proteins [5]. LncRNAs are involved in a wide range of cellular
mechanisms such as the regulation of genome activity [6],
histone modifications [7, 8], and DNA methylation [9]. In
addition, lots of studies have demonstrated that lncRNAs
have a significant role in diverse biological processes; thus
lncRNAs are especially important to the studies of human
biology and diseases [10]. For example, in prostate cancer
of human, lncRNA SChLAP1 and chromatin remodelling

complex SWI/SNF have opposing roles. SchLAP1 has an
interaction with the SNF5 subunit of SWI/SNF and inhibits
binding of SWI/SNF to chromatin, which leads to genome-
wide derepression of gene activity [11]. Moreover, aber-
rant expression of lncRNAs in cancer can be regarded as
biomarkers and therapeutic targets because of its extremely
specific expression [6]. The LncRNADisease database now
integrates more than 1000 lncRNA-disease entries and 475
lncRNA interaction entries, which suggested that lncRNAs
are associated with diseases closely [12].

Since lncRNAs so closely interact with diseases, many
lncRNA-disease association detection tools are invented.
Assuming that lncRNAs with similar functions tend to
associate with similar diseases, a semisupervised method,
Laplacian Regularized Least Squares for LncRNA-Disease
Association (LRLSLDA) [13], was developed; this tool dis-
plays a satisfying result and needs no negative samples.
Nonetheless, this method is facing the problems of parameter
selection and classifier combination. The principal idea of
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LRLSLDA, as mentioned above, is to measure the functional
similarity of lncRNAs, which means that the performance of
similarity calculation model largely determines the perfor-
mance of associationmodel.The similarity calculationmodel
of LRLSLDA is LFSCM (LncRNA Functional Similarity
Calculation based on the information of MiRNA) which is
based on lncRNA-miRNA interactions and miRNA-disease
associations. In 2015, novel lncRNA functional similarity
calculation models (LNCSIM) [14] were provided by Chen
et al. By integrating LRLSLDA and LNCSIM, the perfor-
mance was enhanced. Recently, a new lncRNA functional
similarity calculation model, FMLNCSIM (Fuzzy Measure-
Based LncRNA Functional Similarity Calculation Model)
[15], has been developed; this new model has a web interface
(http://219.219.60.245/) for users’ convenience. Considering
that nowadays the experimentally confirmed data of miRNA-
disease associations are much easier to obtain than the ones
of lncRNA-disease, Chen [16] utilised the miRNA-disease
association and miRNA-lncRNA interaction to identified
lncRNA-disease association.This method (HGLDA) circum-
vents the utility of LncRNADisease database but still presents
the desired results. Currently, many other tools, such as
RWRlncD [17] and RWRHLD [18], were designed aiming at
predicting lncRNA-disease association and obtaining more
reliable results. Unfortunately, they have their own limitations
[16]. As the titles of these methods implied, RWRlncD
and RWRHLD mainly predict the association by utilising
Random Walk with Restart (RWR). RWRlncD can only
be applied to the case that lncRNAs have known related
diseases and RWRHLD cannot deal with the circumstance
that lncRNAs have unknown lncRNA-miRNA interactions.
Another method, Improved Random Walk with Restart for
LncRNA-Disease Association (IRWRLDA) [19], is also based
on RWR, but IRWRLDA can predict the associations even
when diseases show no known related lncRNAs.

Research [20] has illustrated the lncRNA-disease asso-
ciation extensively and comprehensively. Basically, there are
three approaches to performing lncRNA-disease association
prediction [20]: to train a model based on machine learning
algorithm; to construct a heterogeneous network; or to
integrate lncRNA-miRNA interactions and miRNA-disease
associations. Currently, researches have acknowledged that
it is imperative to analyse the role of lncRNAs in many
diseases especially cancer, but the first step and funda-
mental work is how to discriminate lncRNAs from genes.
With the rapid development of next-generation sequencing
technologies, thousands and thousands of transcriptomes
have been discovered, which furnished us with more and
more useful information on ncRNAs. Meanwhile, many
ncRNAs identification approaches have been developed to
facilitate the researches and analyses. Each kind of ncRNA
has its own prediction tools such as tRNAscan-SE (1997)
[21] and tRNA-Predict (2015) [22] for transfer RNA (tRNA)
identification; mirnaDetect (2014) [23] and imDC (2015) [24]
for microRNA (miRNA) prediction; and RNAmmer (2007)
[25] for ribosomal RNA (rRNA) discrimination. Both tRNA-
Predict and mirnaDetect are constructed with the features of
secondary structure and codon-bias. The method imDC is
an algorithm of ensemble learning to deal with imbalanced

data and is applied to miRNA classification. The research
area of ncRNA is fast growing. However, it is still a challenge
to distinguish lncRNAs from protein-coding genes in that
lncRNAs share many features similar to mRNAs. Moreover,
the incomplete transcripts or genes poorly annotated or
containing sequencing errors also thwart the discrimination
and functional inference. During the last ten years, many
efforts on lncRNA identification have been made and many
approaches have been developed to make a more accurate
discrimination. Several studies [26, 27] have summarised and
reviewed the approaches of ncRNAs identification and anal-
ysis, but a few report the discussion of lncRNAs prediction
methods.Wang et al. [26] discussed several ncRNA detection
methods based on homology information and common
features. Different approaches aiming at detecting different
kinds of ncRNAs are presented and an overview of some
useful tools was given, yet no analysis on application scopes
was provided. Hence, the summary of these methods is more
theoretical than practical. Veneziano et al. [27] summarised
some computational approaches of ncRNA analysis based
on deep sequencing technology. Some lncRNA prediction
tools were discussed briefly butmany other helpful tools were
excluded.

In this paper, we mainly focus on the tools for lncRNA
identification. The aim of this paper is to summarise the
popular algorithms of lncRNA identification and to assist
researchers in determining which method is more appro-
priate for their purpose. Here, comprehensive analyses and
discussions of these tools were provided. Then, we compared
several popular machine learning based methods, including
Coding Potential Calculator (CPC) [28], Coding Potential
Assessment Tool (CPAT) [29], Coding-Non-Coding Index
(CNCI) [30], predictor of long noncoding RNAs and mes-
senger RNAs based on an improved k-mer scheme (PLEK)
[31], Long noncodingRNA IDentification (LncRNA-ID) [32],
and lncRScan-SVM [33]. In addition, lncRNA-MFDL [34]
and LncRNApred [35], two artificial neural network- (ANN-)
involved tools, are also introduced in this paper. However, the
provided access link of lncRNA-MFDL has been forbidden;
LncRNApred often throws errors while handling massive-
scale data which can be processed by CPC andCPAT success-
fully. Thus, we only briefly introduce the algorithms of the
classification model but omit the discussions of application
scope. We expect that this review can be a practical manual
when readers conduct lncRNA identification researches.

CPC (2007) is used to assess the protein-coding potential
of transcripts with high accuracy and speed [28]. However,
with the emergence of new programs, speed is scarcely
considered as amerit.The features of CPC can be divided into
two categories.The first one is based on the extent and quality
of the Open Reading Frame (ORF), and the other category is
derived from BLASTX research. The authors employed the
LIBSVM package to train support vector machine (SVM)
model with the standard radial basis function kernel [36].

CPAT (2013) is another protein-coding potential assess-
ment tool based on the model of logistic regression. The
selected features include the quality of the ORF, Fickett
Score, and hexamer score. Fickett Score is used to evaluate
each base’s unequal content frequency and asymmetrical
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Table 1: Overview of the methods concerning lncRNA identification.

Published year Testing datasets Training species Model Query file format Web interface
CPC 2007 ncRNA∗ Eukaryotic SVM FASTA Yes
CPAT 2013 lncRNA∗ Human; mouse; fly; zebrafish LR BED; FASTA Yes
CNCI 2013 lncRNA Human; plant SVM FASTA; GTF No
PLEK 2014 lncRNA Human; maize SVM FASTA No
lncRNA-MFDL 2015 lncRNA Human DL 𝑈𝑛𝑘𝑛𝑜𝑤𝑛∗∗ 𝑈𝑛𝑘𝑛𝑜𝑤𝑛∗∗
LncRNA-ID 2015 lncRNA Human; mouse RF BED; FSATA No
lncRScan-SVM 2015 lncRNA Human; mouse SVM GTF No
LncRNApred 2016 lncRNA Human RF FASTA Web only
Testing datasets denote that one specific method is developed to discriminate ncRNAs or lncRNAs from protein-coding transcripts. The classification model
of CPC, CNCI, PLEK, and lncRScan-SVM is support vector machine (SVM); CPAT employs logistic regression (LR); LncRNA-ID and LncRNApred utilise
random forests (RF) and lncRNA-MFDL uses deep stacking networks (DSNs) of deep learning (DL) algorithm.
∗Note that the most popular tool CPC is trained and tested on datasets of ncRNAs and protein-coding transcripts. The training datasets of CPAT are also
ncRNAs and protein-coding transcripts, though test on lncRNAs for CPAT is conducted and achieved a higher accuracy.
∗∗The access link of lncRNA-MFDL has expired; thus, we cannot verify the information that the original paper failed to mention.

distribution in the positions of codons in one sequence.
Hexamer score is mainly based on the usage bias of adjacent
amino acids in proteins.

CNCI (2013) is a classifier to differentiate protein-coding
and noncoding transcripts by profiling the intrinsic compo-
sition of the sequence. According to the unequal distribution
of adjoining nucleotide triplets (ANT) in two kinds of
sequences, a 64 ∗ 64 ANT Score Matrix is constructed to
evaluate the sequence and the sliding window is used as a
supplement to achieve a more robust result [30]. ANT bears
some similarities to the hexamer score of CPAT, but much
more comprehensive and intricate analysis was conducted
to facilitate the incomplete transcripts classification. The
classification model of CPAT is SVM with a standard radial
basis function kernel.

PLEK (2014) uses k-mer scheme and sliding window to
analyse the transcripts. For multiple species, PLEK does not
have too many advantages over CNCI on testing data of
normal sequence. Nevertheless, compared with PLEK, the
results of CNCI will deteriorate when the sequence contains
some insert or deletion (indel) errors. These errors are very
common in today’s sequencing platforms. The classification
model of PLEK is SVM with a radial basis function kernel.

LncRNA-ID (2015) has 11 features which can be cate-
gorized according to ORF, ribosome interaction, and the
conservation of protein. The first category is similar to the
ORF features in CPC and CPAT. The foundation of the
second feature category is the interactions between mRNAs
and ribosomes during protein translation since some studies
displayed that lncRNAs can be associated with ribosomes
[37, 38] but do not show the release of ribosomes [39]. The
profile hidden Markov model-based alignment is used to
assess the conservation of protein. The classification model
of LncRNA-ID is improved using random forest which assists
LncRNA-ID effectively in handling imbalanced training data.

Some tools are initially designed to predict ncRNAs but
can also be applied to lncRNAs prediction, such as Phyloge-
netic Codon Substitution Frequencies (PhyloCSF, 2011) [40]
and RNAcon (2014) [41]. Based on nucleotide substitutions
and formal statistical comparison of phylogenetic codon

models [40], PhyloCSF utilises multiple sequence alignments
to find conserved protein-coding regions. As an alignment-
basedmethod, PhyloCSF entails high-quality alignments and
suffers from low efficiency. RNAconmainly predicts ncRNAs
utilising k-mer scheme. Based on graph properties [41, 42],
RNAcon can also perform ncRNAs classification and classify
different ncRNA classes.

Some methods are especially developed for long inter-
genic noncoding RNAs (lincRNAs, one subgroup of lncR-
NAs) classification, such as iSeeRNA (2012, web server and L
inux binary package available at http://137.189.133.71/iSeeRN/
index.html) [43] and LincRNA Classifier based on selected
features (linc-SF, 2013) [44]. iSeeRNA built a SVM model
with three feature groups: ORF; adjoining nucleotides fre-
quencies (GC, CT, TAG, TGT, ACG, and TCG); and con-
servation score obtained from Phast [45]. The classifier of
linc-SF evaluates the sequences with the criteria of sequence
length, GC content, minimum free energy (MFE), and k-mer
scheme.

2. Details of the Methods

In this part, we will discuss the machine learning models
and the selected features of each method more specifically.
Firstly, for users’ convenience, some brief information of each
method is displayed in Table 1 and the details of using are
summarised.Then the details of eachmethod are provided in
the following. Table 2 is a summary about the features selected
by each method.

2.1. Details of Using. CPC can be downloaded fromhttp://cpc
.cbi.pku.edu.cn/download/. CPC has a user-friendly web
interface at http://cpc.cbi.pku.edu.cn/programs/run cpc.jsp.
Documents and User Guide are provided at the web-
site. To run CPC on a local PC, a comprehensive pro-
tein reference database is required and users can down-
load it from ftp://ftp.ncbi.nlm.nih.gov/blast/db/ or ftp://ftp.
uniprot.org/pub/databases/uniprot/uniref/uniref90/. About
20 gigabytes (GB) of free space is also needed for storing the
protein reference database.
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Table 2: Summary of the features of each method selected.

ORF Codon Sequence structure Ribosome
interaction Alignment Protein

conservation

CPC Quality; coverage;
integrity No No No BLASTX

Number and𝐸-value of hits;
Distribution of

hits

CPAT Length;
coverage

Hexamer
Frequency

Content of the
bases

Position of the
bases

No No No

CNCI No ANT matrix;
Codon-bias MLCDS No No No

PLEK No No Improved k-mer
scheme No No No

lncRNA-
MFDL

Length;
coverage No

k-mer scheme
Secondary
structure
MLCDS

No No No

LncRNA-ID Length;
coverage No Kozak motif

Ribosome release
signal

Changes of binding
energy

Profile HMM
based alignment

Score of
HMMER

Length of the
profile

Length of aligned
region

lncRScan-
SVM No Distribution of

stop codon

Score of
txCdsPredict;
length of
transcripts;

length and count of
exon

No Phylo-HMM
based alignment

Average
PhastCons scores

LncRNApred Length;
coverage No

Length of the
sequence;

signal to noise
ratio;

k-mer scheme;
G + C content

No No No

All features are categorized into six groups according to the similarity or basic principles. Thus, some items in the table might not be exactly in one-to-one
correspondence with the feature names given in the corresponding published references.

CPAT is also available both for download and as a web-
server. Users can obtain the latest resource code from https://
sourceforge.net/projects/rna-cpat/files/?source=navbar. Pre-
releases, tutorial files, and examples are also supplied on
the pages. CPAT requires Python 2.7.x; numpy; cython; and
R when running offline. The web server is available at
http://lilab.research.bcm.edu/cpat/index.php.

CNCI can be downloaded at https://github.com/www-
bioinfo-org/CNCI. Version 2 is updated on Feb 28, 2014.
Setup and running steps are attached on the websites.
Libsvm-3.0 has been enclosed in the package. Other addi-
tional files can be downloaded at http://www.bioinfo.org/np/.

PLEK was implemented by C and Python. The source
code can be freely downloaded from https://sourceforge.net/
projects/plek/files/. Several videos to assist user in utilising
PLEK correctly are also provided. Python 2.7.x is required.

Scripts of LncRNA-ID can be obtained at https://github
.com/zhangy72/LncRNA-ID.

LncRScan-SVM provided scripts, gene annotation files,
anddatasets.The scripts can be downloaded at https://source-
forge.net/projects/lncrscansvm/?source%20=%20directory.
A Readme file is also attached on this site.

All the stand-alone versions of these tools require
Linux/UNIX operating system.

The link of lncRNA-MFDL provided is https://compge-
nomics.utsa.edu/lncRNA MDFL/. LncRNApred only has the
web interface and is available at http://mm20132014.wicp.net:
57203/LncRNApred/home.jsp. However, the link of lncRNA-
MFDL expired when we did this research. And LncRNApred
only provides a web server which cannot handle too many
sequences at one time.

2.2. CPC inDetail. CPC [28] extracted six features to evaluate
the coding potential of transcripts. Log-odds score, coverage,
and integrity of ORF are used to assess the ORFs of one
sequence. ORFs are predicted by framefinder. A high-quality



BioMed Research International 5

ORF tends to have a high log-odds score and a larger ORF
coverage. The integrity of ORF means ORFs in protein-
coding transcripts are disposed of to begin with a start
codon and end with a stop codon. The other three features
are number of hits, hit score, and frame score, which are
derived from the output of BLASTX search. A protein-coding
transcript prefersmore hits in alignment with lower𝐸-values.
Then the hit score is defined as follows [28]:

𝑆𝑖 = mean
𝑗

{−log10 𝐸𝑖𝑗} , 𝑖 ∈ 0, 1, 2,

Hit Score = mean
𝑖∈{0,1,2}

{𝑆𝑖} = ∑2𝑖=0 𝑆𝑖3 ,
(1)

where 𝐸𝑖𝑗 is the 𝐸-Value of the 𝑗th hits in the 𝑖th ORF. A
noncoding transcript may also contain some hits, but these
hits are inclined to scatter in three frames rather than be
located in one. The frame score to calculate the distribution
of hits among three ORFs is defined in the following:

Frame Score = variance
𝑖∈{0,1,2}

{𝑆𝑖} = ∑2𝑖=0 (𝑆𝑖 − 𝑆)2
2 . (2)

Thus, a protein-coding transcript will achieve a higher hit
score and frame score because of the lower𝐸-value and biased
distribution of the hits.

The training data of CPC [46] are eukaryotic ncRNAs
from the RNAdb [47] and NONCODE [48, 49] databases.
CPC is designed to assess transcripts’ protein-coding poten-
tial, whichmeans it will have high accuracy of discriminating
protein-coding transcripts. Moreover, CPC also has the error
tolerance capacity, which owesmuch to framefinder’s accurate
prediction. Framefinder performed well even though input
transcripts may have some point mutations, indel errors,
and truncations. CPC is slightly inferior in distinguishing
noncoding transcripts in respect of the fact that lncRNAsmay
contain putative ORFs and transcript length is also familiar
to protein-coding transcripts. The slow speed is another
imperfection of CPC.

2.3. CPAT in Detail. CPAT [29] is an alignment-free pro-
gram. CPAT uses a logistic regression model and can be
trained on own data of users. Apart from the features of
maximum length and coverage of ORF akin to CPC, Fickett
Score is another criterion. Fickett Score can be regarded as
a dependent classifier; it is mainly based on calculating the
position of each base favoured and the content of each base
in the sequence [50]. The base’s position parameter of CPAT
is defined as follows:

𝐴1 = Number of As in positions 0, 3, 6, . . .
𝐴2 = Number of As in positions 1, 4, 7, . . .
𝐴3 = Number of As in positions 2, 5, 8, . . .

𝐴-position = max (𝐴1, 𝐴2, 𝐴3)
min (𝐴1, 𝐴2, 𝐴3) + 1 ,

𝐴-content = Occurence Number of 𝐴
Total Number of all bases

,
(3)

where 𝐴 in the formula means the base 𝐴 and the other
three bases are measured in a similar way. The parameter
of position calculates each base’s favoured position and
the parameter of content is the percentage of each base
in the sequence. Then according to distributions of eight
parameters’ values [50], it is easy to obtain the probability that
the sequence will be a protein-coding transcript. Next, each
probability is multiplied by a weight to make a more accurate
result. The weight is the percentage of the times that the
estimate of each parameter alone is correct. Finally, according
to the above descriptions, Fickett Score can be determined as
follows:

Fickett Score = 8∑
𝑖=1

𝑝𝑖𝑤𝑖. (4)

According to Fickett [50], Fickett Score alone can correctly
discriminate about 94% of the coding segments and 97% of
the noncoding segments with 18% of “No Opinion.”

The last feature of CPAT is hexamer score, which is the
most discriminating feature. Hexamer means the adjacent
amino acids in proteins.The features of the in-frame hexamer
frequency of coding and noncoding transcripts are calculated
and hexamer score is defined in the following:

Hexamer Score = 1
𝑚
𝑚∑
𝑖=1

log( 𝐹 (𝐻𝑖)𝐹 (𝐻𝑖)) . (5)

There are 64 ∗ 64 kinds of hexamers, and 𝑖 denotes each hex-
amer. 𝐹(𝐻𝑖) (𝑖 = 0, 1, 2, . . . , 4095) means the in-frame hex-
amer frequency of protein-coding transcripts, while 𝐹(𝐻𝑖)
means noncoding transcripts. For a transcript containing𝑚 hexamers, a positive hexamer score indicates a protein-
coding transcript.

A high-quality training dataset is constructed contain-
ing 10,000 protein-coding transcripts selected from RefSeq
database with the annotations of the Consensus Coding
Sequence project and 10,000 noncoding transcripts randomly
collected from GENCODE database. CPAT is prebuilt hex-
amer tables and logit models for human, mouse, fly, and
zebrafish. Meanwhile, CPAT uses pure linguistic features to
facilitate discrimination of the poorly annotated transcripts.
CPAT has an efficient offline program and also provides a
user-friendly web interface.

2.4. CNCI in Detail. CNCI [30] is mainly based on sequence
intrinsic composition, it evaluates the transcripts by calcu-
lating the usage frequency of adjoining nucleotide triplets
(ANT). Firstly, two ANT matrices are constructed based on
the usage frequency of ANT in noncoding sequences and
coding region of the sequences (CDS). For 4,096 ANT, the
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formulas to calculate each ANT usage frequency are defined
as follows:

𝑋𝑖𝑁 = 𝑛∑
𝑗=1

𝑆𝑗 (𝑋𝑖) ,

𝑇 = 𝑚∑
𝑖=1

𝑋𝑖𝑁 = 𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑆𝑗 (𝑋𝑖) ;
𝑚 = 64 × 64; 𝑛 = 1, . . . , 𝑁,

𝑋𝑖𝐹 = 𝑋𝑖𝑁𝑇 ,

(6)

where 𝑋 means one kind of ANT; 𝑆𝑗(𝑋𝑖) is the occurrence
number of𝑋𝑖 in one sequence 𝑆𝑗.Thus,𝑋𝑖𝑁 denotes the total
occurrence number of one kind of ANT in the dataset while𝑇
indicates the total occurrence number of all kinds of ANT in
the dataset. Accordingly, 𝑋𝑖𝐹 is the usage frequency of ANT.
Then the ANT Score Matrix is utilised, which is the log2-
ratio of the two above-mentioned ANT matrices, to score a
sequence and make a discrimination.

ANT Score Matrix = log2
CDS Matrix

Non-coding Matrix
. (7)

The distinguishing results of ANT Score Matrix are fairly
well, but the matrix is constructed by computing the ANT
usage frequency of coding region and noncoding region;
consequently the untranslated region (UTR) of the entire
sequence will interfere with the performance of discrimina-
tion.The sliding window is employed with one ANT (3 nt) in
each scan step to identify the CDS of a sequence by scanning
six reading frames of each sequence. The different sizes
(30, 60, 90, . . . , 300 nt) of the sliding windows are examined
and the size of 150 nt for this classification model is found to
obtain the most robust result. For a sequence consisting of𝑘 ANT, there will be 𝑘 − 1 segments in this sequence. Based
on the ANT Score Matrix, each segment will get an 𝑆-Score,
and each reading frame can obtain an array comprised of the𝑆-Scores. The formula of 𝑆-Score is defined as follows:

𝑆-Score = 𝑛∑
𝑖=1

{𝐻𝑝 (𝑋𝑖)} , (8)

where 𝑋 means ANT, 𝐻𝑝 is the ANT Score Matrix, and𝑛 is the total number of the ANT in one segment or the
whole sequence. Hence, a correct reading frame of coding
transcript tends to have a higher whole sequence 𝑆-Score
and, in this array of reading frame, the region composed of
consecutive high 𝑆-Scores is the CDS. For long noncoding
transcripts, the Maximum Interval Sum [51] program is used
to identify the most-like CDS (MLCDS) which is the region
that gained the largest sum of consecutive 𝑆-Scores in each
reading frame. Among those six MLCDS, the length and𝑆-Score of the MLCDS with the highest value are selected
as the features of CNCI. Furthermore, the features of the

LENGTH-Percentage, SCORE-Distance, and codon-bias are
also selected to improve accuracy:

LENGTH-Percentage = 𝑀1
∑𝑛𝑖=0 (𝑌𝑖) ,

SCORE-Distance = ∑𝑛𝑗=0 (𝑆 − 𝐸𝑗)
5 ,

(9)

where 𝑀1 is the length of the MLCDS with the highest 𝑆-
Score, 𝑌𝑖 is the length of each MLCDS, 𝑆 is the highest 𝑆-
Score among six MLCDS, and 𝐸𝑗 is the 𝑆-Score of other five
MLCDS. Codon-bias (3-mer frequencies) is a parameter to
evaluate the usage bias of different codons in protein-coding
or long noncoding transcripts. The log2-ratio of occurrence
frequency of each codon (stop codons are excluded) in
protein-coding genes and lncRNAs is calculated, and most
codons have distinct usage bias in two kinds of sequences.

The training datasets of CNCI contain protein-coding
transcripts selected from RefSeq database and long noncod-
ing transcripts selected from GENCODE [52]. The CNCI
is applied to other species with the aim of examining the
scope of application.The results of vertebrates (except birds),
especially mammals, can be accepted since the program
was trained on human gene set. CNCI can be used to
discriminate incomplete transcripts, especially those high-
throughput sequencing data of poorly explored species.

2.5. PLEK in Detail. PLEK [31] is an alignment-free tool
based on 𝑘-mer frequencies of the sequences. For a given
sequence, the sliding windows with size of 𝑘 scan 1 nt as
a step forward. 𝑘 ranges from 1 to 5, which is a trade-
off between accuracy and computational time. Thus, for a
sequence consisting of 𝐴, 𝐶, 𝐺, and 𝑇, the 41 + 42 + 43 +
44 + 45 = 1,364 patterns can be obtained. Then the following
formulas can be used:

𝑓𝑖 = 𝑐𝑖𝑠𝑘𝑤𝑘, 𝑘 = 1, 2, 3, 4, 5; 𝑖 = 1, 2, . . . , 1364,
𝑠𝑘 = 𝑙 − 𝑘 + 1,
𝑤𝑘 = 1

45−𝑘 ,
𝑘 = 1, 2, 3, 4, 5,

(10)

where 𝑖 is the number of the patterns; 𝑐𝑖 denotes the number
of the segments in slidingwindowsmatchingwith patterns; 𝑠𝑘
denotes the total of the segments when sliding window slides
along the sequencewith the size of 𝑘.Therefore,𝑓𝑖 is the usage
frequency multiplied by a factor𝑤𝑘 which is used to facilitate
the discrimination.

A balanced training dataset is conducted with all 22,389
long noncoding transcripts collected from the GENCODE
dataset [52–54] and 22,389 protein-coding transcripts ran-
domly selected from the human RefSeq dataset [55, 56].
Though the training model of PLEK is human, PLEK can
still be applied to other vertebrates. PLEK is particularly
designed for the transcripts acquired from current sequenc-
ing platforms which consist of some indel errors commonly.
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For these transcripts, the performance of PLEK is better
than CPC and CNCI. PLEK can be trained with users’ own
datasets, but it may take a long time to be accomplished.

2.6. LncRNA-MFDL in Detail. LncRNA-MFDL [34] is based
on feature fusion and deep learning algorithm. LncRNA-
MFDL has four kinds of features which are integrated to
build a classification model based on deep stacking networks
(DSNs, one kind of deep learning algorithm) [57, 58]. Four
feature groups of lncRNA-MFDL include 𝑘-mer; secondary
structure; ORF, obtained by utilising txCdsPredict program
(http://genome.ucsc.edu/) [59]; and MLCDS features which
are inspired by CNCI [30].

The 𝑘-mer scheme employed in lncRNA-MFDL is unlike
the one in PLEK. Here, the 𝑘 only ranges from 1 to 3,
but the frequencies are calculated on the regions of the
whole sequence and ORF at the same time. Considering that
the secondary structure is more conserved and stable than
primary structure, a representative criterion, the minimum
free energy (MFE), is used to assess the secondary structure
of the transcripts. Utilising RNAfold program of ViennaRNA
Package [60], the MFE, the ratio of MFE to sequence length,
and the number of paired bases and unpaired bases can be
easily obtained.

2.7. LncRNA-ID in Detail. LncRNA-ID [32] has three cate-
gories of features as mentioned earlier. Except for the length
and coverage of ORF, the features based on translation
mechanism and protein conservation are extracted.

Many studies [61–63] have demonstrated that several
nucleotide sites in Kozak motif play a prominent role
during the initiation of protein translation. An efficient
translation indicates that the highly conserved nucleotides
appear at the positions {−3, +4} and {−2, −1} of Kozak motif
GCCRCCAUGG (R represents purine and the position of A
in start codon AUG is +1). Thus, these conserved sites are
more likely to exist in protein-coding transcripts. Moreover
when the translation starts, the binding energy will change
along with the interaction between the 3 end of rRNAs and
mRNA transcripts. The Ribosome Coverage to calculate the
changes of the binding energy is defined as follows:

Ribosome Coverage = 𝐿∑
𝑖=1

{𝑁𝑖 | 𝛿𝑖 < 0} , (11)

where 𝛿𝑖 is the free energy at position 𝑖 and 𝑁𝑖 is the
number of base pairs starting at position 𝑖 in a sequence
with the length of 𝐿. Next, the three levels of ribosome occu-
pancy by computing Ribosome Coverage on three regions,
respectively, are obtained: the whole transcript, ORF, and
3UTR. Accordingly, a true protein-coding transcript tends
to attain higher Ribosome Coverage on the whole transcript
and the ORF region. When the translation terminates, the
ribosomes will be released from protein-coding transcripts.
Therefore, it is likely to capture a considerable drop of
ribosome occupancy when ribosomes reach stop codons.The

Ribosome Release Score to capture this change of ribosome
occupancy is defined:

Ribosome Release Score

= Ribosome coverage of ORF/length (ORF)
Ribosome coverage of 3UTR/length (3UTR) ,

(12)

and a protein-coding transcript inclines to exhibit a higher
Ribosome Release Score. For protein translation category,
the selected features including nucleotides at two positions
of Kozak motif, Ribosome Coverage on three regions, and
Ribosome Release Score are selected.

The protein conservation of the sequences is evaluated
according to profile hidden Markov model-based align-
ment scores. HMMER [64] is a software suite for sequence
homology detection using probabilistic methods. LncRNA-
ID employed HMMER with the 𝐸-value cutoff of 0.1 to
align the transcripts against all available protein families. A
protein-coding transcript is expected to get a higher score,
longer aligned region, and a reasonable length of the profile
in the alignment.

In human genome, although the amount of lncRNA is
at least four times more than protein-coding genes [65],
the majority class in training data is protein-coding tran-
script on account of poorly annotated lncRNA. Hence, the
classification model of this method is balanced random
forest [66, 67] which is derived from random forest but
could utilise the sufficient protein-coding data and avoid
inaccurate results caused by the imbalanced training data at
the same time. The human prebuilt model of LncRNA-ID
contains 15,308 protein-coding transcripts and 4586 lncRNAs
from GENCODE [52]. For mouse, the training datasets are
comprised of 22,033 protein-coding transcripts and 2,457
lncRNAs randomly selected from GENCODE. These two
datasets were also used to draw receiver operation charac-
teristic (ROC) curves in the next section (Figure 2). Users
can train LncRNA-ID with their own dataset and apply it to
various species.

2.8. LncRScan-SVM in Detail. LncRScan-SVM [33] classifies
the sequencesmainly by evaluating the qualities of nucleotide
sequences, codon sequence, and transcripts structure. The
counts and average length of exon in one sequence are
calculated. The protein-coding transcripts are disposed of
to include more exons, thus having a longer exon length
than lncRNA. Another feature is the score of txCdsPredict.
This third-part program from UCSC genome browser [68]
can determine if a transcript is protein-coding. Conservation
score is obtained by calculating the average of PhastCons
scores [45] from Phast (http://compgen.cshl.edu/phast/).
Transcript length and standard deviation of stop codon
counts between three ORFs are the last two features.

The reliable datasets are constructed from GENCODE
[54] composed of 81,814 protein-coding transcripts and
23,898 long noncoding transcripts of human. And, formouse,
47,394 protein-coding transcripts and 6,053 long noncoding
transcripts from GENCODE [52] are also contained within
the dataset. After being trained on human and mouse
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datasets, lncRScan-SVM obtains a good performance on
lncRNA prediction.

2.9. LncRNApred in Detail. Before constructing the classi-
fier, self-organizing feature map (SOM) clustering [69] is
employed to select representative samples as the training
dataset, which enhanced the performance of LncRNApred.
As to the features, the length and coverage of the longest ORF,
one of the classical and typical features, are selected as the
criteria. In addition, G + C content, 𝑘-mer (𝑘 is from 1 to 3
just like lncRNA-MFDL), and length of the sequence are also
the features of LncRNApred. The novel idea of LncRNApred
is SNR, which transforms one sequence into four binary
numeric sequences:

𝑢𝑏 = {{{
1, 𝑆 [𝑛] = 𝑏,
0, 𝑆 [𝑛] ̸= 𝑏,

𝑛 = 0, 1, 2, . . . , 𝑁 − 1, 𝑏 ∈ {𝐴, 𝑇, 𝐶, 𝐺} ,
(13)

where 𝑏 means four kinds of bases, 𝑁 is the length of one
sequence, and 𝑆[𝑛] denotes a sequence of length 𝑁. Thus,
there will be four binary sequences {𝑢𝑏 | 𝑏 ∈ (𝐴, 𝑇, 𝐶, 𝐺)}.
Then applying Discrete Fourier Transform (DFT) to these
four binary numeric sequences, the power spectrum {𝑃[𝑘]}
can be obtained:

𝑈𝑏 [𝑘] =
𝑁−1∑
𝑛=0

𝑢𝑏 [𝑛] 𝑒−𝑖(2𝜋𝑛𝑘/𝑁), 𝑘 = 0, 1, . . . , 𝑁 − 1,
𝑃 [𝑘] = 𝑈𝐴 [𝑘]2 + 𝑈𝑇 [𝑘]2 + 𝑈𝐺 [𝑘]2 + 𝑈𝐶 [𝑘]2 .

(14)

The studies of Fickett [50, 70] have presented that positions
and compositions of four bases are different in lncRNAs
and protein-coding RNA, and, because of this, the power
spectrum of one protein-coding transcript will have a peak
at𝑁/3 position. Hence, the SNR is defined as follows:

𝐸 = ∑𝑁−1𝑘=0 𝑃 [𝑘]𝑁 ,
SNR = 𝑃 [𝑁/3]

𝐸 .
(15)

Now, there are 89 features: the length and coverage of
the longest ORF, the length of the sequence, SNR, G + C
content, and 4 + 16 + 64 features of 𝑘-mer. Noticing that not
all the features have high discriminative power, the feature
selection ismade and 25 high-quality features are determined
from the original 84 features of k-mer. Finally, 30 features are
selected to build a random forest model. The performance of
random forest is largely determined by training set.Therefore,
the clustering method is used to find out the most adequate
sequences to form a high standard training set.The clustering
method SOM [69] achieved the best result and was chosen to
select characteristic sequences

An overall procedure of these eight tools is displayed in
Figure 1.

3. Performance of These Methods

To quantify the classification performance under one unified
standard, we first characterise lncRNAs as the positive class
and protein-coding transcripts as the negative class; then the
performance of these tools can be evaluated with several
standard criteria defined as follows:

Sensitivity = TP
TP + FN

,
Specificity = TN

TN + FP
,

Accuracy = TP + TN
TP + FP + TN + FN

,
False Positive Rate = FP

FP + TN
.

(16)

As one of the most popular methods, CPC is especially
designed for assessing protein-coding potential and per-
formed fairly well for discriminating protein-coding tran-
script. It enjoys the best results when screening the coding
transcripts. For 10,000 protein-coding genes and 10,000 lncR-
NAs selected from UCSC genome browser (GRCh37/hg19),
CPC picked up about 97.62% coding transcripts while CPAT
distinguished 85.28% of them. CPAT also outperforms CPC
with 89.94% accuracy [33]. Table 3 shows the performance of
these tools on the same testing dataset. CPC picks up 99.97%
of human protein-coding genes collected from GENCODE,
in comparison with the latest program LncRNA-ID whose
performance is 95.28%. However, the performance of CPC
appears to somewhat decline when focusing on the capability
of discriminating noncoding transcripts, especially long non-
coding transcripts: CPC only picked up 66.48% of human’s
long noncoding transcripts while the results of CPAT, PLEK,
and LncRNA-ID are 86.95%, 99.52%, and 96.28%.

CPC and CPAT are the programs to assess the coding
potential, but CNCI is especially used to classify protein-
coding and long noncoding transcripts. With the sequences
becoming longer and longer, CNCI was more superior to
CPC. According to Sun et al. [30], when the length of
transcript is longer than 2,000 nt, the accuracy of CPC is
only around 0.4 while the CNCI still has an outstanding
performance. The training dataset of CNCI is human but
this method still achieved more than 90% accuracy in other
vertebrates apart from the birds [30]. PLEK is tested on
two datasets sequenced by PacBio and 454 platforms (refer
to Table 3). Among the tools being compared, CPC still
picked up about 99.90% coding genes though this figure
is not that useful because it can only distinguish 19.00%
and 47.20% lncRNAs. CNCI displayed better performance
on both datasets, but PLEK even achieved a more satisfying
result.

LncRNA-ID is another method to identify the long
noncoding transcripts. Compared with other programs,
LncRNA-ID strikes a good balance between sensitivity and
false positive rate. According to Table 3, it is noticeable that
lncRNA is better than PLEK but slightly inferior to CPC
and CPAT on the testing data of coding genes, and the
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Figure 1: An overall procedure of eight tools. The features of each tool are sorted into several groups and only the categories of the features
are listed in the figure.
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Figure 2: The ROC curves of CPC, CPAT, CNCI, and PLEK. We assessed the models using the same datasets as LncRNA-ID (selected from
GENCODE) used. Both CPC and CPAT were evaluated with the latest versions.
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Table 3: Overview of each tool’s performance on different testing datasets.

Testing dataset CPC CPAT CNCI PLEK LncRNA-ID lncRScan-SVM
Human MCF-7 (PacBio)1

Specificity 99.90 91.80 94.70
Sensitivity 19.00 78.70 95.80
Accuracy 97.00 91.30 94.70
Human HelaS3 (454)2

Specificity 99.90 93.90 95.50
Sensitivity 47.20 81.10 92.50
Accuracy 99.00 93.70 95.40
Human (from GENCODE)3

Specificity 99.97 99.55 89.18 95.28
Sensitivity 66.48 86.95 99.52 96.28
Accuracy 83.22 93.25 94.32 95.78
Mouse (from GENCODE)4

Specificity 98.75 98.95 70.94 92.10
Sensitivity 76.55 38.80 88.11 94.45
Accuracy 87.65 68.88 79.49 93.28
Human (from GRCh37/hg19)5

Specificity 97.62 85.28 89.20
Sensitivity 67.23 94.60 93.88
Accuracy 82.43 89.94 91.94
Mouse (from GRCm38/mm10)5

Specificity 98.37 88.17 89.14
Sensitivity 75.46 95.34 95.29
Accuracy 86.91 91.76 92.21
The results of the tools being tested on the same datasets are listed above. Bold numbers denote the highest value of the metrics.
1MCF-7 is available at http://www.pacb.com/blog/data-release-human-mcf-7-transcriptome/; 2dataset of HelaS3 is available at https://www.ncbi.nlm.nih.gov/
sra/SRX214365; 3,4datasets are available at https://www.dropbox.com/sh/7yvmqknartttm6k/AAAQHvLZPjgjf4dtmHM7GNCqa/H1 gencode?dl=0 and
https://www.dropbox.com/sh/7yvmqknartttm6k/AACzaG-QJggvbXW6LA32oo7ba/M1 gencode?dl=0; 5dataset of human and mouse is available at
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139654.

performance on lncRNAs is just the opposite. LncRNA-ID
can be trained with users’ own data; it can obtain a satisfying
result even when the data is unbalanced.With the proportion
of lncRNA decreasing, CPAT shows a sharp reduction from
79.51% to 54.46%on the capability of lncRNAdiscrimination;
LncRNA-ID, by contrast, fell less than 1% [32].

ROC curves of CPC, CPAT, PLEK, and LncRNA-ID
tested on human and mouse datasets were provided in [32].
Since CPC and CPAT are updated as the accumulation of
gene database, it is useful to assess their performance with
latest version and take CNCI into account. Here we utilise
the test set of LncRNA-ID [32] (both the datasets of human
andmouse are selected fromGENCODE) to reevaluate CPC,
CPAT, CNCI, and PLEK (Figure 2). According to [32], the
area under curve (AUC) of LncRNA-ID on human dataset
is 0.9829 (optimal = 0.0545, 0.9720), while on mouse it is
0.9505 (optimal = 0.0800, 0.9445) [32]. In our assessment,
the performance of PLEK is identical with [32], while the
performance of CPC and CPAT, as we anticipated, displayed
some differences. The ROC curves were drawn in R with the
package of pROC [71].

LncRScan-SVM is compared with CPC and CPAT on
human and mouse datasets from UCSC (version hg19 of

human and mm10 of mouse). CPC, as an excellent coding
potential assessment tool, still achieves 98.37% of specificity
onmouse testing dataset. CPAT, on the contrary, achieved the
highest values of sensitivity both on the datasets of human
and mouse. LncRScan-SVM surpasses CPAT with 89.20%
and 89.14% of specificity on human and mouse datasets. For
sensitivity, lncRScan-SVM obtained 93.88% and 95.29% on
the same testing datasets, which are only 0.72% and around
0.1% lower than CPAT’s results, respectively, but much higher
than CPC’s 67.23% and 75.46%. In addition, lncRScan-SVM
also has the best results of accuracy and AUC [33] on these
datasets.

For the same testing datasets, the running time of CPAT
is the shortest and CPC shows the longest time to finish
the process because of its alignment process. When being
tested on a dataset containing 4,000 protein-coding and 4,000
long noncoding transcripts, CPAT takes 35.36 s and LncRNA-
ID takes 65.35 s to accomplish the discrimination while
PLEK and CPC need 21.47m and 86.51 h, respectively [32].
PLEK is 8 times and 244 times faster than CNCI and CPC,
respectively, on the same testing data [31], and lncRScan-
SVM also needs about 10 times as much as CPAT to finish
computation [33].
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Table 4: Priority of employing different methods on different situations.

CPC CPAT CNCI PLEK LncRNA-ID lncRScan-SVM
Coding potential assessment ✓ ✓
Human lncRNAs ✓ ✓ ✓ ✓ ✓ ✓
Mouse lncRNAs ✓ ✓ ✓
Other Species1 ✓ ✓ ✓ ✓
Testing data with sequencing errors2 ✓ ✓ ✓
Lack of annotation ✓ ✓ ✓
Massive-scale data3 ✓ ✓ ✓ ✓
Trained by users4 ✓ ✓ ✓
Web interface ✓ ✓
This table only presents the preferences under different situations, which means a method with a tick can achieve a better performance under a certain
circumstance.
1Only CPAT, LncRNA-ID, and lncRScan-SVM provide the model for mouse. When analysing other species, CPAT has the model for fly and zebrafish; CNCI
and PLEK can predict the sequences of vertebrata and plant. CPAT, PLEK, and LncRNA-ID can build a newmodel based on users’ datasets. 2Users can choose
CNCI for incomplete sequences and CPC or PLEK for the transcripts with indel errors. 3CPAT is the most efficient method. Though lncRScan-SVM needs
more time than CPAT and LncRNA-ID, it is also acceptable. 4LncRNA-ID can handle the imbalanced training data. Training PLEK with users’ own datasets
may be a time-consuming task.

4. Application Scopes of the Methods

All these methods have own particular scopes to exert their
talents, which means an appropriate program can help us
obtain a satisfying result. The priority of utilising these
tools under some particular circumstances is summarised in
Table 4.

CPC is based on sequence alignment which facilitates
protein-coding transcripts selection but impairs the perfor-
mance of noncoding transcripts in that long noncoding tran-
scripts share more similarities with coding transcripts such
as putative ORF, which could mislead CPC. Also, because
of alignment process, utilising CPC to analyse massive-scale
data is a time-consuming process.

CPAT is also used to evaluate the coding potential, though
the performance on long noncoding transcripts is acceptable.
CPAT has a compromise between coding and noncoding
transcripts that is not bad. Since the model of CPAT is
logistic regression and the input file is FASTA format, CPAT
is markedly superior in computational time which means
CPAT is more suitable for being applied to data on a large
scale. Furthermore, linguistic features make CPAT be able to
analyse the sequences without annotation, and allowing users
to train the model with their own dataset extends CPAT’s
scope of application. Users can apply CPAT to other species
instead of being confined to human or mouse only.

CNCI is designed to distinguish between coding and long
noncoding transcripts without the annotations of sequences.
Because lots of lncRNAs are poorly annotated, this quality
provided amore accurate discrimination for these sequences.
CNCI is trained on human dataset but can also be applied to
othermammals such asmouse and orangutan. CNCI displays
acceptable results on vertebrates (except fish), but, for plants
and invertebrates, the result is not very satisfying. CNCI is
valuable when the sequences lack annotations or users do not
have training set of other species. CNCI also shows a good
performance when the transcripts are incomplete.

PLEK employs a higher fault tolerance algorithm and
performs better when the sequences have indel errors. It is a

proper tool to analyse the de novo assembled transcriptome
datasets such as the sequences obtained from Roche (454)
and Pacific Biosciences (PacBio) sequencing platforms. In
addition to human and mouse, PLEK can also be used to
other vertebrates and displays comparable results with the
ones of CNCI. PLEK’s model can be trained by users, but it
takes a long time to be completed.

LncRNA-ID has many merits and delivers better all-
round performance on human andmouse datasets. Although
the time LncRNA-ID spent on classifying is nearly twice of
CPAT, LncRNA-ID is still more efficient than other methods,
which makes it a reasonable choice when data are on a
massive-scale. The model of LncRNA-ID can be trained by
users, but the most excellent attribute is the competence of
handling the unbalanced training data. For studying those
not well-explored species, LncRNA-ID takes priority when
users have training datasets.

LncRScan-SVM achieves a good trade-off between
the discrimination of coding and long noncoding genes.
LncRScan-SVM is slower than CPAT and LncRNA-ID, but it
is still acceptable. For analysing human and mouse datasets,
lncRScan-SVM can be considered as a proper approach.

5. Discussion

According to the features selected by each tool, it is apparent
that different tools have their own advantages and disadvan-
tages. CPC is developed to assess coding potential of the
transcripts; moreover, CPC is trained on datasets of protein-
coding and noncoding RNA which means it achieves excel-
lent performance when analysing ncRNAs. CPC provides
a stand-alone version and a web server, but both of the
two programs need vast amounts of time to process the
sequences. As alignment-based tools, the performance of
CPC varied when using different protein reference database.
CPAT can present satisfying results efficiently partly because
CPAT builds the logistic model which is faster than SVM.
The web server of CPAT can display the result in an instant,
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which facilitates small scale prediction tasks. A minor dis-
advantage of CPAT is that the cutoff of CPAT varies from
species to species and users have to determine the optimum
cutoff value when they are training a new model. CNCI is
designed to predict the transcripts assembled from whole-
transcriptome sequencing data. Thus, CNCI offers a high
accuracy on incomplete transcripts. CNCI did not provide
result of elaborate comparison between CNCI and CPAT,
but CPAT has no regard for the problem of incomplete
transcripts. Meanwhile, UTRs of the transcripts may also
interfere with the performance of CPAT.The features of ANT
of CNCI closely resemble the hexamer of CPAT, but the
distinguishing process of CNCI is more complicated and
accurate than CPAT. However, the sliding window of CNCI
slides 3 nt in each step, and consequently some deletion
or frameshift errors may lead to a false shift and present
users with a disappointing performance. In such cases, PLEK
has made a considerable improvement and exhibits more
flexibility when handling the indel sequencing errors. Indel
errors are very common in the sequences obtained by today’s
sequencing platform, which means PLEK performs well for
de novo assembled transcriptomes. With the indel error rate
increasing, the accuracy of CNCI is decreasing while PLEK
has no distinct fluctuation. Nonetheless, since the nucleotides
compositions differ slightly among different species, the
performance of PLEK on multiple species is not better than
or approximately equivalent to CNCI whose performance
is more stable on different species. Both LncRNA-ID and
lncRScan-SVM achieve a balance between protein-coding
and lncRNAs. But the capacity of lncRScan-SVMwill be lim-
ited when analysing the sequences with a lack of annotation.
Another point that needs to be brought up is that lncRScan-
SVM and CNCI support ∗ .GTF as input file format.

It is apparent that nucleotides composition (such as 𝑘-mer
and G + C content) and ORF are two classic and widely used
feature groups. These features have strong discriminative
power because protein-coding genes will finally be tran-
scribed and translated to produce a specific amino acid chain,
which requires some specified nucleotides composition and
high-quality ORFs. As to the models of these tools, SVM
(CPC, CNCI, and PLEK), logistic regression (CPAT), and
random forest (LncRNA-ID) are more practical for lncRNA
identification, though ANN or deep learning is a more popu-
lar machine learning algorithm now. Along with the protein-
coding genes prediction, the annotations of lncRNA gene
have been performed as well. A new tool named AnnoLnc
(2015, available at http://annolnc.cbi.pku.edu.cn/index.jsp)
has just been developed to annotate new discovered lncRNAs
but related article has not yet been officially published. Users
can access its web server for more information.

LncRNAs are receiving increasing attention and lncRNA
identification has always been a challenge for researches
of life science. For so many different types of sequences,
various excellent tools should be developed to tackle different
problems under various circumstances in the future. In this
review, we summarised several tools for lncRNAs identifica-
tion and concluded respective scopes. Due to their different
scopes of application, using a method apposite to particular
situation will be of essence to achieve convincing results.

We hope this review can help researchers employ a more
appropriate method in certain situations.

Additional Points

Key Points. (i) Different tools have different scopes. Users
should select a proper tool according to the type of sequences.
(ii) From the perspective of sequence types, CPC and
CPAT are mainly used to assess coding potential. CNCI
and PLEK can be applied to the sequences obtained from
high-throughput sequencing platforms or the poorly anno-
tated. LncRNA-ID and lncRScan-SVM are more accurate on
human and mouse datasets. (iii) From the perspective of
other functions, CPC and CPAT have web interfaces. The
classification models of CPAT, LncRNA-ID, and PLEK can
be trained on users’ own datasets. CPAT, LncRNA-ID, and
lncRScan-SVM can be utilised when the data to be analysed
are on a massive-scale.
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